
Table of Contents
Table of Contents 1-5

GcExcel .NET Overview 6

Key Features 7-8

Get Started 9-13

License Information 13-16

Technical Support 16

Redistribution 16

End User License Agreement 16

Features 17

Comments 17-18

Chart 18

Conditional Format 18

Data Validation 18-19

Formula 19

Group 19

Hyperlinks 19

Page Setup 19

PDF Export 19

Rich Text 20

Shape and Picture 20

Style 20

Sparkline 20

Theme 20-21

Table 21

Customize User Interaction 22

Manage Workbook 22

Create Workbook 22

Open, Save and Protect Workbook 22-24

Cut or Copy Across Sheets 24

Enable or Disable Calculation Engine 24-25

Apply Theme 25-26

Work with Workbook Views 26

Documents for Excel, .NET Edition 1

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Manage Worksheet 26-27

Work with Worksheets 27-28

Range Operations 28-29

Access a Range 29

Access Areas in a Range 29-30

Access Cells, Rows and Columns in a Range 30-31

Cut or Copy Cell Ranges 31

Cut or Copy Shape, Slicer, Chart and Picture 31-33

Get Row and Column Count 33

Hide Rows and Columns 33

Insert And Delete Cell Ranges 33-35

Insert and Delete Rows and Columns 35-36

Merge Cells 36

Set Values to a Range 36

Set Row Height and Column Width 36-37

Work with Used Range 37-38

Freeze Panes in a Worksheet 38

Work with Shape And Picture 38-42

Customize Worksheets 42-44

Work with Worksheet Views 44-46

Allow Sort 46-48

Apply Filters 48-50

Manage Hyperlinks 50-52

Apply Grouping 52

Create Row or Column Group 52-53

Remove a Group 53-54

Set Summary Row 54

Apply Style 54-55

Set Sheet Styling 55-58

Create and Set Custom Named Style 58-60

Apply Comments 60-62

Set Rich Text in a Cell 62-66

Manage Formulas 67

Documents for Excel, .NET Edition 2

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Set Formula to Range 67-68

Set Table Formula 68-69

Set Array Formula 69-70

Manage Data 71

Use Chart 71

Create and Delete Chart 71

Configure Chart 71-72

Chart Title 72

Chart Area 72-74

Plot Area 74

Customize Chart Objects 74-75

Series 75-78

Configure Chart Series 78-85

Walls 85-86

Axis and Other Lines 86-88

Configure Chart Axis 88-90

Floor 90-91

Data Label 91-92

Legends 92-93

Use Sparkline 93-96

Use Table 96

Create and Delete Tables 96-97

Modify Tables 97-98

Apply Table Sort 98-99

Set Table Filters 99

Add and Delete Table Columns and Rows 99-100

Apply Table Style 100

Modify Table with Custom Style 100-101

Modify Table Layout 101-102

Use Pivot Table 102

Create Pivot Table 102-103

Pivot Table Settings 103-105

Use Slicer 105

Documents for Excel, .NET Edition 3

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Add Slicer in Table 105-106

Add Slicer in Pivot Table 106-107

Use Do Filter Operation 108

Apply Slicer Style 108-109

Modify Slicer with Custom Style 109

Modify Table Layout for Slicer Style 109-110

Manage File Operations 111

Import and Export .xlsx Document 111-112

Import and Export CSV File 112-113

Import and Export JSON Stream 113-115

Import and Export Macros 115

Export to a PDF File 115-116

Set Pagination 116-117

Configure Fonts and Set Style 117-118

Export Vertical Text 118-119

Apply Conditional Formatting 120

Add Cell Value Rule 120

Add Date Occurring Rule 120-121

Add Average Rule 121

Add Color Scale Rule 121

Add Data Bar Rule 121-122

Add Top Bottom Rule 122-123

Add Unique Rule 123

Add Icon Sets Rule 123

Add Expression Rule 124

Apply Data Validations 125

Add Validations 125-127

Delete Validation 127

Modify Validation 127-128

Configure Print Settings via Page Setup 129

Configure Page Header and Footer 129-130

Configure Page Settings 130-131

Configure Page Breaks 131

Documents for Excel, .NET Edition 4

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Configure Paper Settings 131-132

Configure Print Area 132

Configure Columns to Repeat at Left 132

Configure Rows to Repeat at Top 133

Configure Sheet Print Settings 133

API Reference 134

Index 135-138

Documents for Excel, .NET Edition 5

Copyright © 2019 GrapeCity, Inc. All rights reserved.

GcExcel .NET Overview
GrapeCity Documents for Excel, .NET Edition is a new small-footprint, high-performance spreadsheet
component that can be used in your server or desktop applications. It gives developers a comprehensive API to
quickly create, manipulate, convert, and share Microsoft Excel-compatible spreadsheets. Further, you can call it
from nearly any application and platform.

GcExcel .NET targets multiple platforms including .NET Framework, .NET Core and Mono; thus making it the
perfect solution for all your spreadsheet challenges.

The best part about using GcExcel .NET is that it models its interface-based API on Excel's document object model.
This means that users can import, calculate, query, generate, and export any spreadsheet scenario as and when
required. Moreover, the imported or generated spreadsheets can contain references to one another, such as you
can reference full reports, sort and filter tables, sort and filter pivot tables, add charts, sparklines, conditional
formats, and dashboard reports etc.

What GcExcel .NET offers you

Facilitates server-side spreadsheet generation, manipulation, and serialization.
Requires low memory footprint.
Robust calculation engine.
Produces output in varied formats including .xlsx and ssjson.
Provides multi-platform support including .NET Framework, .NET Core and Mono.
Compatible to run in environments including Winforms, WPF, ASP.NET etc.

For an introduction to GcExcel .NET features, the following documentation is available:

Features

For product details, the following reference documentation is available:

API Reference

Documents for Excel, .NET Edition 6

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Key Features
With a set of class libraries, collections, interfaces, pre-defined functions, properties and methods that comes
packaged with GcExcel .NET; developers can quickly build everything right from the scratch to organize and
structure business-critical data for maximum productivity and enhanced analysis.

GcExcel.NET provides users with the following essential features in order to facilitate developers in creating
powerful spreadsheets using .Net Core:

Lightweight API Architecture for Improved Efficiency
GcExcel .NET enables users to save a considerable amount of time, storage memory and efforts by
improving the overall efficiency with its lightweight API architecture that can be used to generate, load,
edit, save and convert spreadsheets.

Flexible Themes and Components
For complete customization, GcExcel .NET allows you to set up custom themes, configure components,
summarise data, customize styles, embed drawing objects, apply cell formatting and integrate
calculation engine.

Seamless Excel Compatibility
While executing the import operation, you can include pivot tables, comments, charts, conditional
formatting, data validation, filters, formulas, shapes, pictures, slicers, sparklines and tables etc. in the
spreadsheets without any compatibility issues.

Extensive Support for Major Operating Systems
GcExcel .NET core applications can be deployed on all major operating systems including
Microsoft Windows, Linux and macOS.

Based on Excel Object Model
The interface-based API model enables users to import data, calculate formulas, query, generate, and
export complex spreadsheet scenarios as per specific preferences.

No Dependency on MS Excel
In order to work with GcExcel .NET, users don't need to install MS Office Suite and access MS Excel on
their systems.

Use Built-in Templates for Simple Forms
Using built-in templates, you can quickly create simple forms like invoice etc. while working with
spreadsheets.

Create Interactive Experience with SpreadJS Sheets
GcExcel .NET can be used with Spread.Sheets for a completely interactive and user-
friendly spreadsheet experience.

Workbook and Worksheets
You can create workbook and add worksheets while also performing the import and export operations.
Further, you can activate worksheets, configure its display, delete it and protect it by encrypting it with
a password.

Formulas and Functions
With support for implementing formulas, creating custom functions and using 450+ built-in functions,
you can execute complex spreadsheet calculations without any hassle.

Pivot and Excel Tables
Users can create tables and pivot tables in order to automatically calculate the count, total or average of
the data entered in the spreadsheets.

Export to PDF
Using the export to pdf feature, users can save spreadsheets to PDF files with different page settings
and features.

Deploy Apps with Excel Spreadsheets to the Cloud
With GcExcel .NET, you can apply cloud based deployments and deploy your applications on Azure and
AWS Lambda.

Documents for Excel, .NET Edition 7

Copyright © 2019 GrapeCity, Inc. All rights reserved.

For more information on the complete list of supported features in GcExcel .NET, refer to the Features topic in the
documentation.

Documents for Excel, .NET Edition 8

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Get Started
This topic includes:

System Requirements
Setting up an application

System Requirements

GcExcel .NET requires the following system requirements depending upon the framework you are using to create an application.

.NET Core

Operating System Support
Ubuntu 14.04 & 16.04
Mac OS X 10.11+
Windows 7+ / Server 2012 R2+
Windows Nano Server TP5
Windows Server 2016

.NET Core 2.0+ NuGet Package

.NET Framework 4.6.1

Operating System Support
Windows 7+ / Server 2012 R2+
Windows Server 2016

Mono

Operating System Support
Linux
Mac OS X
Sun Solaris
Windows 7+

Setting up an application

GcExcel .NET reference is available through NuGet, a Visual Studio extension that automatically adds libraries and references to your
project.

Installing the product involves the following tasks. You can either get the GcExcel .NET NuGet package or download it locally on your
machine.

If you are installing the GcExcel .NET package through NuGet, refer to the following tasks:

To find and install the GrapeCity.Documents.Excel NuGet package

If you are installing the GrapeCity.Documents.Excel package manually, refer to the following tasks:

To manually create NuGet package source
To install the GrapeCity.Documents.Excel package using command line interface
To add GrapeCity.Documents.Excel package reference

To find and install the GrapeCity.Documents.Excel NuGet package

Complete the following steps to add GrapeCity.Documents.Excel NuGet package in your .NET Core Console Application in
Visual Studio.

1. In Solution Explorer, right-click either Dependencies or a project and select Manage NuGet Packages.
2. In the Browse tab, select nuget.org from the Package source dropdown.
3. In the Browse tab, type "grapecity.documents" or "GrapeCity.Documents" in the search text box at the top and find the

package "GrapeCity.Documents.Excel" as shown in the below image.

.NET Core Console Application

Documents for Excel, .NET Edition 9

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.nuget.org/packages/GrapeCity.Documents.Excel
https://www.grapecity.com/en/download/documents-excel

4. Click Install to install the GrapeCity.Documents.Excel package and its dependencies into the project. When the
installation is complete, make sure you check the NuGet folder in your solution explorer and confirm whether or not the
GrapeCity.Documents.Excel package is added to your project dependencies.

To manually create NuGet package source

In order to manually create Nuget feed source, you need to complete the following steps to add the Nuget feed URL to your
Nuget settings in Visual Studio. Before you proceed with this step, make sure you first download the GcExcel .NET Nupkg
file and put it in a local folder, for example - "D:\Nupkg".

1. From the Tools menu, select Nuget Package Manager | Package Manager Settings. The Options dialog box
appears.

2. In the left pane, select Package Sources.

3. Click the button in the top right corner. A new source is added under Available Package Sources.
4. Set a Name for the new package source.
5. To add source in the Source field, click the ellipsis button next to the Source field to browse for the Nupkg folder.
6. After you select the Nupkg folder, click the Update button and finally click OK.

To install the GrapeCity.Documents.Excel package using command line interface

1. Open the CommandPrompt window on your Windows system.
2. Use the cd command to navigate to your project folder. For example, cd C:\Users\Admin\Documents\Visual Studio

2017\Projects\GcExcel.NetCore-ConsoleApplication.
3. Install GcExcel .NET NuGet package using the following command:

dotnet add package GrapeCity.Documents.Excel

Documents for Excel, .NET Edition 10

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/download/documents-excel
https://www.grapecity.com/en/download/documents-excel

To add GrapeCity.Documents.Excel package reference

GcExcel .NET is a cross-platform spreadsheet component that can be used on multiple platforms including Windows, Linux and
Mac operating system.

In case you are creating an application using the Visual Studio, user can edit the **.csproj file and a package reference as
shown in the image below:

To find and install the GrapeCity.Documents.Excel NuGet package

Complete the following steps to add GrapeCity.Documents.Excel NuGet package in your Visual Studio application.

1. In Solution Explorer, right-click either Dependencies or a project and select Manage NuGet Packages.
2. In the Browse tab, select nuget.org from the Package source dropdown.
3. In the Browse tab, type "grapecity.documents" or "GrapeCity.Documents" in the search text box at the top and find the

package "GrapeCity.Documents.Excel" as shown in the below image.

4. Click Install to install the GrapeCity.Documents.Excel package and its dependencies into the project. When
the installation is complete, make sure you check the NuGet folder in your solution explorer and confirm whether or not
the GrapeCity.Documents.Excel package is added to your project dependencies.

.NET Core MVC Application

Documents for Excel, .NET Edition 11

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To manually create NuGet package source

In order to manually create Nuget feed source, you need to complete the following steps to add the Nuget feed URL to your
Nuget settings in Visual Studio. Before you proceed with this step, make sure you first download the GcExcel .NET Nupkg
file and put it in a local folder, for example - "D:\Nupkg".

1. From the Tools menu, select Nuget Package Manager | Package Manager Settings. The Options dialog box
appears.

2. In the left pane, select Package Sources.

3. Click the button in the top right corner. A new source is added under Available Package Sources.
4. Set a Name for the new package source.
5. To add source in the Source field, click the ellipsis button next to the Source field to browse for the Nupkg folder.
6. After you select the Nupkg folder, click the Update button and finally click OK.

To install the GrapeCity.Documents.Excel package using command line interface

1. Open the CommandPrompt window on your Windows system.
2. Use the cd command to navigate to your project folder. For example, cd C:\Users\Admin\Documents\Visual Studio

2017\Projects\NETCoreMVCApplication.
3. Install GcExcel .NET NuGet package using the following command:

dotnet add package GrapeCity.Documents.Excel

To add GrapeCity.Documents.Excel package reference

GcExcel .NET is a cross-platform spreadsheet component that can be used on multiple platforms including Windows, Linux and
Mac operating system.

In case you are creating an application using the Visual Studio, user can edit the **.csproj file and a package reference as
shown in the image below:

Documents for Excel, .NET Edition 12

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/download/documents-excel
https://www.grapecity.com/en/download/documents-excel

License Information
This topic includes:

Types of Licenses
Apply License To GcExcel .NET

Types of Licenses

GcExcel .NET supports the following types of license:

Unlicensed
Evaluation License
Licensed

Unlicensed

When you download GcExcel for the first time, the product works under No-License i.e Unlicensed mode with a few limitations, that
are highlighted below.

Maximum time of opening and saving Excel files
Every time a user runs an application, he/she can open or save up-to 100 excel files using GcExcel .NET.

If a user has opened 100 files, and trying to open the 101th file, exceptions will be thrown saying that you have
exceeded the number of files you can open when the license is not found.
If a user has saved 100 excel files, and trying to save the 101th file, an Excel file with just a watermark sheet will be
saved. The content of watermark tells users that no license is found.

Note that this limitation is triggered every time when users run the program, so that they can continue to open or save another
100 times after they restart their application.

Maximum Operating Time
While executing an application program, the duration of operating GcExcel .NET will last up-to 10 hours.

Once you complete the 10 hours of operation, you may notice the following:

An exception will be thrown while creating an instance of Workbook, saying that you have exceeded the maximum
operating time, and cannot create a new instance.
The following API's will stop working.

API Remark

IRange Throws an exception, same as create an instance of Workbook.

IWorkbook.Worksheets.Add() Returns null.

Note that this limitation will be reset every time when users run the program, so that they can continue to use these APIs after
they restart their program.

Watermark Sheet
When saving an Excel file, a new worksheet with watermark will be added. This sheet will be the active sheet of your workbook.
The content of the watermark will tell users that no license is found and will provide our sales and contact information so that you
can directly connect to our support team.

When saving a PDF file, a PDF file with a watermark on the top of each exported page will be added. The content of the watermark
will tell users which license is applied and will provide our sales and contact information.

Documents for Excel, .NET Edition 13

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The following watermark will be displayed:

"Unlicensed copy of GrapeCity Documents for Excel, .NET Edition. Contact us.sales@grapecity.com to get your 30-day evaluation
key to remove this text and other limitations."

Evaluation License

GcExcel .NET trial license is available for one month for users to evaluate the product and see how it can help with their
comprehensive project requirements.

In order to evaluate the product, you can contact us.sales@grapecity.com and ask for the evaluation license key. The evaluation
key is sent to users via email and holds valid for 30 days. After applying the evaluation license successfully, the product can be
used without any limitations until the license date expires.

After the expired date, the following limitations will be triggered:

Cannot create new instance

When your evaluation license expires, an exception specifying that the evaluation license is expired will be thrown on creating a
new instance of the workbook.

Open and Save Excel Files

If a user opens an excel file, an exception will be thrown saying that the evaluation license is expired.
If a user saves a file, an excel file with only the watermark sheet will be saved.

Save PDF Files

If a user saves a PDF file, a PDF file with watermark on the top of each exported page will be saved.

API Limitations

The following API's will stop working after your evaluation license has expired:

API Remark

IRange Throws an exception, same as create an instance of Workbook.

IWorkbook.Worksheets.Add() Returns null.

Watermark
When saving an excel file, an Excel file with a watermark sheet will be saved. The content of watermark will tell users that no
license is found and will provide our sales and contact information. When saving a PDF file, a PDF file with a watermark on the top
of each exported page will be saved. The content of watermark will tell users which license is applied and will provide our sales and
contact information.

In case you're using an evaluation license, the following watermark will appear:

"Expired Evaluation copy of GrapeCity Documents for Excel, .NET Edition. Contact us.sales@grapecity.com to purchase license."

Licensed

GcExcel .NET production license is issued at the time of purchase of the product. If you have production license, you can access all
the features of GcExcel .NET without any limitations.

Watermark Sheet

No watermark will be displayed when you have a production license.

Apply License To GcExcel .NET

Applying license to GcExcel .NET involves completing the following steps to create and license a WorkBook:

Step 1: Create a new Web Application (.NET Core)
Step 2: Add a Controller
Step 3: Add a View
Step 4: Build and Run the Project

Step 1: Create a new Web Application (.NET Core)

1. In Visual Studio, select File | New | Project to create a new ASP.NET Core Web Application.
2. Under installed templates, select Visual C# | Web | ASP.NET Core Web Application, and then click OK.
3. In the New ASP.NET Core Web Application(.NET Core) dialog, select Web Application, and then click OK.
4. Add the GcExcel .NET references to the project. In the Solution Explorer, right click Dependencies and select Manage

NuGet Packages. In NuGet Package Manager, select nuget.org as the Package source. Search for GcExcel .NET
package, and click Install.

Documents for Excel, .NET Edition 14

Copyright © 2019 GrapeCity, Inc. All rights reserved.

mailto:us.sales@grapecity.com
mailto:us.sales@grapecity.com
mailto:us.sales@grapecity.com

Step 2: Add a Controller

1. In the Solution Explorer, right click the folder Controllers.
2. From the context menu, select Add | New Item. The Add New Item dialog appears.
3. Complete the following steps in the Add New Item dialog:

Expand the Installed tab towards left, and select ASP.NET|MVC Controller Class.
Set name of the controller (For example: GcExcel .NETController).
Click Add.

4. Add the product license key by calling the SetLicenseKey ('SetLicenseKey Method' in the on-line documentation)
method using the following code:
Workbook.SetLicenseKey("Your License Key");

Add the following code to replace the Index() method.

SpreadController.cs
public IActionResult Index()
 {
 //Apply license before using the API, otherwise it will be considered as
no license.
 Workbook.SetLicenseKey("Your License Key");
 Workbook workbook = new Workbook();
 workbook.Open(@"C:\open.xlsx");
 workbook.Save(@"C:\save.xlsx");
 workbook.Save(@"C:\SavePDF.pdf", SaveFileFormat.Pdf);
 var worksheet = workbook.Worksheets[0];
 }

A new controller is added to the application within the folder Controllers.

Step 3: Add a View

a. From the Solution Explorer, right click the folder Views and select Add | New Folder.
b. Name the new folder. Provide the same name as the name of your controller, minus the suffix Controller (in our

example: GcExcel .NET).
c. Right click the folder GcExcel .NET, and select Add | New Item. The Add New Item dialog appears.
d. Complete the following steps in the Add New Item dialog:

a. Expand the Installed tab towards left, and select ASP.NET|MVC View Page.
b. Set name of the view (for example: Index.cshtml).
c. Click Add.

e. Add the following code in Index.cshtml file.

Index.cshtml
<script src="http://code.jquery.com/jquery-3.2.1.min.js"></script>
<script type="text/javascript">
 $(document).ready(function () {
 alert("Workbook Saved !!!");
 });
</script>

Step 4: Build and Run the Project

a. Click Build | Build Solution to build the project.

Documents for Excel, .NET Edition 15

Copyright © 2019 GrapeCity, Inc. All rights reserved.

b. Press F5 to run the project. Once you execute the project, you will notice that Workbook.xlsx file is created at
projects root location.

Technical Support
If you have a technical question about this product, consult the following source:

Product Forum: https://www.grapecity.com/en/forums
Email: us.sales@grapecity.com

Redistribution
In order to deploy GcExcel .NET, you need to make sure that you have at least one of the following frameworks
installed on your system:

.NET Core 2.0+

.NET Framework 4.6.1
Mono 5.4

In order to distribute the application, make sure you meet the installation criteria specified in the System
Requirements in this documentation. Further, the users also need to have a valid Distribution License to
successfully distribute the application.

For more information about Distribution License, contact our Sales department using one of these methods:

World Wide Web site https://www.grapecity.com/

E-mail us.sales@grapecity.com

Phone (800) 858-2739 or (412) 681-4343 outside the U.S.A.

Fax (412) 681-4384

End User License Agreement
The GrapeCity licensing information, including the GrapeCity end-user license agreements, frequently asked
licensing questions, and the GrapeCity licensing model, is available online. For detailed information on licensing,
see GrapeCity Licensing. For GrapeCity end-user license agreement, see End-User License Agreement for
GrapeCity Software.

Documents for Excel, .NET Edition 16

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/forums
mailto:us.sales@grapecity.com
https://www.grapecity.com/
mailto:us.sales@grapecity.com
https://www.grapecity.com/en/licensing/grapecity/
https://www.grapecity.com/en/legal/eula
https://www.grapecity.com/en/legal/eula

Features
GcExcel .NET provides some remarkable features that empowers users to include spreadsheets with high-
performance attributes, customizable themes, configurable components, summarized data, application of custom
styles, embedded drawing objects, integrated calculation engine, and so much more.

Below is a complete list of features that are available for use in GcExcel .NET. Each topic name refers to the
corresponding topic in the documentation that gives you more information about that particular feature.

Comments
Chart
Conditional Format
Data Validation
Formula
Group
Hyperlinks
Page Setup
PDF Export
Rich Text
Shape and Picture
Style
Sparkline
Theme
Table

Comments
GcExcel .NET enables users to annotate a worksheet by allowing them to write comments on cells in order to specify
additional information about the data it contains.

For instance, let us assume you want users to enter only the numeric information in an individual cell of a worksheet. To
accomplish this, instead of populating a small cell with large notes, it is more ideal to use a short comment (something like
"Please enter only numeric characters in this cell") in order to provide additional context for the data represented in that
cell.

The cells annotated with comments will display a small red indicator (at the corner of the cell) which appear when your
mouse pointer is placed on that particular cell. The text in the comments can be edited, copied and formatted. Also, the
comments can be moved, resized or deleted, can be made hidden or visible and their indicators can also be customized as
per your preferences.

Documents for Excel, .NET Edition 17

Copyright © 2019 GrapeCity, Inc. All rights reserved.

For more information on comments, refer to Apply Comments in this documentation.

Chart
GcExcel .NET empowers users with the capability to graphically display information in charts so as to help business
analysts compare numbers, analyse patterns and visualize trends quickly and efficiently.

For more information on using charts in GcExcel .NET, refer to Work with Chart.

Conditional Format
In order to enable you to highlight important information in rows or columns of a worksheet, GcExcel .NET allows
users to create conditional formatting rules for individual cells or a range of cells based on cell values. If the format
condition matches with the cell value, it is assumed as true and the cell is formatted as per the specified rule.

For instance, let us assume you want a cell or a range of cells to appear in italics when the value entered in them
is lower than 90. To accomplish this, you would apply a conditional formatting rule that will change the format of
the cell as soon as the condition is met. Other cells will appear in general format which is the default format of the
cells in a spreadsheet.

For more information, refer to Apply Conditional Formatting.

Data Validation
GcExcel .NET provides users with the ability to validate data by restricting the type of information format and the
values that can be entered in cells of a worksheet. You can create distinct validation scenarios for individual cells
or a range of cells as per your requirements.

Documents for Excel, .NET Edition 18

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Using the data validation feature, you can perform the following tasks in a spreadsheet:

Generate a list of entries by putting a check on the values allowed in cells.
Prompt messages to describe the type of data values that can be entered in a cell.
Figure out if entry in a particular cell or a range of cells is correct or not on the basis of calculations
performed on other cells.
Set a range of values (numeric or alphabetic) allowed in cells or a range of cells.
Display error alert messages when invalid data is entered in a cell.

For more information on data validation, refer to Apply Data Validations.

Formula
GcExcel .NET provides you with the ability to create and use formulas - expressions to calculate the value of a cell
quickly and accurately, in the spreadsheets. You can also use some built-in functions and operators to generate
formulas and calculate values in cells. For more information about formulas, refer to Manage Formulas in this
documentation.

Also, GcExcel .NET supports the usage of both built-in and custom functions. You can either create a custom
function or use an existing one to perform complex spreadsheet calculations without any hassle. For more
information about formulas, refer to Manage Custom Functions (on-line documentation) in this
documentation.

Group
Spreadsheets with tons of data can often become a hassle to read, consuming a lot of time in visualizing,
managing and analyzing the information which is relevant for you.

GcExcel .NET provides you with the ability to summarize large amounts of information in groups so that complex
spreadsheets are easier to navigate. After rows of data in a spreadsheet are grouped, users can expand and
collapse details with the click of a square button placed in the group header row.

To see how grouping can be used in GcExcel .NET to organize data in groups, refer to Apply Grouping.

Hyperlinks
GcExcel .NET allows users to create references to the data in the form of hypertext links that point towards
another document or a section within the same document. A worksheet or a range can have multiple hyperlinks.

For more information on Hyperlinks in GcExcel .NET, refer to Manage Hyperlinks.

Page Setup
GcExcel .NET supports the Page Setup options in order to enable users to manage printing in an efficient manner.

With different page set up options, you can customize the page layout including size, header, footer, margins,
orientation etc. along with other important paper settings while printing.

For more information, see Configure Print Settings via Page Setup.

PDF Export
GcExcel .NET allows users to export workbook to a PDF file. For each worksheet in the workbook, you can set
pagination and export it to several pages in a PDF file.

Using this feature, you can export all the spreadsheets or any specific spreadsheet in a workbook to PDF
format. You can also apply styles and customize fonts while performing the export operation.

For more information, see Export to a PDF File.

Documents for Excel, .NET Edition 19

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Rich Text
GcExcel.NET provides users with the ability to set rich text in the cells of the worksheet. With the rich text feature,
users can incorporate multiple styles to the text entered within a cell by highlighting important characters or
alphabets using different colors, font family, font effects (bold, underline, double underline, strikethrough,
subscript, superscript) and font size etc.

For more information on how to set rich text in a cell, refer to Set Rich Text in a Cell.

Shape and Picture
GcExcel .NET provides you the ability to embed drawing objects like shapes and pictures on cells of a worksheet.
You can draw and insert arrows, lines, pictures, general shapes etc.

To know how shape and picture can be integrated in a worksheet, refer to Work with Shape And Picture in this
documentation.

Style
GcExcel .NET allows you to format the cells in a spreadsheet with custom styles. A cell style includes
characteristics such as fill (solid fill, gradient fill, pattern fill), fonts, borders, name style, and display format. You
can apply, create or remove style as and when required.

To know more about the cell styles in GcExcel .NET, refer to Apply Style in this documentation.

Sparkline
GcExcel .NET allows you to highlight specific information and see how it varies over time using Sparklines. Sparklines can
be understood as small, lightweight charts that are drawn inside cells to quickly visualize data for improved analysis.

Sparklines fit inside a cell and use data from a range of cells which is specified at the time of creating it. Typically, they are
placed next to the selected cell range in the spreadsheet in order to enhance readability of data. You can mark data values
to depict high, low, first, last, and negative values with distinct colors as per your requirement.

For more information on Sparklines, refer to Use Sparklines in this documentation.

Theme

Documents for Excel, .NET Edition 20

Copyright © 2019 GrapeCity, Inc. All rights reserved.

GcExcel .NET provides users with a set of built-in themes to enable them to change the overall appearance of the
workbook. Besides, it also allows users to create custom theme and apply it in order to set up a workbook as per
their own preferences and requirements.

When a theme is changed, it affects all areas including the theme font, theme color, range, chart title etc. For
instance: if you apply a built-in or a custom theme to your workbook, it is likely that the color of the range as well
as the font will also be changed in accordance to the modified theme.

For more information on Themes, please refer to Apply Theme in this documentation.

Table
GcExcel .NET allows users to manage and analyse related data easier and faster with the help of tables and pivot
tables that can be created using a range of cells in a spreadsheet. Typically, a table consists of rows and columns
that can be formatted and managed independently in a worksheet.

For more information on working with tables, refer to Use Table in this documentation.

For more information on working with pivot tables, refer to Use Pivot Table in this documentation.

Documents for Excel, .NET Edition 21

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Customize User Interaction
GcExcel.NET provides you the ability to customize the user interaction as per your own preferences. Whether you
want to integrate calculation engine, modify default worksheet settings, apply custom styles on individual
worksheets, perform specific operations on the data in the cells, or trigger workbook events – GcExcel.NET has got
you covered.

The following list includes the tasks corresponding to customizing the way users interact with the spreadsheet in
GcExcel .NET.

Manage Workbook
Manage Worksheet
Allow Sort
Apply Filters
Manage Hyperlinks
Apply Grouping
Apply Style
Apply Comments
Set Rich Text in a Cell

Manage Workbook
A workbook is a spreadsheet document that comprises of one or more worksheets that are stored within the
Worksheets collection.

GcExcel .NET provides all the necessary properties and methods required to create a workbook, perform complex
operations on the data residing in the spreadsheets and make use of several workbook events that are triggered
when called explicitly by the user through code

Managing a workbook involves the following tasks:

Create Workbook
Open, Save and Protect Workbook
Cut or Copy Across Sheets
Apply Theme
Enable or Disable Calculation Engine
Work with Workbook Views

Create Workbook
In GcExcel, you can create a new instance of a workbook by using the constructor of Workbook ('Workbook
Class' in the on-line documentation) class.

A workbook may contain one or more worksheets that are kept in the Worksheets collection. By default, a
workbook contains one empty worksheet with the default name Sheet1, which is created as soon as the user
generates a new instance of the Workbook class.

Refer to the following example code to see how you can create a workbook using GcExcel.

C#
//Initialize the WorkBook
Workbook workbook = new Workbook();

In order to add more worksheets to your workbook, refer to Work with Worksheets in this documentation.

Open, Save and Protect Workbook
Once you create a workbook, you can open the workbook to make modifications, save the changes back to the
workbook and protect it with a password to ensure security.

Documents for Excel, .NET Edition 22

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This topic includes the following tasks:

Open a workbook
Save a workbook
Protect a workbook

Open a workbook

You can open an existing workbook by calling the Open ('Open Method' in the on-line documentation)
method of the Workbook class.

While opening a workbook, you can also choose from several import options listed in the below table:

 Open Options Description

Import Flags NoFlag=0

Data=1

Formulas=2

Default

Read only the data from the worksheet

Read only the data, formula, defined names and
table from the worksheet. Table is included for
table formula.

DoNotRecalculateAfterOpened Do not recalculate when getting formula value after
loading the file. Default is false

Refer to the following example code to open a workbook.

C#

// Opening a workbook
 workbook.Open(@"Source.xlsx", OpenFileFormat.Xlsx);

//Opening a workbook with Import options

//Import only data from .xlsx document.

XlsxOpenOptions options = new XlsxOpenOptions();
options.ImportFlags = ImportFlags.Data;
workbook.Open(@"DemoOpen.xlsx", options);

//Don't recalculate after opened.
XlsxOpenOptions options1 = new XlsxOpenOptions();
options1.DoNotRecalculateAfterOpened = true;
workbook.Open(@"DemoOpen.xlsx", options1);

Note: While opening the workbook, you can check whether it is password protected or not by using the
IsEncryptedFile ('IsEncryptedFile Method' in the on-line documentation) method of the Workbook
class. If your workbook is password protected, you would need to provide a password everytime you open it.

Save a workbook

You can save the changes made in the existing workbook by calling the Save ('Save Method' in the on-line
documentation) method of the Workbook class.

Refer to the following example code to save your workbook.

C#
// Save the Excel file
workbook.Save(@"createWorkbook.xlsx", SaveFileFormat.Xlsx);

Protect a workbook

Documents for Excel, .NET Edition 23

Copyright © 2019 GrapeCity, Inc. All rights reserved.

GcExcel provides you extensive security in terms of enabling users to protect a workbook by encrypting it with a
password. This is important when you have a business critical workbook containing sensitive data that you don't
want to share with everyone.

Refer to the following example code to make your worksheet password protected.

C#
// Save the Excel file and protect it using password.
XlsxSaveOptions options = new XlsxSaveOptions();
options.Password = "123456";
workbook.Save(@"createWorkbook.xlsx", options);

Cut or Copy Across Sheets
In GcExcel, it is possible to cut or copy data across a range of cells or several worksheets without the need to copy
and paste the information into each of the cells or sheets individually.

For instance, let's say you want the same title text to be put into different worksheets within a workbook. To
accomplish this, if you type the text in one worksheet and copy,paste it into every other worksheet, the process
can turn out to be both cumbersome and time-consuming.

A quick way of doing this would be to cut or copy information across cells or sheets using:

The Copy method to copy rows, columns, or a range of cells and paste them to destination.
The Cut method to cut rows, columns, or a range of cells and paste them to destination.

Copy across sheets

Refer to the following example code to perform copy operation in a workbook.

C#
// Copy across sheets
 worksheet.Range["A5"].Copy(worksheet2.Range["A1"]);

Cut across sheets

Refer to the following example code to perform cut operation in a workbook.

C#
 // Cut across sheets
worksheet.Range["A2"].Cut(worksheet2.Range["A3"]);

Enable or Disable Calculation Engine
GcExcel offers exceptional computing features with its built-in calculation engine that is capable of performing
even the most complex operations on the data in the spreadsheets with complete accuracy and within fraction of
seconds. This calculation engine can be integrated with spreadsheets to achieve the desired results. Some of
the advantages of using a calculation engine are as follows:

1. Bulk Data analysis: Involves less programming to handle complex spreadsheet calculations and provides
the ability to fetch data from cells within the spreadsheets, perform calculations on it and display results for
unparalleled data analysis of tons of data.

2. Ease of use: Easy-to-configure calculation engine.
3. Saves Time and Efforts: Pre-defined functions and methods to reduce implementation time and efforts.

Enable calculation engine

Refer to the following example code to enable calculation engine.

C#

Documents for Excel, .NET Edition 24

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//enable calc engine.
worksheet2.Range["A1"].Value = 1;
worksheet2.Range["A2"].Formula = "=A1";
workbook.EnableCalculation = true;

//calc formula when get value. A2's value is 1d.
var value1 = worksheet2.Range["A2"].Value;

Disable calculation engine

Refer to the following example code to disable calculation engine.

C#
//disable calc engine.
workbook.EnableCalculation = false;
worksheet.Range["A1"].Value = 1;
worksheet.Range["A2"].Formula = "=A1";

//A2's value is 0.
var value = worksheet.Range["A2"].Value;

Apply Theme
You can apply either a built-in theme or a custom theme to a workbook. The default theme of a workbook is the
standard Office theme. In GcExcel, the current theme of a workbook is represented by the ITheme interface
(on-line documentation).

To change the current theme of the workbook, you need to first get the existing theme using the indexer notation
of the Themes class (on-line documentation).

Applying theme in a workbook involves the following tasks:

Apply built-in theme to the workbook
Add a custom theme and set to workbook

Apply built-in theme to the workbook

In order to enable you to maintain consistency in the appearance across all the worksheets in the workbook,
GcExcel offers a set of built-in themes for you to choose from.

Refer to the following example code to apply a built-in theme to the workbook.

C#
//Change workbook's theme to Berlin.
worksheet.Range["E10"].Value = "Test";
worksheet.Range["E10"].Font.ThemeColor = ThemeColor.Accent6;
worksheet.Range["E10"].Interior.ThemeColor = ThemeColor.Accent5;
workbook.Theme = Themes.Berlin;

Add a custom theme and set to workbook

You can use the Theme object constructor in order to add a custom theme. After you add your custom theme, you
can apply it to your workbook.

Refer to the following example code to add a custom theme and apply it to the workbook.

C#

//Add custom theme

Theme theme = new Theme("testtheme"); // Base theme is office theme, if parameters

Documents for Excel, .NET Edition 25

Copyright © 2019 GrapeCity, Inc. All rights reserved.

are not given

theme.ThemeColorScheme[ThemeColor.Light1].RGB = Color.AntiqueWhite;
theme.ThemeColorScheme[ThemeColor.Accent1].RGB = Color.AliceBlue;
theme.ThemeFontScheme.Major[FontLanguageIndex.Latin].Name = "Buxton Sketch";
theme.ThemeFontScheme.Minor[FontLanguageIndex.Latin].Name = "Segoe UI";
workbook.Theme = theme;

// Applying theme
worksheet.Range["E10"].Value = "CustomTest";
worksheet.Range["E10"].Font.ThemeColor = ThemeColor.Light1;
worksheet.Range["E10"].Interior.ThemeColor = ThemeColor.Accent1;

Work with Workbook Views
GcExcel allows users to personalize the display of the workbook. You can use the BookView ('BookView
Property' in the on-line documentation)property of the IWorkbook ('IWorkbook Interface' in the on-line
documentation) interface to set the view of the workbook as per your preferences.

The following properties of the IWorkbookView ('IWorkbookView Interface' in the on-line documentation)
interface allows users to further customize various display settings in the workbook.

1. DisplayHorizontalScrollBar ('DisplayHorizontalScrollBar Property' in the on-line documentation)
- This property gets and sets the display of the horizontal scrollbar.

2. DisplayVerticalScrollBar ('DisplayVerticalScrollBar Property' in the on-line documentation)-
This property gets and sets the display of the vertical scrollbar.

3. DisplayWorkbookTabs ('DisplayWorkbookTabs Property' in the on-line documentation)-
This property gets and sets if the workbook tabs are displayed.

4. TabRatio ('TabRatio Property' in the on-line documentation) - This property gets and sets the ratio
of the width of the tab area (of the workbook) to the width of the horizontal scroll bar (of the worksheet).
The value of TabRatio can be any number between 0 and 1. By default, if the TabRatio is not set, the value
is 0.6.

Refer to the following code snippet to set workbook view and customize other display settings.

C#
//Set workbook view

IWorkbook workbook = new Workbook();
var bookView = workbook.BookView;
bookView.DisplayHorizontalScrollBar = true;
bookView.DisplayVerticalScrollBar = true;
bookView.DisplayWorkbookTabs = true;
bookView.TabRatio = 0.8;

Manage Worksheet
A worksheet is a matrix of cells where you can enter and display data, analyse information, write formulas,
perform calculations and review results. The cells in a worksheet are defined by rows (represented by numeric
characters like 1,2,3) and columns ((represented by alphabetical letters like A,B,C etc.). For instance, in a
worksheet, C6 represents the cell in column C and row 6.

In GcExcel .NET, you can use the methods of IWorksheets ('IWorksheets Interface' in the on-line
documentation) to execute different tasks in a spreadsheet including insertion of a new worksheet in the
workbook, deletion of a worksheet from the collection, assigning an active sheet, and so much more.

Managing a worksheet involves the following tasks:

Work with Worksheets
Range Operations
Freeze Panes in a Worksheet

Documents for Excel, .NET Edition 26

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Work with Shape And Picture
Customize Worksheets
Work with Worksheet Views

Work with Worksheets
While working with worksheets, you can perform the following operations to accomplish several important tasks in
a workbook.

Access the default worksheet
Add multiple worksheets
Activate a worksheet
Access a worksheet
Protect a worksheet
Delete worksheet

Access the default worksheet

Whenever a new workbook is created, an empty worksheet with the name Sheet1 is automatically added to the
workbook. This worksheet is known as the default worksheet. For every workbook, only one default worksheet is
added to it.

Refer to the following example code in order to access the default worksheet in your workbook.

C#
// Fetch the default WorkSheet
IWorksheet worksheet = workbook.Worksheets[0];

Add multiple worksheets

A workbook may contain any number of worksheets. You can add one or more worksheets before or after a
specific sheet in your workbook.

Refer to the following example code to insert multiple worksheets in a workbook.

C#
//Initialize the WorkBook and add multiple WorkSheets
IWorksheet worksheet = workbook.Worksheets.Add();
IWorksheet worksheet2 = workbook.Worksheets.AddAfter(worksheet);
IWorksheet worksheet3 = workbook.Worksheets.AddBefore(worksheet2);

Activate a worksheet

While working with multiple worksheets in a workbook, you may require to make the current sheet to workbook's
active sheet so as to execute certain operations on that particular worksheet. This can be done using the Activate
('Activate Method' in the on-line documentation) method of the IWorksheet interface. ('IWorksheet
Interface' in the on-line documentation)

Refer to the following example code to activate a worksheet.

C#
IWorksheet worksheet3 = workbook.Worksheets.Add();

//Activate new created worksheet.
worksheet3.Activate();

Access a worksheet

All the worksheets within a workbook are stored in Worksheets collection. In order to access a specific worksheet
within a workbook, you can choose either of the two ways : using the Index property (on-line documentation)

Documents for Excel, .NET Edition 27

Copyright © 2019 GrapeCity, Inc. All rights reserved.

or using the Name property (on-line documentation) of the IWorksheet interface (on-line
documentation).

Refer to the following example code to access a worksheet within the workbook.

C#
//Use sheet index to access the worksheet.
IWorksheet worksheet4 = workbook.Worksheets[0];

////Use sheet name to access the worksheet.
IWorksheet worksheet5 = workbook.Worksheets["SampleSheet5"];
//worksheet5.Name = "SampleSheet5";

Protect a worksheet

To ensure the data lying in the cells of your spreadsheet is safe and can't be modified by anyone, you can protect
your worksheet by transforming it into a read-only sheet. Further, you can use the properties of the
IProtectionSettings ('IProtectionSettings Interface' in the on-line documentation) interface to explicitly
setup your protected worksheet the way you want. Later, if you want to remove protection, you can unprotect
your worksheet by setting the protection property to false.

Refer to the following example code to protect or unprotect a worksheet in GcExcel.

C#
//protect worksheet, allow insert column.
worksheet3.Protection = true;
worksheet3.ProtectionSettings.AllowInsertingColumns = true;

//Unprotect worksheet.
worksheet3.Protection = false;

Delete Worksheet

You can remove one or more worksheets from a workbook. When you delete a worksheet, it automatically gets
deleted from the Worksheets collection.

Refer to the following example code to delete a specific sheet from the workbook.

C#
IWorksheet worksheet7 = workbook.Worksheets.Add();

//workbook must contain one visible worksheet at least, if delete the one visible
worksheet, it will throw exception.
worksheet7.Delete();

Range Operations
Range refers to a cell or a collection of cells and range operations are the operations performed on those cell
collection using single line of code. The Range ('Range Property' in the on-line documentation) property of
IWorksheet ('IWorksheet Interface' in the on-line documentation) allows you to execute multiple
operations on cells,rows or columns.

The operations that can be handled using Range property are as follows:

Access a Range
Access Areas in a Range
Access Cells, Rows and Columns in a Range
Cut or Copy Cell Ranges
Cut or Copy Shape, Slicer, Chart and Picture
Get Row and Column Count
Hide Rows and Columns

Documents for Excel, .NET Edition 28

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Insert And Delete Cell Ranges
Insert and Delete Rows and Columns
Merge Cells
Set Values to a Range
Set Row Height and Column Width
Work with Used Range

Access a Range
Range refers to an array of cells defined in a spreadsheet.

GcExcel allows users to define a range and then access the rows and columns within the range to perform certain
tasks like formatting of cells, merging of cells, insertion or deletion of cells along with other useful operations.

Refer to the following example code in order to access a range using different methods.

C#
//Use index to access cell A1.
worksheet.Range[0, 0].Interior.Color = Color.LightGreen;

//Use index to access range A1:B2
worksheet.Range[0, 0, 2, 2].Value = 5;

//Use string to access range.
worksheet.Range["A2"].Interior.Color = Color.LightYellow;
worksheet.Range["C3:D4"].Interior.Color = Color.Tomato;
worksheet.Range["A5:B7, C3, H5:N6"].Value = 2;

//Use index to access rows
worksheet.Rows[2].Interior.Color = Color.LightSalmon;

//Use string to access rows
worksheet.Range["4:4"].Interior.Color = Color.LightSkyBlue;

//Use index to access columns
worksheet.Columns[2].Interior.Color = Color.LightSalmon;

//Use string to access columns
worksheet.Range["D:D"].Interior.Color = Color.LightSkyBlue;

//Use Cells to access range.
worksheet.Cells[5].Interior.Color = Color.LightBlue;
worksheet.Cells[5, 5].Interior.Color = Color.LightYellow;

//Access all rows in worksheet
var allRows = worksheet.Rows.ToString();

//Access all columns in worksheet
var allColumns = worksheet.Columns.ToString();

//Access the entire sheet range
var entireSheet = worksheet.Cells.ToString();

Access Areas in a Range
While working with a large worksheet having non-contiguous selections, you can access specific areas in a
multiple-area range by using the indexer notation of the IAreas ('IAreas Interface' in the on-line

Documents for Excel, .NET Edition 29

Copyright © 2019 GrapeCity, Inc. All rights reserved.

documentation) interface. The Count ('Count Property' in the on-line documentation) property of the
IAreas interface represents the area count (number of areas) of the multiple-area range.

The Areas ('Areas Property' in the on-line documentation) property of the IRange ('IRange Interface' in
the on-line documentation) interface represents all the selected ranges in the multiple area range.

Refer to the following example code to access areas in a range.

C#
//area1 is A5:B7.
var area1 = worksheet.Range["A5:B7,C3,H5:N6"].Areas[0];

//set interior color for area1
area1.Interior.Color = Color.Pink;

//area2 is C3.
var area2 = worksheet.Range["A5:B7,C3,H5:N6"].Areas[1];

//set interior color for area2
area2.Interior.Color = Color.LightGreen;

//area3 is H5:N6.
var area3 = worksheet.Range["A5:B7,C3,H5:N6"].Areas[2];

//set interior color for area3
area3.Interior.Color = Color.LightBlue;

Access Cells, Rows and Columns in a Range
You can access cells, rows and columns in a range by using the Cells ('Cells Property' in the on-line
documentation) property, Rows ('Rows Property' in the on-line documentation) property and Columns
('Columns Property' in the on-line documentation) property of the IRange ('IRange Interface' in the on-
line documentation) interface.

Refer to the following example code in order to access cells, rows and columns in a worksheet.

C#
var range = worksheet.Range["A5:B7"];

//Set value for cell A7.
range.Cells[4].Value = "A7";

//Cell is B6
range.Cells[1, 1].Value = "B6";

//Row count is 3 and range is A6:B6.
var rowCount = range.Rows.Count;
var row = range.Rows[1].ToString();

//Set interior color for row range A6:B6.
range.Rows[1].Interior.Color = Color.LightBlue;

//Column count is 2 and range is B5:B7.
var columnCount = range.Columns.Count;
var column = range.Columns[1].ToString();

//Set values for column range B5:B7.
range.Columns[1].Interior.Color = Color.LightSkyBlue;

//Entire rows are from row 5 to row 7
var entirerow = range.EntireRow.ToString();

Documents for Excel, .NET Edition 30

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//Entire columns are from column A to column B
var entireColumn = range.EntireColumn.ToString();

Cut or Copy Cell Ranges
GcExcel provides users with the ability to cut or copy a cell or a range of cells from a specific area and paste it into
another area within the same worksheet. To cut or copy data across multiple sheets, refer to Cut or Copy Across
Sheets.

Copy cell range

GcExcel allows you to copy a cell or a range of cells in the worksheets by calling Copy ('Copy Method' in the on-
line documentation) method of IRange ('IRange Interface' in the on-line documentation). To copy a
single cell or a range of cells, specify the cell range to be copied, for example B3:D12.

GcExcel provides the following different ways to use the Copy method.

Example Description

Copy(sheet.Range["E5"]) This method copies data from cell range B3:D12 and pastes the data to
cell E5 onwards.

Copy(sheet.Range["E5:G14"]) This method copies data from cell range B3:D12 and pastes the data in
cell range E5:G14. In case the range of cells copied does not fit into the
destination cell range, the data is lost.

Refer to the following example code to copy the cell range in a workbook.

C#
// Copy the data of the range of cells
worksheet.Range["B3:D12"].Copy(worksheet.Range["E5"]);
//Or
worksheet.Range["B3:D12"].Copy(worksheet.Range["E5:G14"]);

Cut cell range

GcExcel allows you to cut a cell or range of cells in a worksheet by calling the Cut ('Cut Method' in the on-line
documentation) method of IRange ('IRange Interface' in the on-line documentation). To cut the a cell or
the range of cells, specify the cell range to be moved, for example B3:D12.

GcExcel provide the following different ways to use Cut method.

Example Description

Cut(sheet.Range["E5"]) This method cuts the data from cell range B3:D12 and pastes the data to
cell E5 onwards.

Cut(sheet.Range["E5:G14"]) This method cuts the data from cell range B3:D12 and pastes the data in
cell range E5:G14. In case the range of cells cut does not fit into the
destination cell range, the data is lost.

Refer to the following example code to cut a range of cells in the workbook.

C#
// Cut the data of the range of cell
worksheet.Range["B3:D12"].Cut(worksheet.Range["E5"]);
// Or
worksheet.Range["B3:D12"].Cut(worksheet.Range["E5:G14"]);

Cut or Copy Shape, Slicer, Chart and Picture

Documents for Excel, .NET Edition 31

Copyright © 2019 GrapeCity, Inc. All rights reserved.

GcExcel allows users to cut or copy shapes, charts, slicers and pictures from one workbook to another and from
one worksheet to another.

In order to perform the copy operation, you can use the Copy() ('Copy Method' in the on-line
documentation) method of the IRange ('IRange Interface' in the on-line documentation) interface.

In order to perform the cut operation, you can use the Cut() ('Cut Method' in the on-line
documentation) method of the IRange ('IRange Interface' in the on-line documentation) interface.

Refer to the following example code to see how you can cut or copy shape, slicer, chart and picture.

C#
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

//Create a shape in worksheet, shape's range is Range["A7:B7"]
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 1, 1, 100, 100);

//Range["A1:D10"] contains Range["A7:B7"], copy a new shape to Range["C1:F7"]
worksheet.Range["A1:D10"].Copy(worksheet.Range["C1"]);
worksheet.Range["A1:D10"].Copy(worksheet.Range["C1:G9"]);

//Range["A1:D10"] contains Range["A7:B7"],cut a new shape to Range["C1:F7"]
worksheet.Range["A1:D10"].Cut(worksheet.Range["C1"]);
worksheet.Range["A1:D10"].Cut(worksheet.Range["C1:G9"]);

// Cross-sheet cut, copy operation

Workbook workbook1 = new Workbook();
IWorksheet worksheet1 = workbook1.Worksheets[0];
IWorksheet worksheet2 = workbook1.Worksheets.Add();

//Create a shape in worksheet, shape's range is Range["A7:B7"]
IShape Shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 1, 1, 100, 100);

//Range["A1:D10"] contains Range["A7:B7"]. Copy a new shape to worksheet2's
Range["C1:F7"]
worksheet1.Range["A1:D10"].Copy(worksheet2.Range["C1"]);
worksheet1.Range["A1:D10"].Copy(worksheet2.Range["C1:G9"]);

//Range["A1:D10"] contains Range["A7:B7"]. Cut a new shape to worksheet2's
Range["C1:F7"]
worksheet1.Range["A1:D10"].Cut(worksheet2.Range["C1"]);
worksheet1.Range["A1:D10"].Cut(worksheet2.Range["C1:G9"]);

In order to duplicate a shape to the current worksheet, you can use the Duplicate() ('Duplicate Method' in the
on-line documentation) method of the IShape ('IShape Interface' in the on-line documentation)
interface.

Refer to the following example code to see how you duplicate an existing shape, slicer, chart and picture.

C#
//Create shape,chart,slicer,picture
IShape Shape1 = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 100, 100, 200, 200);
IShape chart = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 300, 300,
300);
ISlicerCache cache1 = workbook.SlicerCaches.Add("Category", "cate1");
ISlicer slicer = cache1.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
300, 300, 100, 200);
IShape picture = worksheet.Shapes.AddPicture("C:/Pictures", 1, 1, 100, 100);

//Duplicate shape
IShape newShape = Shape1.Duplicate();
//Duplicate chart

Documents for Excel, .NET Edition 32

Copyright © 2019 GrapeCity, Inc. All rights reserved.

IShape newShape1 = chart.Duplicate();
//Duplicate slicer
slicer.Shape.Duplicate();
//Duplicate picture
IShape newPicture = picture.Duplicate();

Get Row and Column Count
In a large worksheet, manually fetching the number of rows and columns can be a tedious task.

GcExcel allows users to quickly get the row and column count of the specific areas or all the areas in a range.

The Count ('Count Property' in the on-line documentation)property of the IRange ('IRange Interface' in
the on-line documentation) interface represents the cell count of all the areas in a range.

Refer to the following example code in order to get the row count and column count in a worksheet.

C#
var range = worksheet.Range["A5:B7"];

//cell count is 6.
var cellcount = range.Count;
//cell count is 6.
var cellcount1 = range.Cells.Count;
//row count is 3.
var rowcount = range.Rows.Count;
//column count is 2.
var columncount = range.Columns.Count;

Hide Rows and Columns
You can choose whether to hide or show rows and columns in a worksheet by using the Hidden ('Hidden
Property' in the on-line documentation) property of the IRange ('IRange Interface' in the on-line
documentation) interface.

Refer to the following example code in order to hide specific rows and columns in a worksheet.

C#
worksheet.Range["E1"].Value = 1;

//Hide row 2:6 using the Hidden property

worksheet.Range["2:6"].Hidden = true;

//Hide column A:D using the Hidden property
worksheet.Range["A:D"].Hidden = true;

Note: The range must either be entire rows or entire columns. The Hidden property doesn't work on a range
of cells.

Insert And Delete Cell Ranges
GcExcel enables you to insert and delete a cell or a range of cells in order to help customization of worksheets as
per your requirements.

Documents for Excel, .NET Edition 33

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Insert cell range

GcExcel allows you to add a cell or a range of cells in a worksheets by calling the Insert ('Insert Method' in the
on-line documentation) method of IRange ('IRange Interface' in the on-line documentation). To add a
cell or a range of cells, specify the cell range, for example A3 for single cell or A3:A5 for a range of cells.

GcExcel provides following different options to insert a cell or a range of cells.

Method Description

Insert This method automatically inserts a cell or a range of cells.

Insert(InsertShiftDirection.Down) This method inserts the range of cells and shifts the existing range of
cells in downward direction.

Insert(InsertShiftDirection.Right) This method insert the range of cells and shifts the existing range of cells
to the right.

Refer to the following example code to see how you can insert a single cell and a cell range in the worksheet.

C#
//Insert the range of cell
worksheet.Range["A3"].Insert();

// Insert the range of cells
worksheet.Range["A3:A5"].Insert();

Refer to the following example code to see how you can insert cell range in a worksheet while specifying a
direction to shift the existing cells in required direction.

C#
//Insert the range of cells in desired direction
worksheet.Range["A3:B10"].Insert(InsertShiftDirection.Down);
worksheet.Range["A5:C5"].Insert(InsertShiftDirection.Right);

Delete cell range

GcExcel allow you to delete a cell or a range of cells in the worksheets by calling Delete ('Delete Method' in the
on-line documentation) method of IRange ('IRange Interface' in the on-line documentation). To remove
a cell or a range of cells, specify the cell range, for example B4 for a single cell or B4:C4 for a range of cells.

GcExcel provide following different options to delete a cell or range of cells.

Method Description

Delete This method automatically deletes a cell or the range of cells.

Delete(DeleteShiftDirection.Left) This method deletes the range of cells and moves the existing range of
cells to the left.

Delete(DeleteShiftDirection.Up) This method delete the range of cells and move the existing range of cells
in upward direction.

Refer to the following example code to see how you can delete single cell or a cell range in a worksheet.

C#
//Delete the range of cell
worksheet.Range["B4"].Delete();

// Delete the range of cells
worksheet.Range["B4:C4"].Delete();

Refer to the following example code to see how you can delete a single cell or a range of cells in a worksheet while
specifying a direction to shift the existing cells in required direction.

C#
//Delete the range of cells from desired direction

Documents for Excel, .NET Edition 34

Copyright © 2019 GrapeCity, Inc. All rights reserved.

worksheet.Range["B3:C8"].Delete(DeleteShiftDirection.Left);
worksheet.Range["B5:D5"].Delete(DeleteShiftDirection.Up);

Insert and Delete Rows and Columns
GcExcel provides you with the ability to insert or delete rows and columns in a worksheet.

Insert rows and columns

GcExcel allow you to add rows or columns in a worksheet by calling Insert ('Insert Method' in the on-line
documentation) method of IRange ('IRange Interface' in the on-line documentation).

When rows are added, the existing rows in the worksheet are shifted in downward direction whereas when
columns are added, the existing columns in the worksheet are shifted to the right.

You can also use the EntireRow ('EntireRow Property' in the on-line documentation) property to insert rows
in a worksheet which includes all the columns. While inserting rows using the EntireRow property, there is no need
to provide the shift direction in the function parameters. If you provide the same, it will be ignored.

Refer to the following example code to insert rows in a worksheet.

C#
//Insert rows
worksheet.Range["A3:A5"].EntireRow.Insert();
// OR
worksheet.Range["3:5"].Insert(InsertShiftDirection.Down);

You can also use the EntireColumn ('EntireColumn Property' in the on-line documentation) property to
insert columns in the worksheet which includes all rows. While inserting columns using the EntireColumn property,
there is no need to provide the shift direction in the function parameters. If you provide the same, it will be
ignored.

Refer to the following example code to insert columns in a worksheet.

C#
//Insert column
worksheet.Range["A3:B5"].EntireColumn.Insert();
// OR
worksheet.Range["B:C"].Insert(InsertShiftDirection.Down);

Delete row and column

GcExcel allows you to delete rows or columns in the worksheet by calling Delete ('Delete Method' in the on-
line documentation) method of IRange ('IRange Interface' in the on-line documentation).

When rows are deleted, the existing rows in the worksheet are shifted in upwards direction, whereas when
columns are deleted, the existing columns in the worksheet are shifted to the left.

Refer to the following example code to delete rows from the worksheet.

C#
//Delete rows
worksheet.Range["A3:A5"].EntireRow.Delete();
// OR
worksheet.Range["3:5"].Delete();

Refer to the following example code to delete columns from the worksheet.

C#
//Delete Columns
worksheet.Range["A3:A5"].EntireColumn.Delete();
// OR
worksheet.Range["A:A"].Delete(DeleteShiftDirection.Left);

Documents for Excel, .NET Edition 35

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Merge Cells
GcExcel allow you to merge several cells into a single cell using Merge ('Merge Method' in the on-line
documentation) method of IRange ('IRange Interface' in the on-line documentation). When a cell range is
merged, the data of top left cell stays in the final merged cell, and the data of other cells in the given range is lost.

Also if all the cells within the given range are empty, the formatting of range's top left cell is applied to the merged
cell.

Refer to the following example code to merge the range of cells.

C#
// merge the cell range A1:B4 into one single cell
worksheet.Range["A1:B4"].Merge();

Refer to the following example code to merge only the rows of the specified range of cell into one.

C#
// merge the cell range C1:D4 by one single cell in one row
worksheet.Range["C1:D4"].Merge(true);

Set Values to a Range
GcExcel allows users to specify custom values for the cell range by using the properties and methods of
the IRange ('IRange Interface' in the on-line documentation) interface.

Refer to the following example code in order to set custom values to cell ranges in the worksheet.

C#
worksheet.Range["A:F"].ColumnWidth = 15;
object[,] data = new object[,]{
 {"Name", "City", "Birthday", "Eye color", "Weight", "Height"},
 {"Richard", "New York", new DateTime(1968, 6, 8), "Blue", 67, 165},
 {"Nia", "New York", new DateTime(1972, 7, 3), "Brown", 62, 134},
 {"Jared", "New York", new DateTime(1964, 3, 2), "Hazel", 72, 180},
 {"Natalie", "Washington", new DateTime(1972, 8, 8), "Blue", 66, 163},
 {"Damon", "Washington", new DateTime(1986, 2, 2), "Hazel", 76, 176},
 {"Angela", "Washington", new DateTime(1993, 2, 15), "Brown", 68, 145}
 };

// Set two-dimension array value to range A1:F7
worksheet.Range["A1:F7"].Value = data;

// Return a two-dimension array when get range A1:B7's value.
var result = worksheet.Range["A1:B7"].Value;

Set Row Height and Column Width
You can set the height of the rows and the width of the columns in a worksheet as per your preferences by using
the UseStandardHeight ('UseStandardHeight Property' in the on-line documentation) property
and UseStandardWidth ('UseStandardWidth Property' in the on-line documentation) property of
the IRange ('IRange Interface' in the on-line documentation) interface respectively.

You can use the ColumnWidth ('ColumnWidth Property' in the on-line documentation) property to set
custom width in characters for the individual columns of a range. In order to set custom width in pixels, you can
use the ColumnWidthInPixel ('ColumnWidthInPixel Property' in the on-line documentation) property of
the IRange interface.

Documents for Excel, .NET Edition 36

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You can also set custom height of the individual rows of a range in points and in pixels by using the RowHeight
('RowHeight Property' in the on-line documentation) property and RowHeightInPixel
('RowHeightInPixel Property' in the on-line documentation) property of the IRange interface. ('RowHeight
Property' in the on-line documentation)

In order to specify custom total height and total width, you can use the Height ('Height Property' in the on-
line documentation) (in points), HeightInPixel ('HeightInPixel Property' in the on-line
documentation) (in pixels), Width ('Width Property' in the on-line documentation) (in characters)
and WidthInPixel ('WidthInPixel Property' in the on-line documentation) (in pixels) properties of the
IRange interface.

Refer to the following example code in order to customize the row height and column width in a worksheet.

C#
//set row height for row 1:2.
worksheet.Range["1:2"].RowHeight = 50;

//set column width for column C:D.
worksheet.Range["C:D"].ColumnWidth = 20;

Work with Used Range
Used Range is a bounding rectangle of used cells that returns the IRange ('IRange Interface' in the on-line
documentation) object of used range on the specified worksheet.

GcExcel provides users with an option to work with the already used range of cells in a worksheet in the following
two ways:

Work with worksheet's used range
Work with feature related used range

Work with worksheet's used range

To work with worksheet's used range, you need to first get the used range by using the UsedRange property
(on-line documentation) of the IWorksheet interface (on-line documentation). After you accomplish this,
you can customize the used range using the properties of the IRange interface (on-line documentation).

Refer to the following example code in order to get used range and customize it.

C#
worksheet.Range["H6:M7"].Value = 1;
worksheet.Range["J9:J10"].Merge();

//Used Range is "H6:M10"
var usedrange = worksheet.UsedRange;

//Customize the used range
usedrange.HorizontalAlignment = HorizontalAlignment.Center;

Work with feature related used range

To work with feature related used range, you need to first get the feature related used range by using the
GetUsedRange method (on-line documentation) of the IWorksheet interface. After you accomplish this, you
can customize the feature related used range using the properties of the IRange interface.

Refer to the following example code to get feature related used range and customize it.

C#
IComment commentA1 = worksheet.Range["A1"].AddComment("Range A1's comment.");
IComment commentA2 = worksheet.Range["A2"].AddComment("Range A2's comment.");

//Comment used range is "A1:D5", contains comment shape plot area
IRange commentUsedRange = worksheet.GetUsedRange(UsedRangeType.Comment);

Documents for Excel, .NET Edition 37

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//Customize feature related used range
commentUsedRange.Interior.Color = Color.LightYellow;

After you get the used range of cells using any of the above methods, you can customize it as per your
preferences. For instance- you can set the row height and column width; tweak the row hidden and column hidden
settings; perform certain useful operations like group and merge; add value, formula and comment to the used
range in your worksheet.

Freeze Panes in a Worksheet
GcExcel provides you with the ability to freeze panes in a worksheet. This feature enables you to keep some
specific rows or columns visible while users are scrolling through the rest of the sheet.

This functionality is particularly useful when there is a large amount of data that spans across a number of rows or
columns.

Freeze Panes

You can freeze panes in a worksheet using the FreezePanes() method ('FreezePanes Method' in the on-line
documentation) of the IWorksheet interface (on-line documentation). This method will freeze the split
panes according to the incoming row index and column index parameters.

In order to represent the row of freeze position and the column of freeze position, you can use the FreezeRow
('FreezeRow Property' in the on-line documentation) and FreezeColumn ('FreezeColumn Property' in
the on-line documentation) properties respectively.

Refer to the following example code to see how you can freeze panes in a worksheet.

C#
// Adding worksheets to the workbook
IWorksheet worksheet1 = workbook.Worksheets[0];
IWorksheet worksheet2 = workbook.Worksheets.Add();
IWorksheet worksheet3 = workbook.Worksheets.Add();
IWorksheet worksheet4 = workbook.Worksheets.Add();
//Freeze Panes
worksheet1.FreezePanes(2, 3);
worksheet2.FreezePanes(0, 2);
worksheet3.FreezePanes(3, 0);
worksheet4.FreezePanes(3, 5);

Unfreeze Panes

You can unfreeze the split panes using the UnfreezePanes() method ('UnfreezePanes Method' in the on-line
documentation) of the IWorksheet interface (on-line documentation).

Refer to the following example code to unfreeze panes in a worksheet.

C#
//UnFreeze Panes
worksheet4.UnfreezePanes();

Work with Shape And Picture
GcExcel allows users to insert and customize shapes and pictures on cells of a worksheet. You can work with shape
and picture by accessing the properties and methods of the IShape interface (on-line documentation) and
the IShapes interface (on-line documentation).

This topic includes the following tasks:

1. Create different shape types

Documents for Excel, .NET Edition 38

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Connector
Shape
Picture

2. Customize shape format and shape text
Shape format

Fill
Solid Fill
Gradient Fill
Pattern Fill
Picture Fill
Texture Fill

Line
3D Formatting

Shape text

GcExcel.NET also provides support for loading and saving GrapeCity SpreadJS JSON files with shapes. For more
information, refer to Import and Export JSON Stream.

Connector

A connector is used when you need to connect or disconnect two general shapes. In GcExcel, you can use
the BeginConnect method (on-line documentation), EndConnect method (on-line
documentation), BeginDisconnect method (on-line documentation) and EndDisconnect method (on-line
documentation) of the IConnectorFormat interface (on-line documentation) to attach and detach the ends
of the connector to other shapes.

Refer to the following example code to connect general shapes using the connector format.

C#
// To config the connector shape.
IShape shapeBegin = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 1, 1, 100, 100);
IShape endBegin = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 200, 200, 100,
100);
IShape connectorShape = worksheet.Shapes.AddConnector(ConnectorType.Straight, 1, 1,
101, 101);
connectorShape.Width = 10;
// To detach the ends of the connector to other shapes.
connectorShape.ConnectorFormat.BeginConnect(shapeBegin, 3);
connectorShape.ConnectorFormat.EndConnect(endBegin, 0);

Note: One of the limitations of using connector format is that you can add a connector to connect two
general shapes and export it but the connector will be shown only after you drag the shape to your
spreadsheet.

Shape

A shape is a drawing object and a member of the Shapes collection. In GcExcel, the Shapes collection represents
the collection of shapes in a specified worksheet. All the drawing objects including chart, comment, picture, slicer,
general shape and shape group are defined as Shape.

Picture

You can insert pictures on cells of a spreadsheet by using the AddPicture method (on-line documentation) of
the IShapes interface. The IPictureFormat interface (on-line documentation) in GcExcel allows users to
customize and format pictures while working in a spreadsheet.

Refer to the following example code when working with picture in GcExcel:

C#
// Add a picture

Documents for Excel, .NET Edition 39

Copyright © 2019 GrapeCity, Inc. All rights reserved.

IShape picture = worksheet.Shapes.AddPicture(@"Images\flower.jpg", 480, 10, 100, 100);
// Fill the inserted picture
picture.Fill.Solid();
picture.Fill.Color.RGB = Color.AliceBlue;
//Customize the inserted picture
picture.PictureFormat.Crop.PictureWidth = 80;

Shape Format

In GcExcel, you can customize the shape format in three different ways. This includes setting the fill format for the
inserted shape using the properties and methods of the IFillFormat interface (on-line documentation),
configuring the shape's line using the properties and methods of the ILineFormat interface (on-line
documentation) and applying 3D formatting to the shape using the properties and methods of
the IThreeDFormat interface (on-line documentation).

Solid Fill

To format the shape with Solid fill, first you need to use the Solid method (on-line documentation) of the
IFillFormat interface to specify the fill format and then set the Color property ('Color Property' in the on-line
documentation)and Transparency property (on-line documentation) to set the shape's fill color and
transparency degree respectively.

Refer to the following example code to fill the shape with solid fill.

C#
//Solid Fill
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Balloon, 10, 10, 100, 100);
IColorFormat color = shape.Fill.Color;
color.RGB = Color.Red;
shape.Fill.Solid();

Gradient Fill

In gradient fill, you first need to set the shape fill to the gradient fill using the OneColorGradient method (on-
line documentation), TwoColorGradient method (on-line documentation) or PresetGradient method
(on-line documentation) of the IFillFormat interface. When you're done, you can then insert, delete or modify
gradient stops; set the fill style rotation along with the shape and the angle of the gradient fill using
the GradientStops property (on-line documentation), RotateWithObject property (on-line
documentation) and GradientAngle property (on-line documentation) of the IFillFormat interface.

Refer to the following example code to fill the shape with gradient fill.

C#
//Gradient Fill
IShape shape1 = worksheet.Shapes.AddShape(AutoShapeType.Heart, 120, 10, 100, 100);
shape1.Fill.PresetGradient(GradientStyle.Vertical, 3, PresetGradientType.Silver);
shape1.Fill.RotateWithObject = false;

Pattern Fill

In pattern fill, you first need to set the shape fill to pattern fill using the Patterned method (on-line
documentation) of the IFillFormat interface. Afterwards, you can set the background color and the pattern color
using Color property (on-line documentation) and PatternColor property (on-line documentation) of the
IFillFormat interface.

Refer to the following example code to fill the shape with pattern fill.

C#
//Pattern Fill
IShape shape2 = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 240, 10, 100, 100);
shape2.Fill.Patterned(GrapeCity.Documents.Excel.Drawing.PatternType.Percent10);
shape2.Fill.Color.ObjectThemeColor = ThemeColor.Accent2;
shape2.Fill.PatternColor.ObjectThemeColor = ThemeColor.Accent6;

Documents for Excel, .NET Edition 40

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Picture Fill

In picture fill, you can use the AddShape method (on-line documentation) of the IShapes interface to first add
the shape that you want to fill with a picture. Further, you can also set the picture format including characteristics
like picture height, picture width, brightness, contrast ratio, re-coloring, x-axis and y-axis offset etc using the
properties of the IPictureFormat interface.

Refer to the following example code to fill the shape with picture.

C#
// Add shape of picture type
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 20, 20, 100, 100);
string path = @"Images\flower.jpg";
FileStream stream = System.IO.File.Open(path, FileMode.Open);
shape.Fill.UserPicture(stream, ImageType.JPG);
stream.Dispose();
// Recolor the picture
shape.PictureFormat.ColorType = PictureColorType.Grayscale;
// Set picture's brightness and contrast ratio.
shape.PictureFormat.Brightness = 0.6;
shape.PictureFormat.Contrast = 0.3;
// Set height, width, x-axis offset and y-axis offset of the specified picture.
shape.PictureFormat.Crop.PictureOffsetX = 10;
shape.PictureFormat.Crop.PictureOffsetY = -5;
shape.PictureFormat.Crop.PictureWidth = 120;
shape.PictureFormat.Crop.PictureHeight = 80;

Texture Fill

In texture fill, you can fill the shape with texture using the PresetTextured method (on-line documentation),
or UserTextured method (on-line documentation) of the IFillFormat interface. Further, you can also use
the TextureAlignment property (on-line documentation), TextureHorizontalScale property (on-line
documentation), TextureOffsetX property (on-line documentation), TextureOffsetY property (on-line
documentation) and TextureVerticalScale property (on-line documentation) to configure the layout of the
texture.

Refer to the following example code to fill the shape with texture fill.

C#
//Texture Fill
IShape shape3 = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 360, 10, 100, 100);
shape3.Fill.PresetTextured(PresetTexture.Canvas);
shape3.Fill.TextureAlignment = TextureAlignment.Center;
shape3.Fill.TextureOffsetX = 2.5;
shape3.Fill.TextureOffsetY = 3.2;
shape3.Fill.TextureHorizontalScale = 0.9;
shape3.Fill.TextureVerticalScale = 0.2;
shape3.Fill.Transparency = 0.5;

Line

Line is a kind of border around the shape. You can create lines around shapes inserted on cells of a spreadsheet
using the properties and methods of ILineFormat interface.

Refer to the following example code to configure the line and line style for the shape.

C#
// To set shape's line style.
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 10, 10, 100, 100);
shape.Line.DashStyle = LineDashStyle.Dash;
shape.Line.Style = LineStyle.Single;

Documents for Excel, .NET Edition 41

Copyright © 2019 GrapeCity, Inc. All rights reserved.

shape.Line.Weight = 2;
shape.Line.Color.ObjectThemeColor = ThemeColor.Accent6;
shape.Line.Transparency = 0.3;

Shape's Line also supports solid fill, gradient fill and pattern fill and its usage is similar to the Shape Fill.

3D Formatting

GcExcel allows you to format the three-dimensional layout for the inserted shape by setting its rotation degree
around x,y and z axis.

Refer to the following example code to apply 3D formatting to the embedded shape.

C#
// To set shape's rotation degree arround x, y, z axis.
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 50, 10, 100, 100);
shape.ThreeD.RotationX = 50;
shape.ThreeD.RotationY = 20;
shape.ThreeD.RotationZ = 30;
shape.ThreeD.Depth = 7;
shape.ThreeD.Z = 20;

Shape Text

In GcExcel, you can configure the text and text style for the shape as per your own preferences by using the
TextFrame property (on-line documentation) of the IShape interface.

Refer to the following example code to configure the text and text style for the inserted shape.

C#
// To config shape's text and text style.
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Rectangle, 40, 40, 100, 100);
shape.TextFrame.TextRange.Font.Color.RGB = System.Drawing.Color.FromArgb(0, 255, 0);
shape.TextFrame.TextRange.Font.Bold = true;
shape.TextFrame.TextRange.Font.Italic = true;
shape.TextFrame.TextRange.Font.Size = 20;
shape.TextFrame.TextRange.Font.Strikethrough = true;

shape.TextFrame.TextRange.Paragraphs.Add("This is a rectangle shape.");
shape.TextFrame.TextRange.Paragraphs.Add("My name is GcExcel.");
shape.TextFrame.TextRange.Paragraphs[1].Runs.Add("Hello World!");

shape.TextFrame.TextRange.Paragraphs[1].Runs[0].Font.Strikethrough = false;
shape.TextFrame.TextRange.Paragraphs[1].Runs[0].Font.Size = 35;

Customize Worksheets
GcExcel allows you to customize worksheets using the properties of IWorksheet Interface (on-line
documentation). You can perform useful operations like customizing gridlines to modify row and column headers,
setting color for the tabs, or setting default height and width for rows and columns, and so much more.

Customizing a worksheet to modify the default settings involves the following tasks:

Configure display
Set the tab color
Set visibility
Set background image
Define standard height and width

Documents for Excel, .NET Edition 42

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Configure display

You can modify the display settings of your worksheet from left to right or right to left.

Refer to the following example code to configure the display of your worksheet in GcExcel.

C#
// Fetch the default WorkSheet
IWorksheet worksheet = workbook.Worksheets[0];

// Assign the values to the cells
worksheet.Range["B1"].Value = "ABCD";
worksheet.Range["B2"].Value = 3;
worksheet.Range["C1"].Value = "GrapeCity Documents";
worksheet.Range["C2"].Value = 4;
worksheet.Range["D1"].Value = "GcExcel";
worksheet.Range["D2"].Value = "ABCD";

// Set the specified sheet to be displayed from left to right.
worksheet.SheetView.DisplayRightToLeft = true;

Set the tab color

You can change the default tab color of your worksheet using the TabColor property (on-line documentation)
of the IWorksheet interface (on-line documentation).

Refer to the following example code to set the tab color for your worksheet.

C#
// Set the tab color of the specified sheet as green.
worksheet.TabColor = Color.Green;

Set visibility

You can show or hide your worksheet using the Visible property (on-line documentation) of the IWorksheet
interface.

Refer to the following example code to set visibility of your worksheet.

C#
// Adding new sheet and set the visibility of the sheet as Hidden.
IWorksheet worksheet1 = workbook.Worksheets.Add();
worksheet1.Visible = Visibility.Hidden;

Set background image

You can set a custom background image to your worksheet using the BackgroundPicture ('BackgroundPicture
Property' in the on-line documentation) property of the IWorksheet ('IWorksheet Interface' in the on-
line documentation) interface. With this feature, users can insert any background image to the worksheet
including their organization logo, custom watermark or a wallpaper of their choice without any hassles.

Refer to the following example code in order to set the custom background image in your worksheet.

C#
// Fetch default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Set Background Image
worksheet.BackgroundPicture = File.ReadAllBytes(@"GrapeCityLogo.png");

Define standard width and height

Documents for Excel, .NET Edition 43

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You can define the standard height and width of your worksheet using the StandardHeight ('StandardHeight
Property' in the on-line documentation) and StandardWidth ('StandardWidth Property' in the on-line
documentation) properties of the IWorksheet interface, respectively.

Refer to the following example code to define the standard width and height as per your requirements.

C#
// Setting the height and width of the wokrsheet
worksheet.StandardHeight = 20;
worksheet.StandardWidth = 40;

Work with Worksheet Views
GcExcel offers customization of several display settings that are applied to a worksheet.

In order to view a worksheet as per their own preferences, users can use the properties and methods of
the IWorksheet ('IWorksheet Interface' in the on-line documentation) interface, IPane ('IPane
Interface' in the on-line documentation) interface and IWorksheetView ('IWorksheetView Interface' in
the on-line documentation) interface.

The following table describes some of the properties and methods that can be used to customize the view settings
while working with worksheets.

Property/Method Description

IWorksheet.SplitPanes(int row, int
column) ('SplitPanes Method' in the
on-line documentation)

This method can be used to lock the rows and columns in a
worksheet in order to divide the worksheet into multiple areas that
can be scrolled independently. Users need to provide the cell index as
parameters in this method to specify the location where they want
the split.

IWorksheet.UnsplitPanes(int row,
int column) ('UnsplitPanes Method'
in the on-line documentation)

This method can be used to unsplit the split panes. Using this method
is similar to using IWorksheet.SplitPanes(0,0).

IWorksheet.SplitRow ('SplitRow
Property' in the on-line
documentation) /

IWorksheet.SplitColumn
('SplitColumn Property' in the on-
line documentation)

This method gets the split distances (row count and column count)
from top (in case of row) or left (in case of column).

IWorksheet.Panes ('Panes
Property' in the on-line
documentation)

A range object that represents the frozen or split panes of the
worksheet.

IWorksheet.ActivePane
('ActivePane Property' in the on-
line documentation)

This property can be used to get the active pane in a worksheet.

IPane.Activate() ('Activate Method'
in the on-line documentation)

This method activates the current pane.

IPane.Index ('Index Property' in
the on-line documentation)

This property can be used to get the index of the current pane in
IWorksheet.Panes.

IPane.ScrollColumn ('ScrollColumn
Property' in the on-line
documentation) /

IPane.ScrollRow ('ScrollRow
Property' in the on-line
documentation)

This property can be used to get or set the top left cell position of the
current pane.

IWorksheet.SheetView ('SheetView
Property' in the on-line

This property can be used to get the view of the worksheet.

Documents for Excel, .NET Edition 44

Copyright © 2019 GrapeCity, Inc. All rights reserved.

documentation)

IWorksheetView.Zoom ('Zoom
Property' in the on-line
documentation)

This property can be used to get and set a variant numeric value that
represents the display size of the worksheet as a percentage where
the 100 equals normal size, 200 equals double size, and so on.

IWorksheetView.GridlineColor
('GridlineColor Property' in the on-
line documentation)

This property can be used to get and set the gridline color.

IWorksheetView.ScrollColumn
('ScrollColumn Property' in the on-
line documentation)

This property can be used to get and set the number of the leftmost
column in the worksheet.

IWorksheetView.ScrollRow
('ScrollRow Property' in the on-line
documentation)

This property can be used to get and set the number of the row that
appears at the top of the worksheet.

IWorksheetView.DisplayRightToLeft
('DisplayRightToLeft Property' in
the on-line documentation)

This property can be used to get and set whether the specified
worksheet is displayed from right to left instead of from left to right.

IWorksheetView.DisplayFormulas
('DisplayFormulas Property' in the
on-line documentation)

This property can be used to get and set whether the worksheet
displays formulas.

IWorksheetView.DisplayGridlines
('DisplayGridlines Property' in the
on-line documentation)

This property can be used to get and set whether the gridlines are
displayed.

IWorksheetView.DisplayHeadings
('DisplayHeadings Property' in the
on-line documentation)

This property can be used to get and set whether the headers are
displayed.

IWorksheetView.DisplayOutline
('DisplayOutline Property' in the on-
line documentation)

This property can be used to get and set whether the outline symbols
are displayed.

IWorksheetView.DisplayRuler
('DisplayRuler Property' in the on-
line documentation)

This property can be used to get and set whether a ruler is displayed
for the specified worksheet.

IWorksheetView.DisplayWhitespace
('DisplayWhitespace Property' in
the on-line documentation)

This property can be used to get and set whether the whitespace is
displayed.

IWorksheetView.DisplayZeros
('DisplayZeros Property' in the on-
line documentation)

This property can be used to get and set whether the zero values are
displayed.

The following code snippet shows how to set custom view for a worksheet using different properties of the
IWorksheet interface.

C#
//Set worksheet view

IWorkbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
var custom_view = worksheet.SheetView;
custom_view.Zoom = 200;
custom_view.GridlineColor = Color.Red;
custom_view.ScrollColumn = 10;
var scrollRow = custom_view.ScrollRow;

The following code snippet shows how to use the SplitPanes() method to split the worksheet into panes.

C#
//Split worksheet using SplitPanes() method

Documents for Excel, .NET Edition 45

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
worksheet.SplitPanes(worksheet.Range["A5"].Row, worksheet.Range["A5"].Column);

var splitRow = worksheet.SplitRow;
var splitColumn = worksheet.SplitColumn;

Allow Sort
GcExcel provides the Sort ('Sort Method' in the on-line documentation) method to perform data sorting
based on a range of cells, range by value, color or icon in a worksheet. The Apply ('Apply Method' in the on-
line documentation) method is used to apply the selected sort state and display the results.

Note: Sorting can be performed on merged cells as well, provided merged cells have the same size.

Following are the types of sorting available in GcExcel.

Sort by value

Sort by value performs sorting to arrange the data in order. SortOrientation property is used to specify the
orientation category for sorting, that is, columns or rows.

Refer to the following code example to sort by value.

C#
//Sort by value, use Sort() method.
worksheet.Range["A1:B4"].Sort(worksheet.Range["A1:A4"], orientation:
SortOrientation.Columns);

Sort by value for multiple columns

Sort by value for multiple columns performs sorting on multiple columns using a single line of code.
ValueSortField method is used to define multiple sort field instances in one statement. SortOrder property is
used to specify the orientation of columns in either ascending order or descending order.

Refer to the following code example to sort by value for multiple columns.

C#
//Sort by value, multi column sort.use Sort() method.
worksheet.Range["A1:B4"].Sort(SortOrientation.Columns, false, new ValueSortField[] {
new ValueSortField(worksheet.Range["A1:A4"],SortOrder.Descending), new
ValueSortField(worksheet.Range["B1:B4"], SortOrder.Ascending)});

Custom sort

Sorting is a common task, but not all data conforms to the common ascending and descending rule. For example,
months cannot be sorted in a meaningful way when sorted alphabetically. In this case, GcExcel offers a custom
sort. For custom sorting, string of values are defined in ValueSortField constructor.

Refer to the following code example to implement custom sorting.

C#
//give a custom sort values string.
var sortkey = new ValueSortField(worksheet.Range["A1:A2"], "1,2,3");
worksheet.Range["A2:A6"].Sort(SortOrientation.Columns, false, sortkey);

Sort by interior

Documents for Excel, .NET Edition 46

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Sort by interior performs sorting on the basis of interior color, pattern, pattern color, gradient color and gradient
angle. However, interior sort cannot be performed on the basis of cell color.

Refer to the following code example to sort by interior.

C#
// Assigning pattern to the range
 worksheet.Range["A3"].Interior.Pattern = Pattern.LinearGradient;
 worksheet.Range["A4"].Interior.Pattern = Pattern.LinearGradient;
 worksheet.Range["A5"].Interior.Pattern = Pattern.LinearGradient;
 worksheet.Range["A6"].Interior.Pattern = Pattern.LinearGradient;
// Defining values to the range
 worksheet.Range["A3"].Value = 1;
 worksheet.Range["A4"].Value = 2;
 worksheet.Range["A5"].Value = 3;
 worksheet.Range["A6"].Value = 4;
// Assigning gradient to the range
(worksheet.Range["A3"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 0);
(worksheet.Range["A3"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(146, 208, 80);
(worksheet.Range["A3"].Interior.Gradient as ILinearGradient).Degree = 90;

(worksheet.Range["A4"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 255);
(worksheet.Range["A4"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(146, 208, 90);
(worksheet.Range["A4"].Interior.Gradient as ILinearGradient).Degree = 90;

(worksheet.Range["A5"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 255);
(worksheet.Range["A5"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(146, 208, 180);
(worksheet.Range["A5"].Interior.Gradient as ILinearGradient).Degree = 90;

(worksheet.Range["A6"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 255);
(worksheet.Range["A6"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(146, 208, 90);
(worksheet.Range["A6"].Interior.Gradient as ILinearGradient).Degree = 90;
//
 worksheet.Sort.SortFields.Add(new CellColorSortField(worksheet.Range["A1:A2"],
worksheet.Range["A6"].DisplayFormat.Interior, SortOrder.Ascending));
 worksheet.Sort.Range = worksheet.Range["A3:A6"];
 worksheet.Sort.Orientation = SortOrientation.Columns;
 worksheet.Sort.Apply();

Sort by font color

Sort by font color performs sorting by cell's display format font color. However, sorting is not performed on the
basis of cell color.

Refer to the following code example to sort by font color.

C#
// Assigning Value to the range
 worksheet.Range["A1"].Value = 2;
 worksheet.Range["A2"].Value = 1;
 worksheet.Range["A3"].Value = 1;
 worksheet.Range["A4"].Value = 3;

Documents for Excel, .NET Edition 47

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 worksheet.Range["B1"].Value = 2;
 worksheet.Range["B2"].Value = 1;
 worksheet.Range["B3"].Value = 1;
 worksheet.Range["B4"].Value = 3;
// Assigning Color to the range
 worksheet.Range["B1"].Font.Color = Color.FromArgb(0, 128, 0);
 worksheet.Range["B2"].Font.Color = Color.FromArgb(128, 0, 0);
 worksheet.Range["B3"].Font.Color = Color.FromArgb(0, 0, 128);
 worksheet.Range["B4"].Font.Color = Color.FromArgb(128, 128, 0);
// Defining Sort by Color
 worksheet.Sort.SortFields.Add(new FontColorSortField(worksheet.Range["B1:B4"],
worksheet.Range["B1"].DisplayFormat.Font.Color, SortOrder.Descending));
 worksheet.Sort.Range = worksheet.Range["A1:B4"];
 worksheet.Sort.Orientation = SortOrientation.Columns;
 worksheet.Sort.Apply();

Sort by Icon

Sort by icon performs sorting on the basis of cell's conditional format icons.

Refer to the following code example to sort by icon.

C#
// Assigning Value to the range
 worksheet.Range["A1"].Value = 2;
 worksheet.Range["A2"].Value = 1;
 worksheet.Range["A3"].Value = 1;
 worksheet.Range["A4"].Value = 3;

 worksheet.Range["B1"].Value = 2;
 worksheet.Range["B2"].Value = 1;
 worksheet.Range["B3"].Value = 1;
 worksheet.Range["B4"].Value = 3;
// Defining Sort by Icon
IIconSetCondition iconset =
worksheet.Range["B1:B4"].FormatConditions.AddIconSetCondition();
iconset.IconSet = workbook.IconSets[IconSetType.Icon3TrafficLights1];

 worksheet.Sort.SortFields.Add(new IconSortField(worksheet.Range["B1:B4"],
workbook.IconSets[IconSetType.Icon3TrafficLights1][0], SortOrder.Descending));
 worksheet.Sort.Range = worksheet.Range["A1:B4"];
 worksheet.Sort.Orientation = SortOrientation.Columns;
 worksheet.Sort.Apply();

Apply Filters
Worksheets with bulk data can be difficult to manage. In such a scenario, applying filters can be a useful feature to
view only the required information while hiding rest of the data. Filters are used to display only the relevant
records that match to a certain criteria in a particular column.

In GcExcel, you can apply filters to a selected range of data. For example, you can apply date type filter from C4
to C7 range. To filter data in a range of cells or a table, you need to set the auto filter mode for the worksheet to
boolean true or false using AutoFilterMode property (on-line documentation) of the IWorksheet interface
(on-line documentation).

There are several types of range filters responsible for executing distinct filter operations in a worksheet.

Apply number filters
Apply multi select filters
Apply text filters

Documents for Excel, .NET Edition 48

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Apply date filters
Apply dynamic date filters
Apply filters by cell color
Apply filters by no fill
Apply filters by icon
Apply filters by no icon

Apply number filters

Refer to the following example code to see how you can apply number filters to display data that meets the
specified criteria applied on a column containing numeric cell values.

C#
// Apply number filter
worksheet.Range["D3:I6"].AutoFilter(0, "<>2");

Apply multi select filters

Refer to the following example code to see how multi select filters can be applied to quickly filter data based on
cell values with multiple selections.

C#
//filter condition is "multi select".
worksheet.Range["A1:E5"].AutoFilter(0, new object[] { "$2", "$4" },
AutoFilterOperator.Values);

Apply text filters

Refer to the following example code to see how text filters are applied to display rows with cell values that either
match to the specified text or regular expression value in the column on which the filter is applied.

C#
//begin with "a".
worksheet.Range["D3:I9"].AutoFilter(1, "a*");

Apply date filters

Refer to the following example code to see how date filters can be applied to a range to display only those results
that are falling within the specified dates.

Apply date filters
//Apply filter using Date criteria
var criteria1 = new DateTime(2008, 1, 1).ToString();
var criteria2 = new DateTime(2008, 8, 1).ToString();
worksheet.Range["D20:F29"].AutoFilter(2, ">=" + criteria1, AutoFilterOperator.And, "<="
+ criteria2);

Apply dynamic date filters

Refer to the following example code to see how dynamic date filters can be applied to display results that match
the specified date criteria taking into account the current system date that automatically gets updated everyday.

C#
//filter in yersterday.
worksheet.Range["D7:F18"].AutoFilter(2, DynamicFilterType.Yesterday,
AutoFilterOperator.Dynamic);

Apply filters by cell colors

Documents for Excel, .NET Edition 49

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Refer to the following example code to see how you can apply filters by cell colors on a column to display results
containing cells with distinct fill shades.

C#
worksheet.Range["A1:A6"].AutoFilter(0, Color.FromArgb(255, 255, 0),
AutoFilterOperator.CellColor);

Apply filters by no fill

Refer to the following example code to see how you can apply filters by no fill on a column to display results
containing cells with no fill color.

C#
worksheet.Range["A1:A6"].AutoFilter(0, null, AutoFilterOperator.NoFill);

Apply filters by icon

Refer to the following example code to see how you can apply filters by icon to display results that contain a
specific icon in the cells.

C#
worksheet.Range["A1:A10"].AutoFilter(0, workbook.IconSets[IconSetType.Icon5ArrowsGray]
[0], AutoFilterOperator.Icon);

Apply filters by no icon

Refer to the following example code to see how you can apply filters by no icon to display results where cells do
not possess an icon.

C#
worksheet.Range["A1:A10"].AutoFilter(0, null, AutoFilterOperator.NoIcon);

Manage Hyperlinks
In GcExcel, hyperlinks can be created and inserted in cells to allow users to quickly access related information
present in another file or on a webpage by clicking on the link.

Hyperlinks are stored in a specific worksheet or in a range by accessing the Hyperlinks collection of the
IWorksheet interface (on-line documentation) and the IRange interface (on-line documentation)
respectively.

In GcExcel, you can perform the following tasks to manage hyperlinks.

Add Hyperlinks
Configure Hyperlinks
Delete Hyperlinks

Add hyperlinks

Hyperlinks can be created and inserted through linking to an external file, linking to a webpage, linking to an email
address and also linking to a range within the worksheet. You can add hyperlinks for a range of cells in a
worksheet using the Add method (on-line documentation) of the IHyperLinks interface (on-line
documentation).

Refer to the following example code to insert hyperlinks to an external file, to a webpage, to a range within the
worksheet and to an email address.

C#
// Add a hyperlink link to external file
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1"],

Documents for Excel, .NET Edition 50

Copyright © 2019 GrapeCity, Inc. All rights reserved.

@"C:\Documents\GcExcel\GrapeCityDocumentsExcel\Project\Hyperlink\SampleFile.xlsx",
 null,
 "link to SampleFile.xlsx file.",
 "SampleFile.xlsx");

C#
// Add a hyperlink link to web page
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1"],
 "http://www.grapecity.com/",
 null,
 "open Grapecity web site.",
 "Grapecity");

C#
 //Add a hyperlink link to a range in this document.
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1"],
 null,
 "Sheet1!C3:E4",
 "Go To sheet1 C3:E4");

C#
//Add a hyperlink link to email address.
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1"],
 "mailto:abc.xyz@grapecity.com",
 null,
 "Send an email to ABC",
 "Send To ABC");

Configure Hyperlinks

Hyperlinks can be configured using the following properties of the IHyperlink interface (on-line
documentation).

1. You can use the Address and SubAddress properties of the IHyperlink interface to configure the hyperlink
references. The table shown below illustrates both of these properties with examples:

Link To Address SubAddress

External File Example: "C:\Users\Desktop\test.xlsx" null

Webpage Example: "http://www.grapecity.com/" null

A range in this document Example: null "Sheet1!C3:E4"

Email Address Example: "mailto: abc.xyz@grapecity.com" null

2. You can use the EmailSubject property to set the text of hyperlink's email subject line.
3. You can use the ScreenTip property to set the tip text for the specified hyperlink.
4. You can use the TextToDisplay property to set the text to be displayed for the specified hyperlink.

Delete Hyperlinks

The hyperlinks inserted in the cells can be removed from the hyperlinks collection in a specific worksheet or in a
specific range using the Delete method.

Refer to the following example code to delete hyperlinks.

C#
//Delete hyperlinks.
worksheet.Range["A1:B2"].Hyperlinks.Add(worksheet.Range["A1:A2"],
 null,

Documents for Excel, .NET Edition 51

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 "Sheet1!C3:E4",
 "Go To sheet1 C3:E4");

worksheet.Range["H5"].Hyperlinks.Add(worksheet.Range["A1"],
"http://www.grapecity.com/");
worksheet.Range["J6"].Hyperlinks.Add(worksheet.Range["A1"],
"http://www.grapecity.com/");

//delete hyperlinks in range A1:A2.
worksheet.Range["A1:A2"].Hyperlinks.Delete();

//delete all hyperlinks in this worksheet.
worksheet.Hyperlinks.Delete();

Apply Grouping
You can group rows or columns of data to organize information and create custom views in a spreadsheet.

Each group in GcExcel .NET is distinguished with a group header row with collapse and expand icons next to it that
can be used for displaying or hiding information as and when required. You can set the Show Detail property
('ShowDetail Property' in the on-line documentation) of the IRange Interface (on-line
documentation) to boolean true to expand a group to display rows and columns that have been hidden and false
to collapse the expanded rows or columns.

Applying grouping in a spreadsheet involves the following tasks:

Create Row or Column Group
Remove a Group
Set Summary Row

Note : When grouping is applied, rows of data are automatically sorted in ascending order against the
grouped columns.

Create Row or Column Group
You can apply grouping on rows and columns of a spreadsheet.

Apply row grouping
Apply column grouping
Set outline level for rows and columns

Apply row grouping

You can apply row grouping by using the Group method (on-line documentation) of the IRange interface
(on-line documentation) and specifying the rows you want to apply grouping on.

Refer to the following example code to apply row grouping in a worksheet.

C#
//1:20 rows' outline level will be 2.
worksheet.Range["1:20"].Group();

Apply column grouping

You can apply column grouping by using the Group method of the IRange interface and specifying the columns you
want to apply grouping on.

Refer to the following example code to apply column grouping in a worksheet.

C#

Documents for Excel, .NET Edition 52

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//A:I columns' outline level will be 2.
worksheet.Range["A:I"].Group();

Set outline level for rows and columns

When the data is grouped for the first time, it displays only the rows arranged into the first level group on the
basis of the values of the cells in that particular column. After the first-level grouping, when the view is grouped by
any column other than the one used previously, the rows will be arranged in the second level group, third level
group and so on.

In case you want to set the specific outline level for grouping of rows or columns, you can use the OutlineLevel
property (on-line documentation) of the IRange interface. You can also choose to display specified levels of
row or column groups using the ShowLevels method (on-line documentation) of the IOutline interface (on-
line documentation).

Refer to the following example code to set the Outline level for rows and columns.

C#
//1:10 rows' outline level will be 4.
worksheet.Range["1:10"].Group();
worksheet.Range["1:10"].OutlineLevel = 4;

//A:E columns' outline level will be 4.
worksheet.Range["A:E"].Group();
worksheet.Range["A:E"].OutlineLevel = 4;

You can use SummaryColumn property (on-line documentation) or SummaryRow property (on-line
documentation) of the IOutline interface to set whether summary column is in left or right of column groups or
summary row is above or below the row groups, respectively.

Remove a Group
You can remove a group by implementing the following tasks in your worksheet.

Ungroup rows and columns
Clear Outline
Collapse a Group

Ungroup rows and columns

The grouped rows or columns can be ungrouped if you no longer want the information to be organized in clusters.
You can increment or decrement the outline level for the specified rows or columns using the Group method (on-
line documentation) and Ungroup method (on-line documentation) of the IRange interface (on-line
documentation) respectively.

Refer to the following example code to ungroup row and column in a worksheet.

C#
// Row Ungrouping
//1:5 rows' outline level will be 1.
worksheet.Range["1:5"].Ungroup();

// Column Ungrouping
//A:I columns outline level will be 2.
worksheet.Range["A:I"].Group();
//A:D columns outline level will be 1.
worksheet.Range["A:D"].Ungroup();

Clear outline

Documents for Excel, .NET Edition 53

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You can clear the outline level of the specified rows or columns using the ClearOutline method (on-line
documentation) of the IRange interface.

Refer to the following example code to clear outline in a worksheet.

C#
//1:20 rows' outline level will be 2.
worksheet.Range["1:20"].Group();
//1:10 rows' outline level will be 3.
worksheet.Range["1:10"].Group();

//ClearOutline
//12:20 rows' outline level will be 1.
worksheet.Range["12:20"].ClearOutline();

Collapse a group

You can collapse a group by setting the ShowDetail property (on-line documentation) of the IRange
interface to boolean false.

Refer to the following example code to collapse a group in a worksheet.

C#
//1:20 rows' outline level will be 2.
worksheet.Range["1:20"].Group();
//1:10 rows' outline level will be 3.
worksheet.Range["1:10"].Group();
//collapse
//1:10 rows will be collapsed.
worksheet.Range["11:11"].ShowDetail = false;

Set Summary Row
When grouping is performed in a spreadsheet, a summary row is automatically created corresponding to each
group. Summary rows are group header rows that display the group name with the information about the group
that is being created.

While working with GcExcel .NET, you modify and customize the summary row as per the requirement using
the SummaryRow property (on-line documentation) of the IOutline interface (on-line documentation).

Refer to the following example code to set summary row.

C#
//summary
worksheet.Outline.SummaryRow = SummaryRow.Above;

//Summary row will be row 4.
worksheet.Range["5:20"].Group();
//Summary row will be row 14.
worksheet.Range["15:20"].Group();

Apply Style
In GcExcel .NET, a workbook possesses a set of styles that can be utilized to format cell appearance in individual
worksheets for enhanced clarity and increased readability.

Applying style in a worksheet involves following tasks.

Set Sheet Styling
Create and Set Custom Named Style

Documents for Excel, .NET Edition 54

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Some of the built-in styles in GcExcel .NET are listed below:

Category Description Properties

Number Format Cell number format. IRange.NumberFormat
('NumberFormat Property'
in the on-line
documentation)

Alignment Horizontal and vertical alignment of cell content,
indentation,text wrap, text rotation and text shrinking.

IRange.AddIndent
('AddIndent Property' in
the on-line documentation)

IRange.IndentLevel
('IndentLevel Property' in
the on-line documentation)

IRange.WrapText
('WrapText Property' in the
on-line documentation)

IRange.ShrinkToFit
('ShrinkToFit Property' in
the on-line documentation)

IRange.MergeCells
('MergeCells Property' in
the on-line documentation)

IRange.ReadingOrder
('ReadingOrder Property' in
the on-line documentation)

IRange.Orientation
('Orientation Property' in
the on-line documentation)

Font IRange.Font(IFont) IRange.Font ('Font
Property' in the on-line
documentation)(IFont)

Borders Cell border line styles and colors. IRange.Borders ('Borders
Property' in the on-line
documentation)(IBorders)

Fill Cell pattern fill or gradient fill. IRange.Interior ('Interior
Property' in the on-line
documentation)(IInterior)

Protection Cell protection options (Locked and Hidden) IRange.Locked ('Locked
Property' in the on-line
documentation)

IRange.FormulaHidden
('FormulaHidden Property'
in the on-line
documentation)

Apart from the built-in styles, you can also create custom styles with description for individual cells or a range of
cells in a worksheet where you can define all the style attributes and properties including font, font size, number
format, alignment etc.

Set Sheet Styling
You can apply styling to your worksheets by performing actions like setting different fill styles for a cell,
customizing the cell border and configuring the fonts for the spreadsheets etc.

Set fill

Documents for Excel, .NET Edition 55

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Solid fill
Pattern fill
Gradient fill

Linear gradient fill
Rectangular gradient fill

Set font
Set border
Set number format
Set alignment
Set protection

Set fill

You can set the fill style for a cell by using the Interior property (on-line documentation) of the IRange
interface (on-line documentation). A cell interior can be of three types, namely, solid fill, pattern fill and
gradient fill.

Solid fill

You can specify the fill style for the cell as solid by setting the Pattern property (on-line documentation) of
the IInterior interface (on-line documentation).

Refer to the following example code to set solid fill.

C#
// Solid Fill for B5
worksheet.Range["B5"].Interior.Pattern = Pattern.Solid;
worksheet.Range["B5"].Interior.Color = Color.FromArgb(255, 0, 255);

After you set the fill style for the cells, if you also want to modify the background color of the cells, refer to Set
Color in this documentation.

Pattern fill

You can integrate pattern fill in cells using the Pattern property of the IInterior interface to one of the valid
pattern types.

Pattern fill also consists of two parts - background Color and foreground Color.

You can use any of the Color ('Color Property' in the on-line documentation), ColorIndex ('ColorIndex
Property' in the on-line documentation), ThemeColor ('ThemeColor Property' in the on-line
documentation) and TintAndShade ('TintAndShade Property' in the on-line documentation) properties of
the IInterior interface (on-line documentation) to set the background color. Also, you can use any of the
PatternColor ('PatternColor Property' in the on-line documentation),PatternColorIndex
('PatternColorIndex Property' in the on-line documentation), PatternThemeColor ('PatternThemeColor
Property' in the on-line documentation),PatternTintAndShade ('PatternTintAndShade Property' in the
on-line documentation) properties to set the foreground color.

Refer to the following example code to set pattern fill.

C#
// Pattern Fill for A1
worksheet.Range["A1"].Interior.Pattern = Pattern.LightDown;
worksheet.Range["A1"].Interior.Color = Color.FromArgb(255, 0, 255);
worksheet.Range["A1"].Interior.PatternColorIndex = 5;

Gradient Fill

You can integrate gradient fill in cells using the Gradient property (on-line documentation) of the IInterior
interface (on-line documentation).

Gradient fill can be of two types - Linear Gradient Fill and Rectangle Gradient Fill.

Linear gradient fill

Documents for Excel, .NET Edition 56

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You can set the linear gradient fill using the properties and methods of the ILinearGradient interface (on-line
documentation).

Refer to the following example code to set linear gradient fill.

C#
// Gradient Fill for C1
worksheet.Range["C1"].Interior.Pattern = Pattern.LinearGradient;
(worksheet.Range["C1"].Interior.Gradient as ILinearGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 0);
(worksheet.Range["C1"].Interior.Gradient as ILinearGradient).ColorStops[1].Color =
Color.FromArgb(255, 255, 0);

(worksheet.Range["C1"].Interior.Gradient as ILinearGradient).Degree = 90;

Rectangular gradient fill

You can also set the rectangular gradient fill using the properties and methods of the IRectangularGradient
interface (on-line documentation).

Refer to the following example code to set rectangular gradient fill.

C#
// Rectangular Gradient Fill for E1
worksheet.Range["E1"].Interior.Pattern = Pattern.RectangularGradient;
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).ColorStops[0].Color =
Color.FromArgb(255, 0, 0);
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).ColorStops[1].Color =
Color.FromArgb(0, 255, 0);

(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).Bottom = 0.2;
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).Right = 0.3;
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).Top = 0.4;
(worksheet.Range["E1"].Interior.Gradient as IRectangularGradient).Left = 0.5;

Set font

You can customize the font of a worksheet using the Font property (on-line documentation) of IRange
interface.

Refer to the following example code to set font style in your worksheet.

C#
// Set Font
worksheet.Range["A1"].Value = "GcExcel";
worksheet.Range["A1"].Font.ThemeColor = ThemeColor.Accent1;
worksheet.Range["A1"].Font.TintAndShade = -0.5;
worksheet.Range["A1"].Font.ThemeFont = ThemeFont.Major;
worksheet.Range["A1"].Font.Bold = true;
worksheet.Range["A1"].Font.Size = 20;
worksheet.Range["A1"].Font.Strikethrough = true;

Set border

You can customize the border of a worksheet using the Borders property (on-line documentation) of
the IRange interface.

Refer to the following example code to set border in your worksheet.

C#
// Set Border
worksheet.Range["A1:B5"].Borders.LineStyle = BorderLineStyle.DashDot;
worksheet.Range["A1:B5"].Borders.ThemeColor = ThemeColor.Accent1;

Documents for Excel, .NET Edition 57

Copyright © 2019 GrapeCity, Inc. All rights reserved.

worksheet.Range["A1:B5"].Borders[BordersIndex.EdgeRight].LineStyle =
BorderLineStyle.Double;
worksheet.Range["A1:B5"].Borders[BordersIndex.EdgeRight].ThemeColor =
ThemeColor.Accent2;
worksheet.Range["A1:B5"].Borders[BordersIndex.DiagonalDown].LineStyle =
BorderLineStyle.Double;
worksheet.Range["A1:B5"].Borders[BordersIndex.DiagonalDown].ThemeColor =
ThemeColor.Accent5;

Set number format

You can set the number format in a worksheet using the NumberFormat property (on-line documentation) of
the IRange interface.

Refer to the following example code to set number format in your worksheet.

C#
// Set Number format
worksheet.Range["A5"].Value = 12;
worksheet.Range["A5"].NumberFormat = "$#,##0.00";

Set alignment

You can customize the alignment of a worksheet using any of the properties : HorizontalAlignment property
(on-line documentation), VerticalAlignment property (on-line documentation), AddIndent property
(on-line documentation) and ReadingOrder property (on-line documentation) of the IRange interface.

Refer to the following example code to set alignment in your worksheet.

C#
// Set Alignment
worksheet.Range["B8"].HorizontalAlignment = HorizontalAlignment.Distributed;
worksheet.Range["B8"].AddIndent = true;
worksheet.Range["B8"].VerticalAlignment = VerticalAlignment.Top;
worksheet.Range["B8"].ReadingOrder = ReadingOrder.RightToLeft;

Set protection

You can set protection for your worksheet using the FormulaHidden property (on-line documentation) and
Locked property (on-line documentation) of the IRange interface.

Refer to the following example code to set protection for your worksheet.

C#
//Set Protection
worksheet.Range["C4"].Locked = true;
worksheet.Range["C4"].FormulaHidden = true;

Create and Set Custom Named Style
Named style is a custom cell style that you apply to your workbook or worksheet with a unique name, which is
different from the already existing built-in style names defined for a spreadsheet.

You can create and set custom named styles as and when required. You can also modify an existing style and save
it as another workbook style. In GcExcel .NET, Styles refers to the named style collection that stores both the
built-in and custom named styles.

While working with styles in the spreadsheets, you can use any of the following ways -

Create and Set a Custom Named Style

Documents for Excel, .NET Edition 58

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Modify an Existing Style and Save it as a New Workbook Style

Create and Set a Custom Named Style

GcExcel .NET enables you to define custom named styles for your worksheet, configure it as per your preferences
and store them in the collection so that they can be accessed later.

You can add a custom named style to your worksheet using the Add method (on-line
documentation) of IStyleCollection interface (on-line documentation). This method can also be used to
return an IStyle instance. If you want to configure the named style settings in your spreadsheet, you can use
the properties of the IStyle interface (on-line documentation).

Refer to the following example code to create a custom name style and configure its settings.

C#
//Add custom name style.
IStyle style = workbook.Styles.Add("SampleStyle");

//Config custom name style settings begin.
//Border
style.Borders[BordersIndex.EdgeLeft].LineStyle = BorderLineStyle.Thin;
style.Borders[BordersIndex.EdgeTop].LineStyle = BorderLineStyle.Thick;
style.Borders[BordersIndex.EdgeRight].LineStyle = BorderLineStyle.Double;
style.Borders[BordersIndex.EdgeBottom].LineStyle = BorderLineStyle.Double;
style.Borders.Color = Color.FromArgb(0, 255, 0);

//Protection
style.FormulaHidden = true;
style.Locked = false;

//Number
style.NumberFormat = "#,##0_);[Red](#,##0)";

//Alignment
style.HorizontalAlignment = HorizontalAlignment.Right;
style.VerticalAlignment = VerticalAlignment.Bottom;
style.WrapText = true;
style.IndentLevel = 5;
style.Orientation = 45;

//Fill
style.Interior.ColorIndex = 5;
style.Interior.Pattern = GrapeCity.Documents.Excel.Pattern.Down;
style.Interior.PatternColor = Color.FromArgb(0, 0, 255);
style.IncludeAlignment = false;
style.IncludeBorder = true;
style.IncludeFont = false;
style.IncludeNumber = true;
style.IncludePatterns = false;
style.IncludeProtection = true;
//Config custom name style settings end.

You can also get or set named style in a worksheet using the Style property (on-line documentation) of
the IRange interface (on-line documentation). The Styles collection stores both built-in and custom named
styles in GcExcel .NET.

Refer to the following example code to get or set named style in your worksheet.

C#
//Set range's style to custom name style.
worksheet.Range["A1"].Style = worksheet.Workbook.Styles["SampleStyle"];

Documents for Excel, .NET Edition 59

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Modify an Existing Style and Save it as a New Workbook Style

With GcExcel.NET, you don't always need to create a custom named style right from the scratch. Instead, you can
modify an existing style (via getting the existing style from the Styles collection) as per your specific preferences
and save the new style as another workbook style that can be used as and when required.

Users can use the Add method (on-line documentation) in order to add the new style. The newly created
custom style will be based on the existing workbook style and will be stored in the IStyleCollection interface
(on-line documentation) so that it can be used as another workbook style in the future.

Refer to the following example code in order to modify an existing style and save it as a new workbook style in the
Styles collection.

C#
// Create workbook
Workbook workbook = new Workbook();

// Fetch the default worksheet
IWorksheet worksheet = workbook.Worksheets[0];

// Fetch existing Style "Good" and set to Range A1's Style
worksheet.Range["A1"].Style = workbook.Styles["Good"];

// Setting Cell Text
worksheet.Range["A1"].Value = "Good";

// Create and modify a style based on current existing style "Good" and name it as
"MyGood"
IStyle myGood = workbook.Styles.Add("MyGood", workbook.Styles["Good"]);
myGood.Font.Bold = true;
myGood.Font.Italic = true;

// Set new style "MyGood" to Range B1's Style
worksheet.Range["B1"].Style = workbook.Styles["MyGood"];

// Setting Cell Text
worksheet.Range["B1"].Value = "MyGood";

// Saving the workbook
workbook.Save(@"6 - AddWorkbookStyles.xlsx");

Apply Comments
You can add comments in cells to annotate a worksheet with additional data related to the information entered in
that particular cell. The inserted comments can be edited, formatted, resized, moved and deleted.

The following tasks can be performed while applying comments in cells of a spreadsheet:

Add comment to a cell
Set comment layout
Show/Hide comment
Author comments
Set rich text for comment
Delete comment

Add comment to a cell

In GcExcel .NET, a cell comment instance is represented by the IComment interface (on-line documentation).
You can insert comment to a cell or a range of cells using the AddComment method (on-line documentation)
of the IRange interface (on-line documentation). You can also set the text of the comment using the Text

Documents for Excel, .NET Edition 60

Copyright © 2019 GrapeCity, Inc. All rights reserved.

property (on-line documentation) of the IComment interface (on-line documentation).

Refer to the following example code to add comment to a cell.

C#
//Change the text of the comment.
commentC3.Text = "Range C3's new comment.";

Set comment layout

You can configure the layout of the comment added to an individual cell or a range of cells using Shape property
(on-line documentation) of the IComment interface (on-line documentation).

Refer to the following example code to set comment layout.

C#
//Configure comment layout

commentC3.Shape.Line.Color.RGB = Color.Green;
commentC3.Shape.Line.Weight = 7;

commentC3.Shape.Fill.Color.RGB = Color.Gray;
commentC3.Shape.Width = 100;
commentC3.Shape.Height = 200;
commentC3.Shape.TextFrame.TextRange.Font.Bold = true;
commentC3.Visible = true;

Show/Hide comment

You can choose to keep comments hidden or visible by using the Visible property (on-line documentation) of
the IComment interface (on-line documentation).

Refer to the following example code to show/hide comment added to a cell.

C#
//Hide Comment
worksheet.Range["C3"].Comment.Visible = true;
worksheet.Range["C:C"].EntireColumn.Hidden = true;

//Show Comment
var commentVisible = worksheet.Range["C3"].Comment.Visible;
//Range C3's comment container shape's visible is false, because column hidden.
var shapeVisible = worksheet.Range["C3"].Comment.Shape.Visible;

Author comments

You can represent the author of the comment by using the Author property (on-line documentation) of
the IComment interface (on-line documentation). Also, you can use this property to change the author of an
existing comment.

Refer to the following example code to set comment author for a cell.

C#
// Set comment author
workbook.Author = "joneshan";
worksheet.Range["H6"].AddComment("H6's comment.");
//H6's comment author is "joneshan".
var authorH6 = worksheet.Range["H6"].Comment.Author;

Set rich text for comment

You can set the rich text for the comment using the properties and methods of the ITextFrame Interface (on-

Documents for Excel, .NET Edition 61

Copyright © 2019 GrapeCity, Inc. All rights reserved.

line documentation) that control the text style.

Refer to the following example code to set rich text for the comment.

C#
//Rich Text and TextFrame
commentC3.Shape.TextFrame.TextRange.Paragraphs.Add("aaa");
commentC3.Shape.TextFrame.TextRange.Paragraphs.Add("bbb", 0);

commentC3.Shape.TextFrame.TextRange.Paragraphs[0].Font.Bold = true;
commentC3.Shape.TextFrame.TextRange.Paragraphs[1].Font.Size = 30;

commentC3.Shape.TextFrame.TextRange.Paragraphs[1].Runs.Add("ccc", 0);
commentC3.Shape.TextFrame.TextRange.Paragraphs[1].Runs.Add("ddd");
commentC3.Shape.TextFrame.TextRange.Paragraphs[1].Runs.Add("eee", 1);

commentC3.Shape.TextFrame.TextRange.Paragraphs[1].Runs[2].Font.Italic = true;

commentC3.Visible = true;

var text = commentC3.Text;

Delete comment

You can delete the comment added to a cell or to a cell range using the Delete method (on-line
documentation) of the IComment interface (on-line documentation) and the IRange interface (on-line
documentation) respectively.

Refer to the following example code to delete comment from a cell.

C#
// Delete Comment instance
commentC3.Delete();

Set Rich Text in a Cell
GcExcel.NET provides support for applying rich text formatting in the cells of the worksheet. By default, when
textual information is entered in a cell, the alphabets are displayed without any formatting style. Rich text feature
is useful for incorporating multiple styles to the textual information in a cell as per the custom requirements and
preferences.

Let's say you have a worksheet wherein the cells contain some characters that need to be highlighted to a greater
extent in order to emphasize on important information like the name of an organization, company's flagship
product, a number, or any other sensitive data. In such a scenario, rich text feature comes in handy while setting
multiple styles in a cell.

In the following example, cell A1 contains a string where rich text formatting has been applied. The word
"Documents" is formatted with a custom font size, underline style and blue color. Similarly, the text "GrapeCity"
and "Excel" has been formatted using multiple styles.

Documents for Excel, .NET Edition 62

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You can set the rich text in the cells of a worksheet by using any of the following ways -

Using the IRichText Interface.
Using the IRange.Characters().
Using the IRange.Characters() to Configure Font Across Several Runs.
Using the ITextRun.InsertAfter() and ITextRun.InsertBefore().

Using the IRichText Interface.

The Add ('Add Method' in the on-line documentation) method of the IRichText ('IRichText Interface' in
the on-line documentation) interface can be used to add specific ranges of text to the RichText collection of
IText runs.

Using Code

Refer to the following example code in order to set rich text in the cells of a worksheet using the IRichText
interface.

C#

 // Setting column "A" width
 worksheet.Range["A1"].ColumnWidth = 70;

 // Using IRichText interface to add rich text in cell range A1

 // Fetch the IRichText object associated with the cell range
 IRichText richText = worksheet.Range["A1"].RichText;

 // Add string "GrapeCity " to IRichText object and apply formatting
 ITextRun run1 = richText.Add("GrapeCity ");
 run1.Font.Color = Color.Red;
 run1.Font.Bold = true;
 run1.Font.Size = 20;

 // Append string "Documents" to IRichText object and apply formatting
 ITextRun run2 = richText.Add("Documents");
 run2.Font.ThemeFont = ThemeFont.Major;
 run2.Font.ThemeColor = ThemeColor.Accent1;
 run2.Font.Size = 30;
 run2.Font.Underline = UnderlineType.Single;

 // Append string " for " to IRichText object
richText.Add(" for ");

 // Append string "Excel" to IRichText object and apply formatting
 ITextRun run3 = richText.Add("Excel");
 run3.Font.Name = "Arial Black";
 run3.Font.Color = Color.LightGreen;
 run3.Font.Size = 36;
 run3.Font.Italic = true;

Using the IRange.Characters()

The Characters() ('Characters Method' in the on-line documentation) method of the IRange ('IRange
Interface' in the on-line documentation) interface can be used to represent a range of characters within the
text entered in the cell. This method will be called only when the value of the cell is in the string format.

Using Code

Documents for Excel, .NET Edition 63

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Refer to the following example code in order to set rich text in the cells of a worksheet.

C#
// Setting column "A" width
worksheet.Range["A1"].ColumnWidth = 70;

// Use IRange.Characters() to add rich text

// Setting Cell Text
worksheet.Range["A1"].Value = "GrapeCity Documents for Excel";

// Extracting character ranges from cell text and applying different formatting rules
to each range

// Formatting string "Grapecity"
ITextRun run1 = worksheet.Range["A1"].Characters(0, 9);
run1.Font.Color = Color.Red;
run1.Font.Bold = true;
run1.Font.Size = 20;

// Formatting string "Documents"
ITextRun run2 = worksheet.Range["A1"].Characters(10, 9);
run2.Font.ThemeFont = ThemeFont.Major;
run2.Font.ThemeColor = ThemeColor.Accent1;
run2.Font.Size = 30;
run2.Font.Underline = UnderlineType.Single;

// Formatting string "Excel"
ITextRun run3 = worksheet.Range["A1"].Characters(24, 5);
run3.Font.Name = "Arial Black";
run3.Font.Color = Color.LightGreen;
run3.Font.Size = 36;
run3.Font.Italic = true;

Using the IRange.Characters() to Configure Font Across Several Runs

You can also insert rich text in the cells of a worksheet via using the Characters() ('Characters Method' in the
on-line documentation) method of the IRange ('IRange Interface' in the on-line documentation) interface
in order to configure the font across several runs and then consolidate them into a single entity.

Using Code

Refer to the following example code in order to set rich text in the cells of a worksheet.

C#

// Setting column "A" width
worksheet.Range["A1"].ColumnWidth = 75;

// Use IRange.Characters() to configure font across several runs

// Fetch the IRichText object associated with the cell range
IRichText richText = worksheet.Range["A1"].RichText;

// Add string "GrapeCity " to IRichText object and apply formatting
ITextRun run1 = richText.Add("GrapeCity ");
run1.Font.Color = Color.Red;
run1.Font.Bold = true;
run1.Font.Size = 20;

Documents for Excel, .NET Edition 64

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Append string "Documents" to IRichText object and apply formatting
ITextRun run2 = richText.Add("Documents");
run2.Font.ThemeFont = ThemeFont.Major;
run2.Font.ThemeColor = ThemeColor.Accent1;
run2.Font.Size = 30;
run2.Font.Underline = UnderlineType.Single;

// Append string " for " to IRichText object
richText.Add(" for ");

// Append string "Excel" to IRichText object and apply formatting
ITextRun run3 = richText.Add("Excel");
run3.Font.Name = "Arial Black";
run3.Font.Color = Color.LightGreen;
run3.Font.Color = Color.LightGreen;
run3.Font.Size = 36;
run3.Font.Italic = true;

// Create composite run
// Extract character range composed of "City" word from run1 and " for" word and apply
formatting
ITextRun compositeRun = worksheet.Range["A1"].Characters(5, 18);
compositeRun.Font.Bold = true;
compositeRun.Font.Italic = true;
compositeRun.Font.ThemeColor = ThemeColor.Accent1;

Using the ITextRun.InsertAfter() and ITextRun.InsertBefore

The ITextRun ('ITextRun Interface' in the on-line documentation) interface provides the properties and
methods for adding and customizing the rich text entered in the cells of the worksheet. The InsertAfter()
('InsertAfter Method' in the on-line documentation) and InsertBefore() ('InsertBefore Method' in the
on-line documentation)methods of the ITextRun interface can be used to insert rich text after and before a
range of characters respectively. Also, you can use the Delete method (on-line documentation) of the
ITextRun interface in order to delete the inserted rich text in the cells.

Using Code

Refer to the following example code in order to set rich text in the cells of a worksheet.

C#

// Setting column "A" width
worksheet.Range["A1"].ColumnWidth = 70;

// Using ITextRun.InsertAfter() and InsertBefore() to add rich text

// Fetch the IRichText object associated with the cell range
IRichText richText = worksheet.Range["A1"].RichText;

// Add string " for " to IRichText object
ITextRun run1 = richText.Add(" for ");

// Use InsertBefore() to add string "Documents" to run1 and apply formatting
ITextRun run2 = run1.InsertBefore("Documents");
run2.Font.ThemeFont = ThemeFont.Major;
run2.Font.ThemeColor = ThemeColor.Accent1;
run2.Font.Size = 30;
run2.Font.Underline = UnderlineType.Single;

// Use InsertBefore() to add string "GrapeCity " to run2 and apply formatting

Documents for Excel, .NET Edition 65

Copyright © 2019 GrapeCity, Inc. All rights reserved.

ITextRun run3 = run2.InsertBefore("GrapeCity ");
run3.Font.Color = Color.Red;
run3.Font.Bold = true;
run3.Font.Size = 20;

// Use InsertAfter() to add string "Excel" to run1 and apply formatting
ITextRun run4 = run1.InsertAfter("Excel");
run4.Font.Name = "Arial Black";
run4.Font.Color = Color.LightGreen;
run4.Font.Size = 36;
run4.Font.Italic = true;

Documents for Excel, .NET Edition 66

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Manage Formulas
You can add formulas in a worksheets to carry out complex calculations on numerical data residing in cells or a
range of cells. Formulas are written as algebraic expressions, statements, or equations that start with an
"=" (equal to) sign. The computation of a formula always begins from left and extends towards the right as per
the operator precedence. In case you want to modify the order of computation, you can enclose some specific
portions within the formula in parentheses.

Shared below is the descending order of operations for GcExcel .NET formulas with the first one holding the
maximum precedence and last one holding the minimum precedence.

1. Parentheses evaluation of expressions
2. Range evaluation
3. Evaluation of spaces within the expression.
4. Evaluation of commas within the expression
5. Evaluation of variables with negation sign (-)
6. Conversion of percentages(%)
7. Evaluation of exponents (with ^ sign)
8. Multiplication and Division operators (hold equal precedence).
9. Addition and Subtraction operators (hold equal precedence).

10. Evaluation of text operators
11. Evaluation of comparison operators (=,<>,<=,>=)

In GcExcel .NET, managing formulas involves the following tasks.

Set Formula to Range
Set Table Formula
Set Array Formula

Set Formula to Range
You can set formula to a cell range using the Formula property (on-line documentation) of the IRange
interface (on-line documentation).

Refer to the following example code to add custom names and set formula to a range in a worksheet.

C#
// Add custom name and set formula to range
worksheet.Names.Add("test1", "=Sheet1!A1");
worksheet.Names.Add("test2", "=Sheet1!test1*2");

worksheet.Range["A1"].Value = 1;
//C6's value is 1.
worksheet.Range["C6"].Formula = "=test1";
//C7's value is 3.
worksheet.Range["C7"].Formula = "=test1 + test2";
//C8's value is 6.283185307
worksheet.Range["C8"].Formula = "=test2*PI()";

Note: The value calculated by the formula is stored in a cache. Users can verify the cached value by
invoking the Dirty method (on-line documentation) of the IRange interface. This method clears the
cached value of the specified range and all the ranges dependent on it, or the entire workbook.

Reference style

GcExcel .NET supports the RIC1 reference style to allow users to perform calculations in a much easier and quicker
way. To set reference style, you can use the Reference Style ('ReferenceStyle Property' in the on-line
documentation) property of the IWorkbook interface (on-line documentation).

Refer to the following example code to see how reference style can be set in a workbook.

Documents for Excel, .NET Edition 67

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#
//set workbook's reference style to R1C1.
workbook.ReferenceStyle = ReferenceStyle.R1C1;

Set Table Formula
Table formula refers to a formula that is used as a structured reference in the worksheet instead of using it as an explicit
cell reference. Structured reference in a table formula is the combination of table and column names in a spreadsheet with
syntax rules that must be applied while creating a table formula.

For instance, let us consider an example of a table formula in a spreadsheet.

The structured reference components in the above table formula are described below.

Components Description

Table Name References the table data, without any header or total rows. You can use a default
table name, such as Table1, or change it to use a custom name.
Example: DeptSales is a custom table name in the table formula.

Column Specifier Column specifiers use the names of the columns they represent. They reference
column data without any column header or total row. Column specifiers must be
enclosed in [] square brackets when they are written in the table formula.
Example: [SalesAmount] and [ComAmt]

Item Specifier Refers to a specific portions of the table such as total row.
Example: [#Totals] and [#Data]

Table Specifier Represents the outer portions of the structured reference. Outer references follow table
names and are enclosed within the square brackets.
Example: [[#Totals],[SalesAmount]],[[#Data],[ComAmt]]

Structures Reference Represented by a string that begins with the table name and ends with the column
specifier.
Example: DeptSales[[#Totals],[SalesAmount]] and DeptSales[[#Data],[ComAmt]]

Reference operators

In GcExcel .NET, reference operators are used to combine column specifiers in a table formula.

Shared below is a table that describes the reference operators along with structured reference components and cell range
corresponding to the table formula.

Operators Description Example

:(colon) range
operator

All of the cells in two or more adjacent
columns.

=DeptSales[[SalesPerson]:[Region]]

Documents for Excel, .NET Edition 68

Copyright © 2019 GrapeCity, Inc. All rights reserved.

,(comma) union
operator

A combination of two or more columns. =DeptSales[SalesAmount],DeptSales[ComAmt]

(space)
intersection
operator

The intersection of two or more
columns.

=DeptSales[[SalesPerson]:
[SalesAmount]]DeptSales[[Region]:[ComPct]]

Special item specifier

Special item specifier refers to a particular area in a table formula which is identified either with a # prefix or with an @
prefix.

GcExcel .NET supports the following types of special item specifiers:

Special Item Specifier Description

#All To the entire table including column headers, data and totals (if any).

#Data Only the data rows

#Headers Only the header rows

#Totals Only the total row. If there is none, it returns null.

#This Row Cells in the same row as the formula

@ Cells in the same row as the formula

Refer to the following example code to set table formula in your spreadsheets.

C#
// Define Data
worksheet.Range["A1:E3"].Value = new object[,]
 {
 {"SalesPerson", "Region", "SalesAmount", "ComPct", "ComAmt"},
 {"Joe", "North", 260, 0.10, null},
 {"Robert", "South", 660, 0.15, null},
 };

worksheet.Tables.Add(worksheet.Range["A1:E3"], true);
worksheet.Tables[0].Name = "DeptSales";
worksheet.Tables[0].Columns["ComPct"].DataBodyRange.NumberFormat = "0%";

//Use table formula in table range.
worksheet.Tables[0].Columns["ComAmt"].DataBodyRange.Formula = "=[@ComPct]*[@SalesAmount]";

//Use table formula out of table range.
worksheet.Range["F2"].Formula = "=SUM(DeptSales[@SalesAmount])";
worksheet.Range["G2"].Formula = "=SUM(DeptSales[[#Data],[SalesAmount]])";
worksheet.Range["H2"].Formula = "=SUM(DeptSales[SalesAmount])";
worksheet.Range["I2"].Formula = "=SUM(DeptSales[@ComPct], DeptSales[@ComAmt])";

Set Array Formula
Array formula is a formula that can execute multiple calculations on individual cells or a range of cells to display a
column or a row of subtotals. The array formula can consist of array of row of values, column of values or simply a
combination of rows and columns of values that may return either multiple results or a single result.

Array formulas can be used to simplify the following tasks in a worksheet:

1. You can count the number of characters in a range of cells.
2. You can sum numeric values in cells that meet a specified criteria. For instance,the highest value in a range

or values that fall between an upper and lower boundary.
3. You can sum every nth value in a range of cell values in a spreadsheet.

In GcExcel .NET, you can use FormulaArray property (on-line documentation) of the IRange interface (on-
line documentation) to set array formula for a range. In case, you want to find out whether a range has array
formula or not, you can use the HasArray property (on-line documentation) of the IRange interface. In
order to get an entire array if specified range is part of an array, you can use CurrentArray property (on-line

Documents for Excel, .NET Edition 69

Copyright © 2019 GrapeCity, Inc. All rights reserved.

documentation).

Refer to the following example code to set array formula and get entire array:

C#
// Setting cell value using arrays
worksheet.Range["E4:J5"].Value = new object[,]
{
 {1, 2, 3},
 {4, 5, 6}
};

worksheet.Range["I6:J8"].Value = new object[,]
{
 {2, 2},
 {3, 3},
 {4, 4}
};
// To set array formula for range.
//O P Q
//2 4 #N/A
//12 15 #N/A
//#N/A #N/A #N/A
worksheet.Range["O9:Q11"].FormulaArray = "=E4:G5*I6:J8";

//O9's current array is "O9:Q11". Current array gets the entire array.
var currentarray = worksheet.Range["O9"].CurrentArray.ToString();

Documents for Excel, .NET Edition 70

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Manage Data
The tasks associated with handling data in GcExcel .NET component includes the following:

Use Chart
Use Sparkline
Use Table
Use Pivot Table
Use Slicer

Use Chart
You can use charts in spreadsheets to graphically interpret data and visualize large volumes of information quickly
and efficiently.

Working with charts involves the following tasks:

Create and Delete Chart
Configure Chart
Customize Chart Objects

Create and Delete Chart
GcExcel .NET allows users to create and delete chart in spreadsheets as per their requirements.

You can create and delete chart using the properties and methods of the IShapes Interface (on-line
documentation) and the IChart interface (on-line documentation)

Create Chart

You can create chart in a worksheet by using the AddChart method (on-line documentation) of the IShapes
interface.

Refer to the following example code to create a chart.

C#
 //Add Chart
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
 {
 {null, "Revenue", "Profit", "Sales"},
 {"North", 10, 25, 25},
 {"East", 51, 36, 27},
 {"South", 52, 85, 30},
 {"West", 22, 65, 65}
 };

Delete Chart

You can delete an existing chart by using Delete method (on-line documentation) of the IChart interface.

Refer to the following example code to delete a chart from your spreadsheet.

C#
// Delete Chart
shape.Chart.Delete();

Documents for Excel, .NET Edition 71

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Configure Chart
In GcExcel .NET, you can configure a chart added to a spreadsheet in order to set up its display as per your
preferences.

Following tasks can be performed while configuring a chart:

Chart Title
Chart Area
Plot Area

Chart Title
In GcExcel .NET, you can use the properties of the IChart Interface (on-line documentation) to set up the
chart title as per your choice. When working with chart title, you can perform the following tasks:

Set formula for chart title
Set format for chart title and font style

Set formula for chart title

Refer to the following example code to set formula for chart title.

C#
//Set formula for chart title.
shape.Chart.HasTitle = true;
shape.Chart.ChartTitle.Formula = "=Sheet1!E1";
worksheet.Range["E1"].Value = "Sample Chart";

Set format for chart title and font style

Refer to the following example code to set format for chart title and font style.

C#
//Set chart title's format and font style.
shape.Chart.HasTitle = true;
//shape.Chart.ChartTitle.Text = "aaaaa";
shape.Chart.ChartTitle.Font.Bold = true;
shape.Chart.ChartTitle.Format.Fill.Color.RGB = Color.Red;
shape.Chart.ChartTitle.Format.Line.Color.RGB = Color.Blue;

Chart Area
In GcExcel .NET, you can use the properties of the IChartArea interface (on-line documentation) to set up
the chart area as per your preferences.

This topic includes the following tasks:

Configure chart area style
Set chart area format

Configure chart area style

You can configure the chart area style by changing its font, format and other attributes using the Font property
(on-line documentation), Format property (on-line documentation) and RoundedCorners property (on-
line documentation) of the IChartArea interface.

Refer to the following example code to configure chart area style in your worksheet.

C#
//Configure chart area style

Documents for Excel, .NET Edition 72

Copyright © 2019 GrapeCity, Inc. All rights reserved.

IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IChartArea chartarea = shape.Chart.ChartArea;
//Format.
chartarea.Format.Fill.Color.RGB = Color.Gray;
chartarea.Format.Line.Color.RGB = Color.Gold;
chartarea.Format.ThreeD.RotationX = 60;
chartarea.Format.ThreeD.RotationY = 20;
chartarea.Format.ThreeD.RotationZ = 100;
chartarea.Format.ThreeD.Z = 20;
chartarea.Format.ThreeD.Perspective = 20;
chartarea.Format.ThreeD.Depth = 5;
//Font
chartarea.Font.Bold = true;
chartarea.Font.Italic = true;
chartarea.Font.Color.RGB = Color.Red;
//Rounded corners.
chartarea.RoundedCorners = true;

Set chart area format

Refer to the following example code to set chart area format in your worksheet.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IChartArea chartarea = shape.Chart.ChartArea;
//Format.
chartarea.Format.Fill.Color.RGB = Color.Gray;
chartarea.Format.Line.Color.RGB = Color.Gold;
chartarea.Format.ThreeD.RotationX = 60;
chartarea.Format.ThreeD.RotationY = 20;
chartarea.Format.ThreeD.RotationZ = 100;
chartarea.Format.ThreeD.Z = 20;
chartarea.Format.ThreeD.Perspective = 20;
chartarea.Format.ThreeD.Depth = 5;
//Font
chartarea.Font.Bold = true;
chartarea.Font.Italic = true;
chartarea.Font.Color.RGB = Color.Red;

Documents for Excel, .NET Edition 73

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//rounded corners.
chartarea.RoundedCorners = true;

Plot Area
In GcExcel .NET, you can use the properties of the IPlotArea Interface (on-line documentation) to set up the
plot area in a chart as per your preferences.

Configure plot area format

You can configure the plot area format by changing its fill color, line color and other attributes using the Format
property (on-line documentation) of the IPlotArea interface.

Refer to the following example code to configure plot area format for a chart inserted in your worksheet.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IPlotArea plotarea = shape.Chart.PlotArea;
//Format.
plotarea.Format.Fill.Color.RGB = Color.Pink;
plotarea.Format.Line.Color.RGB = Color.Green;

Customize Chart Objects
In GcExcel .NET, the chart feature provides extensive support for creating various types of charts including both 2-
D and 3-D views.

Chart objects are fully customizable. Shared below is a list of charting objects that can be modified in charts
created using GcExcel .NET:

1. Series
2. Walls
3. Axis and other Lines
4. Floor
5. Data Label
6. Legends

The following diagram displays a sample chart depicting the annual sales records of different electronic gadgets
per quarter along with the chart objects that can be customized in a worksheet.

Documents for Excel, .NET Edition 74

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Series
Series refers to a set of data points, or simply a list of values that are plotted in a chart.

In a spreadsheet, you can plot one or more data series while creating a chart. Each series is represented by an
item on the legend and provides access to the chart control's collection of series objects.

In GcExcel .NET, the SeriesCollection can be used to create chart series. The properties and methods of
the ISeries interface (on-line documentation) and the ISeriesCollection interface (on-line
documentation) allows users to add individual series, access it, delete it and perform other useful operations on
it as per the requirements.

Refer to the following example code to add series in your chart.

C#
 // Adding charts
IShape shape1 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", 51, 36, 27},
 {"Item3", 52, 85, 30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};

 //Detects three series, B2:B6, C2:C6, D2:D6.
 //Does not detect out series labels and category labels, auto generated.
 shape1.Chart.SeriesCollection.Add(worksheet.Range["B2:D6"]);

 IShape shape2 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 550, 50, 300,

Documents for Excel, .NET Edition 75

Copyright © 2019 GrapeCity, Inc. All rights reserved.

300);
 //Detects three series, B2:B6, C2:C6, D2:D6.
 //Detects out series labels and category labels.
 //Series labels are "S1", "S2", "S3".
 //Category labels are "Item1", "Item2", "Item3", "Item4", "Item5".
 shape2.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"]);

 IShape shape3 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 450, 300,
300);
 //Detects five series, B2:D2, B3:C3, B4:C4, B5:C5, B6:C6.
 //Does not detects out series labels and category labels, auto generated.
 shape3.Chart.SeriesCollection.Add(worksheet.Range["B2:D6"], RowCol.Rows);

 IShape shape4 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 550, 450, 300,
300);
 //Detects three series, B2:B6, C2:C6, D2:D6
 //Does not detects out series labels and category labels, auto generated.
 shape4.Chart.SeriesCollection.Add(worksheet.Range["B2:D6"], RowCol.Columns);

 IShape shape5 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 850, 450, 300,
300);
 //Detects three series, B2:B6, C2:C6, D2:D6
 //Detects out series labels and category labels.
 //Series labels are "S1", "S2", "S3".
 //Category labels are "Item1", "Item2", "Item3", "Item4", "Item5".
 shape5.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns);

 IShape shape6 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 750, 300,
300);
 //Detects three series, B2:B6, C2:C6, D2:D6
 //Detects out series labels and category labels.
 //Series labels are "S1", "S2", "S3".
 //Category labels are "Item1", "Item2", "Item3", "Item4", "Item5".
 shape6.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);

 workbook.Worksheets.Add();
 IWorksheet worksheet1 = workbook.Worksheets[1];
 worksheet1.Range["A1:D6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
 };

 //Use ISeriesCollection.NewSeries() to add series
 IShape shape7 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300,
300);
 ISeries series1 = shape7.Chart.SeriesCollection.NewSeries();
 ISeries series2 = shape7.Chart.SeriesCollection.NewSeries();
 ISeries series3 = shape7.Chart.SeriesCollection.NewSeries();
 series1.Formula = "=SERIES(Sheet1!B1,Sheet1!A2:A6,Sheet1!B2:B6,1)";
 series2.Formula = "=SERIES(Sheet1!C1,Sheet1!A2:A6,Sheet1!C2:C6,2)";
 series3.Formula = "=SERIES(Sheet1!D1,Sheet1!A2:A6,Sheet1!D2:D6,3)";

 //Use ISeriesCollection.Extend(IRange source, RowCol rowcol, bool categoryLabels) to
add new data points to existing series
 IShape shape8 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 450, 300,

Documents for Excel, .NET Edition 76

Copyright © 2019 GrapeCity, Inc. All rights reserved.

300);
 shape8.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
 worksheet1.Range["A12:D14"].Value = new object[,]
 {
 {"Item6", 50, 20, -30},
 {"Item7", 60, 50, 50},
 {"Item8", 35, 80, 60}
 };
 shape8.Chart.SeriesCollection.Extend(worksheet1.Range["A12:D14"], RowCol.Columns,
true);

 workbook.Worksheets.Add();
 IWorksheet worksheet2 = workbook.Worksheets[2];
 worksheet2.Range["A1:D6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
 };

 //Create a line chart, change one series's AxisGroup, change another one series's
chart type.
 IShape shape9 = worksheet2.Shapes.AddChart(ChartType.Line, 200, 50, 300, 300);
 shape9.Chart.SeriesCollection.Add(worksheet2.Range["A1:D6"], RowCol.Columns, true,
true);
 ISeries series4 = shape9.Chart.SeriesCollection[0];
 ISeries series5 = shape9.Chart.SeriesCollection[1];
 series4.AxisGroup = AxisGroup.Secondary;
 series5.ChartType = ChartType.ColumnClustered;

 //Set 3D column chart's bar shape.
 IShape shape10 = worksheet2.Shapes.AddChart(ChartType.Column3D, 200, 450, 300, 300);
 shape10.Chart.SeriesCollection.Add(worksheet2.Range["A1:D6"], RowCol.Columns, true,
true);
 ISeries series6 = shape10.Chart.SeriesCollection[0];
 ISeries series7 = shape10.Chart.SeriesCollection[1];
 ISeries series8 = shape10.Chart.SeriesCollection[2];
 series6.BarShape = BarShape.ConeToMax;
 series7.BarShape = BarShape.Cylinder;
 series8.BarShape = BarShape.PyramidToPoint;

 //Set negative point's fill color.
 IShape shape11 = worksheet2.Shapes.AddChart(ChartType.Column3D, 200, 800, 300, 300);
 shape11.Chart.SeriesCollection.Add(worksheet2.Range["A1:D6"], RowCol.Columns, true,
true);
 ISeries series9 = shape11.Chart.SeriesCollection[0];
 series9.InvertIfNegative = true;
 //Iussue to be escalated
 series9.InvertColor.RGB = Color.DarkOrange;

 //Set series' plot order.6
 IShape shape12 = worksheet2.Shapes.AddChart(ChartType.ColumnClustered, 200, 1100,
300, 300);
 worksheet.Range["A1:E6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3", "S4"},
 {"Item1", 10, 25, 25, 30},

Documents for Excel, .NET Edition 77

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 {"Item2", -51, -36, 27, 35},
 {"Item3", 52, -85, -30, 40},
 {"Item4", 22, 65, 65, 45},
 {"Item5", 23, 69, 69, 50}
 };
 shape12.Chart.SeriesCollection.Add(worksheet2.Range["A1:E6"], RowCol.Columns, true,
true);

 ISeries series10 = shape12.Chart.SeriesCollection[0];
 ISeries series11 = shape12.Chart.SeriesCollection[1];
 ISeries series12 = shape12.Chart.SeriesCollection[2];
 ISeries series13 = shape12.Chart.SeriesCollection[3];

 //series11 and series13 plot on secondary axis.
 series11.AxisGroup = AxisGroup.Secondary;
 series13.AxisGroup = AxisGroup.Secondary;

 //series10 and series12 are in one chart group.
 series12.PlotOrder = 1;
 series10.PlotOrder = 2;

 //series4 and series2 are in one chart group.
 series13.PlotOrder = 1;
 series11.PlotOrder = 2;

 //Config series' marker.
 IShape shape13 = worksheet2.Shapes.AddChart(ChartType.Line, 200, 1450, 300, 300);
 shape13.Chart.SeriesCollection.Add(worksheet2.Range["A1:D6"], RowCol.Columns, true,
true);

 ISeries series14 = shape13.Chart.SeriesCollection[0];

 series14.MarkerStyle = MarkerStyle.Diamond;
 series14.MarkerSize = 10;
 series14.MarkerFormat.Fill.Color.RGB = Color.Red;
 series14.MarkerFormat.Line.Style = LineStyle.ThickThin;
 series14.MarkerFormat.Line.Color.RGB = Color.Green;
 series14.MarkerFormat.Line.Weight = 3;

Configure Chart Series
In GcExcel .NET, you can configure chart series using the following in your spreadsheet:

DataPoint
DataLabel
Trendline
ChartGroup
DropLine,HiLoLine and SeriesLine
Up-Down Bars

DataPoint

The Points collection in GcExcel .NET is used to represent all the points in a specific series and the indexer notation
of the IPoints interface (on-line documentation) to get a specific point in the series. Also, you can use the
DataLabel property (on-line documentation) of the IPoint interface (on-line documentation) to get data
label of a specific point.

Set the format of DataPoint

Documents for Excel, .NET Edition 78

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Refer to the following example code to set data point format for the chart inserted in your worksheet.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
ISeries series2 = shape.Chart.SeriesCollection[1];
ISeries series3 = shape.Chart.SeriesCollection[2];

series1.Format.Fill.Color.RGB = Color.Blue;
series1.Points[2].Format.Fill.Color.RGB = Color.Green;

Configure secondary section for pie of a pie chart

You can use the SecondaryPlot property (on-line documentation) of the IPoint interface to set if the point lies
in the secondary section of either a pie of pie chart or a bar of pie chart.

Refer to the following example code to configure secondary section for pie of a pie chart.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.PieOfPie, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.ChartGroups[0].SplitType = ChartSplitType.SplitByCustomSplit;
series1.Points[0].SecondaryPlot = true;
series1.Points[1].SecondaryPlot = false;
series1.Points[2].SecondaryPlot = true;
series1.Points[3].SecondaryPlot = false;
series1.Points[4].SecondaryPlot = true;

DataLabel

The DataLabels collection in GcExcel .NET is used to represent the collection of all the data labels for the specified
series.

You can use the Font property (on-line documentation) and Format property (on-line documentation) of
the IDataLabel interface (on-line documentation) to set font style, fill, line and 3-D formatting for all the data
labels of the specified series. You can also configure the layout of the data labels using other properties of the
IDataLabel interface.

Documents for Excel, .NET Edition 79

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Set all data labels and specific data label format for series

Refer to the following example code to set series' all data labels and specific data label format.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

//set series1's all data label's format.
series1.DataLabels.Format.Fill.Color.RGB = Color.Green;
series1.DataLabels.Format.Line.Color.RGB = Color.Red;
series1.DataLabels.Format.Line.Weight = 3;

//set series1's specific data label's format.
series1.DataLabels[2].Format.Fill.Color.RGB = Color.Yellow;
series1.Points[2].DataLabel.Format.Line.Color.RGB = Color.Blue;
series1.Points[2].DataLabel.Format.Line.Weight = 5;

Customize data label text

Refer to the following example code to customize the text of the data label.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

//customize data lables' text.
series1.DataLabels.ShowCategoryName = true;
series1.DataLabels.ShowSeriesName = true;
series1.DataLabels.ShowLegendKey = true;

Trendline

The Trendlines collection in GcExcel .NET is used to represent a collection of trend lines for a specific series. You
can use the Add Method (on-line documentation) of the ITrendlines interface (on-line documentation) to
create a new trendline for a specific series. Also, you can use the indexer notation of the ITrendlines interface to

Documents for Excel, .NET Edition 80

Copyright © 2019 GrapeCity, Inc. All rights reserved.

get a specific trend line.

Add trendline for series and configure its style

Refer to the following example code to add trendline for series and configure its style.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.Trendlines.Add();
series1.Trendlines[0].Type = TrendlineType.Linear;
series1.Trendlines[0].Forward = 5;
series1.Trendlines[0].Backward = 0.5;
series1.Trendlines[0].Intercept = 2.5;
series1.Trendlines[0].DisplayEquation = true;
series1.Trendlines[0].DisplayRSquared = true;

Add two trendlines for one series

Refer to the following example code to add two trendlines for one series.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.Trendlines.Add();
series1.Trendlines[0].Type = TrendlineType.Linear;
series1.Trendlines[0].Forward = 5;
series1.Trendlines[0].Backward = 0.5;
series1.Trendlines[0].Intercept = 2.5;
series1.Trendlines[0].DisplayEquation = true;
series1.Trendlines[0].DisplayRSquared = true;

series1.Trendlines.Add();
series1.Trendlines[1].Type = TrendlineType.Polynomial;
series1.Trendlines[1].Order = 3;

Chart Group

Documents for Excel, .NET Edition 81

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Chart Group contains common settings for one or more series. Typically, it is a group of specific featured series.

Set varied colors for column chart with one series

Refer to the following example code to set different colors for a column chart which has only one series.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.SeriesCollection[2].Delete();
shape.Chart.SeriesCollection[1].Delete();
//Chart's series count is 1.
var count = shape.Chart.SeriesCollection.Count;
//set vary colors for column chart which only has one series.
shape.Chart.ColumnGroups[0].VaryByCategories = true;

Set split setting and gap width for pie of a pie chart

Refer to the following example code to set split setting and gap width for pie of a pie chart.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.PieOfPie, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.PieGroups[0].SplitType = ChartSplitType.SplitByValue;
shape.Chart.PieGroups[0].SplitValue = 20;
shape.Chart.PieGroups[0].GapWidth = 350;

Set gap width of column chart and overlap

Refer to the following example code in order to set the gap width of the column chart along with overlap.

C#
//Set column chart's gap width and overlap
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},

Documents for Excel, .NET Edition 82

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.ColumnGroups[0].GapWidth = 120;
shape.Chart.ColumnGroups[0].Overlap = -20;

Configure the layout of the bubble chart

Refer to the following example code to configure the layout of the bubble chart as per your preferences.

C#
//Configure bubble chart's layout
IShape shape = worksheet.Shapes.AddChart(ChartType.Bubble, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.XYGroups[0].BubbleScale = 150;
shape.Chart.XYGroups[0].SizeRepresents = SizeRepresents.SizeIsArea;
shape.Chart.XYGroups[0].ShowNegativeBubbles = true;

Configure the layout of the doughnut chart

Refer to the following example code to configure the layout of the doughnut chart as per your preferences.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.Doughnut, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

ISeries series1 = shape.Chart.SeriesCollection[0];
series1.HasDataLabels = true;

shape.Chart.DoughnutGroups[0].FirstSliceAngle = 50;
shape.Chart.DoughnutGroups[0].DoughnutHoleSize = 20;

Documents for Excel, .NET Edition 83

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Dropline, HiLoline and SeriesLine

You can use the HasDropLines property (on-line documentation), HasHiLoLines property (on-line
documentation), HasSeriesLines property (on-line documentation), DropLines property (on-line
documentation),HiLoLines property (on-line documentation), SeriesLines property (on-line
documentation) of the IChartGroup interface (on-line documentation) to configure Dropline, HiLoline and
Series lines in a chart.

Configure the drop lines of the line chart

Refer to the following example code to configure the drop lines of the line chart as per your preferences.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.Line, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.LineGroups[0].HasDropLines = true;
shape.Chart.LineGroups[0].DropLines.Format.Line.Color.RGB = Color.Red;

Configure the high-low lines of the line chart

Refer to the following example code to configure the high-low lines of the line chart as per your preferences.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.Line, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.LineGroups[0].HasHiLoLines = true;
shape.Chart.LineGroups[0].HiLoLines.Format.Line.Color.RGB = Color.Red;

Configure the series lines for column chart

Refer to the following example code to configure the column chart's series lines as per your preferences.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnStacked, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

Documents for Excel, .NET Edition 84

Copyright © 2019 GrapeCity, Inc. All rights reserved.

shape.Chart.ColumnGroups[0].HasSeriesLines = true;
shape.Chart.ColumnGroups[0].SeriesLines.Format.Line.Color.RGB = Color.Red;

Configure the connector lines for pie of a pie chart

Refer to the following example code to configure the connector lines for pie of a pie chart as per your preferences.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.PieOfPie, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.PieGroups[0].HasSeriesLines = true;
shape.Chart.PieGroups[0].SeriesLines.Format.Line.Color.RGB = Color.Red;

Up-Down Bars

You can use the HasUpDownBars property (on-line documentation), DownBars property (on-line
documentation) and UpBars property (on-line documentation) of the IChartGroup interface up-down bars in
a chart to configure the style of the up bars and the down bars as per your preferences.

Configure the up-down bars for the line chart

Refer to the following example code to configure the up-down bars for the line chart as per your preferences.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.Line, 200, 100, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.LineGroups[0].HasUpDownBars = true;
shape.Chart.LineGroups[0].UpBars.Format.Fill.Color.RGB = Color.Green;
shape.Chart.LineGroups[0].DownBars.Format.Fill.Color.RGB = Color.Red;

Walls
A wall refers to an area or a plane which is present behind, below or beside a chart.

GcExcel .NET enables users to set up a chart as per their custom preferences by defining the thickness, fill color,
line color and format of the back wall as well as the side wall, using the properties of the IWall Interface (on-
line documentation) and the IChart Interface (on-line documentation).

Refer to the following example code to configure the walls of the chart inserted in a worksheet.

C#

Documents for Excel, .NET Edition 85

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//Config back wall and side wall's format together.
IShape shape1 = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 50, 300, 300);
shape1.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);
shape1.Chart.Walls.Thickness = 20;
shape1.Chart.Walls.Format.Fill.Color.RGB = Color.Red;
shape1.Chart.Walls.Format.Line.Color.RGB = Color.Blue;

// Config back wall's format individually.
IShape shape2 = worksheet.Shapes.AddChart(ChartType.Column3D, 550, 50, 300, 300);
shape2.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);
shape2.Chart.BackWall.Thickness = 20;
shape2.Chart.BackWall.Format.Fill.Color.RGB = Color.Red;
shape2.Chart.BackWall.Format.Line.Color.RGB = Color.Blue;

Axis and Other Lines
Axis is one of the charting elements meant for displaying the scale for a single dimension of a plot area. In GcExcel
.NET, an axis in a chart can have a title, major tick mark, minor tick mark, tick mark labels, major gridlines and
minor gridlines.

There are three types of axes in charts:

1. Category axis - Displays categories generally in the horizontal axis for all types of charts. An exception to
this is the bar chart, where categories are shown along the y-axis that is, the vertical axis.

2. Value axis - Displays series values in vertical axis. An exception to this is the bar chart, where series values
are shown along the x-axis that is, the horizontal axis.

3. Series axis - Displays data series for 3-dimensional charts including 3-D column chart, 3-D area chart, 3-D
line chart, and surface charts.

Typically, a two-dimensional chart is comprised of two axes - category axis and value axis. While the category axis
is also known as horizontal axis (x-axis) and is used to represent arguments, the value axis is also known as
vertical axis (y-axis) and it represents the data values for rows and columns in a worksheet. However, in a three-
dimensional chart, there is one more axis apart from the horizontal and vertical axis. This axis is known as the
series axis.

You can use the properties of the IAxis Interface (on-line documentation) to configure category axis, value
axis and series axis in a chart.

Refer to the following example code to configure axis in your chart.

C#
//Use IAxis.CategoryType to set category axis's scale type
IShape shape1 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300,
300);

worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {new DateTime(2015, 10, 21), 10, 25, 25},
 {new DateTime(2016, 10, 25), -51, -36, 27},
 {new DateTime(2017, 12, 20), 52, -85, -30},
 {new DateTime(2018, 5, 5), 22, 65, 65},
 {new DateTime(2019, 10, 12), 23, 69, 69}
};

shape1.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);
worksheet.Range["A2:A6"].NumberFormat = "m/d/yyyy";
IAxis category_axis = shape1.Chart.Axes.Item(AxisType.Category);

Documents for Excel, .NET Edition 86

Copyright © 2019 GrapeCity, Inc. All rights reserved.

category_axis.CategoryType = CategoryType.AutomaticScale;
//Category axis's category type is automatic scale.
var categorytype = category_axis.CategoryType;
//Category axis's actual category type is time scale.
var actualcategorytype = category_axis.ActualCategoryType;

workbook.Worksheets.Add();
IWorksheet worksheet1 = workbook.Worksheets[1];
worksheet1.Range["A1:D6"].Value = new object[,]
 {
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
 };
//Set Category axis and Value axis's format.
IShape shape2 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300,
300);
shape2.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis category_axis1 = shape2.Chart.Axes.Item(AxisType.Category);
IAxis value_axis = shape2.Chart.Axes.Item(AxisType.Value);
//set category axis's format.
category_axis1.Format.Line.Color.RGB = Color.Green;
category_axis1.Format.Line.Weight = 3;
category_axis1.Format.Line.Style = LineStyle.ThickBetweenThin;
//set value axis's format.
value_axis.Format.Line.Color.RGB = Color.Red;
value_axis.Format.Line.Weight = 8;
value_axis.Format.Line.Style = LineStyle.ThinThin;

//Config time scale category axis's units.
worksheet1.Range["A8:A12"].NumberFormat = "m/d/yyyy";
worksheet1.Range["A7:D12"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {new DateTime(2015, 10, 21), 10, 25, 25},
 {new DateTime(2016, 10, 25), -51, -36, 27},
 {new DateTime(2017, 12, 20), 52, -85, -30},
 {new DateTime(2018, 5, 5), 22, 65, 65},
 {new DateTime(2019, 10, 12), 23, 69, 69}
};
IShape shape3 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 450, 300,
300);
shape3.Chart.SeriesCollection.Add(worksheet1.Range["A7:D12"], RowCol.Columns, true,
true);
IAxis category_axis2 = shape3.Chart.Axes.Item(AxisType.Category);
category_axis2.MaximumScale = new DateTime(2019, 10, 1).ToOADate();
category_axis2.MinimumScale = new DateTime(2015, 10, 1).ToOADate();
category_axis2.BaseUnit = TimeUnit.Years;
category_axis2.MajorUnitScale = TimeUnit.Months;
category_axis2.MajorUnit = 4;
category_axis2.MinorUnitScale = TimeUnit.Days;
category_axis2.MinorUnit = 60;

//Config value axis's units.
IShape shape4 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 800, 300,
300);

Documents for Excel, .NET Edition 87

Copyright © 2019 GrapeCity, Inc. All rights reserved.

shape4.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis category_axis3 = shape4.Chart.Axes.Item(AxisType.Category);
IAxis value_axis1 = shape4.Chart.Axes.Item(AxisType.Value);
value_axis1.MaximumScale = 150;
value_axis1.MinimumScale = 50;
value_axis1.MajorUnit = 20;
value_axis1.MinorUnit = 5;

//Set axis crosses at.
IShape shape5 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 1150, 300,
300);
shape5.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis value_axis2 = shape5.Chart.Axes.Item(AxisType.Value);
value_axis2.Crosses = AxisCrosses.Maximum;

//Set axis's scale type.
IShape shape6 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 1500, 300,
300);
shape6.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis value_axis3 = shape6.Chart.Axes.Item(AxisType.Value);
value_axis3.ScaleType = ScaleType.Logarithmic;
value_axis3.LogBase = 5;

//Set axis's tick mark.
IShape shape7 = worksheet1.Shapes.AddChart(ChartType.ColumnClustered, 200, 1850, 300,
300);
shape7.Chart.SeriesCollection.Add(worksheet1.Range["A1:D6"], RowCol.Columns, true,
true);
IAxis category_axis4 = shape7.Chart.Axes.Item(AxisType.Category);
category_axis4.Format.Line.Color.RGB = Color.Green;
category_axis4.MajorTickMark = TickMark.Inside;
category_axis4.MinorTickMark = TickMark.Cross;
category_axis4.TickMarkSpacing = 2;

Configure Chart Axis
In GcExcel .NET, you can configure chart axis using the following elements in your spreadsheet:

Axis title
Gridlines
Display unit label
Tick labels

Axis title

While configuring chart axis, you can set the style for the axis title as per your preferences by using the AxisTitle
property (on-line documentation) of the IAxis interface (on-line documentation).

Refer to the following example code to configure axis title's layout.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},

Documents for Excel, .NET Edition 88

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IAxis category_axis = shape.Chart.Axes.Item(AxisType.Category);
IAxis value_axis = shape.Chart.Axes.Item(AxisType.Value);
category_axis.HasTitle = true;
category_axis.AxisTitle.Format.Fill.Color.RGB = Color.Pink;
category_axis.AxisTitle.Text = "aaaaaaaaaa";
category_axis.AxisTitle.Font.Size = 20;
category_axis.AxisTitle.Font.Color.RGB = Color.Green;
category_axis.AxisTitle.Font.Strikethrough = true;

Gridlines

While configuring the axis of a chart, you can also set the style of major and minor gridlines as per your choice
using the HasMajorGridlines property (on-line documentation), HasMinorGridlines property (on-line
documentation), MajorGridlines property (on-line documentation) and MinorGridlines property (on-line
documentation) of the IAxis interface.

Refer to the following example code to set major and minor gridlines' style.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IAxis value_axis = shape.Chart.Axes.Item(AxisType.Value);
IAxis category_axis = shape.Chart.Axes.Item(AxisType.Category);
category_axis.HasMajorGridlines = true;
category_axis.HasMinorGridlines = true;
category_axis.MajorGridlines.Format.Line.Color.RGB = Color.Red;
category_axis.MajorGridlines.Format.Line.Weight = 3;
category_axis.MinorGridlines.Format.Line.Color.RGB = Color.Green;
category_axis.MinorGridlines.Format.Line.Weight = 1;
category_axis.MinorGridlines.Format.Line.Style = LineStyle.ThickThin;

Display unit label

While configuring the chart axis in your worksheet, you can also set the display unit for the axis and configure its
label style using the DisplayUnit property (on-line documentation), DisplayUnitLabel property (on-line
documentation) and HasDisplayUnitLabel property (on-line documentation) of the IAxis interface.

Refer to the following example code to set display unit for the axis and configure its label style.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]

Documents for Excel, .NET Edition 89

Copyright © 2019 GrapeCity, Inc. All rights reserved.

{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IAxis category_axis = shape.Chart.Axes.Item(AxisType.Category);
IAxis value_axis = shape.Chart.Axes.Item(AxisType.Value);
value_axis.DisplayUnit = DisplayUnit.Hundreds;
value_axis.HasDisplayUnitLabel = true;
value_axis.DisplayUnitLabel.Font.Color.RGB = Color.Green;
value_axis.DisplayUnitLabel.Font.Italic = true;
value_axis.DisplayUnitLabel.Format.Fill.Color.RGB = Color.Pink;
value_axis.DisplayUnitLabel.Format.Line.Color.RGB = Color.Red;

Tick labels

While configuring the axis of a chart, you can also set the position and layout of the tick-mark labels as per your
choice using the TickLabelPosition property (on-line documentation), TickLabels property (on-line
documentation), TickLabelSpacing property (on-line documentation), TickLabelSpacingIsAuto property
(on-line documentation) and TickMarkSpacing property (on-line documentation) of the IAxis interface.

Refer to the following example code to configure the tick mark label's position and layout.

C#
IShape shape = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 100, 300,
300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

IAxis category_axis = shape.Chart.Axes.Item(AxisType.Category);
IAxis value_axis = shape.Chart.Axes.Item(AxisType.Value);

//tick-mark labels' fill will be green according to axis's format.
category_axis.Format.Fill.Color.RGB = Color.Green;

category_axis.TickLabelPosition = TickLabelPosition.NextToAxis;
category_axis.TickLabelSpacing = 2;
category_axis.TickLabels.Font.Color.RGB = Color.Red;
category_axis.TickLabels.Font.Italic = true;
category_axis.TickLabels.NumberFormat = "#,##0.00";
category_axis.TickLabels.Offset = 100;

Floor
Floor represents the floor of a three-dimensional chart. The area of a 3-D chart can be formatted using floor as the
charting object.

Documents for Excel, .NET Edition 90

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In GcExcel .NET, you can use the properties and methods of the IFloor interface (on-line documentation) to
set the line and fill format of the floor along with its thickness.

Refer to the following example code to configure the format of floor in a chart.

C#
//Configure floor's format.
IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 50, 300, 300);
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);

shape.Chart.Floor.Thickness = 20;
shape.Chart.Floor.Format.Fill.Color.RGB = Color.Red;
shape.Chart.Floor.Format.Line.Color.RGB = Color.Blue;

Data Label
GcExcel .NET allows you to insert data labels in a chart to ensure the information depicted in it can be easily
interpreted and visualized. You can add data labels in a chart using the properties and methods of the IPoint
interface (on-line documentation) and the ISeries interface (on-line documentation).

Refer to the following example code to set data labels in a chart and customize the data label text.

C#
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};

//Set Series' all data labels and specific data label's format.
IShape shape1 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 200, 50, 300,
300);
shape1.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);
ISeries series1 = shape1.Chart.SeriesCollection[0];
series1.HasDataLabels = true;
//set series1's all data label's format.
series1.DataLabels.Format.Fill.Color.RGB = Color.Green;
series1.DataLabels.Format.Line.Color.RGB = Color.Red;
series1.DataLabels.Format.Line.Weight = 3;
//set series1's specific data label's format.
series1.DataLabels[2].Format.Fill.Color.RGB = Color.Yellow;
series1.Points[2].DataLabel.Format.Line.Color.RGB = Color.Blue;
series1.Points[2].DataLabel.Format.Line.Weight = 5;

//Customize data label's text.
IShape shape2 = worksheet.Shapes.AddChart(ChartType.ColumnClustered, 550, 50, 300,
300);

Documents for Excel, .NET Edition 91

Copyright © 2019 GrapeCity, Inc. All rights reserved.

shape2.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);
ISeries series2 = shape2.Chart.SeriesCollection[0];
series2.HasDataLabels = true;
//customize data lables' text.
series2.DataLabels.ShowCategoryName = true;
series2.DataLabels.ShowSeriesName = true;
series2.DataLabels.ShowLegendKey = true;

Legends
In order to enable users to quickly interpret and understand the charted data, Legends (visual charting
elements) automatically appear in spreadsheets when you finish creating a chart.

Legends are also known as keys and are associated with the graphic data plotted on the chart. Usually, they are
located at the right side of the chart. From a wider perspective, they facilitate end users to determine series and
series points representing distinct data groups in a spreadsheet.

Typically, legends depict series names by listing and identifying the data points that belong to a particular series.
Corresponding to the data, each legend entry appearing on the worksheet can be shown with the help of a legend
marker along with the legend text that identifies it.

In GcExcel .NET, you can even customize the legend text, configure the position and layout of the legend, reset
the font style for the legend entries, delete legend and its entries as and when you want using the properties and
methods of the ILegend interface (on-line documentation) and the IChart interface (on-line
documentation).

Refer to the following example code to configure some useful legend settings in your chart.

C#
worksheet.Range["A1:D6"].Value = new object[,]
{
 {null, "S1", "S2", "S3"},
 {"Item1", 10, 25, 25},
 {"Item2", -51, -36, 27},
 {"Item3", 52, -85, -30},
 {"Item4", 22, 65, 65},
 {"Item5", 23, 69, 69}
};

//Config legend's position and layout.
IShape shape = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 50, 300, 300);
shape.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true, true);
shape.Chart.HasLegend = true;
ILegend legend = shape.Chart.Legend;
//position.
legend.Position = LegendPosition.Left;
//font.
legend.Font.Color.RGB = Color.Red;
legend.Font.Italic = true;
//format.
legend.Format.Fill.Color.RGB = Color.Pink;
legend.Format.Line.Color.RGB = Color.Blue;

//Config legend entry's font style.
ILegendEntry legendentry = legend.LegendEntries[0];
legendentry.Font.Size = 20;
legendentry.Font.Italic = true;

Refer to the following example code if you want to delete the legend or a specific legend entry from your chart.

C#

Documents for Excel, .NET Edition 92

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//Delete legend.
IShape shape1 = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 450, 300, 300);
shape1.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);
shape1.Chart.HasLegend = true;
ILegend legend1 = shape1.Chart.Legend;
legend1.Delete();

//Delete legend entry.
IShape shape2 = worksheet.Shapes.AddChart(ChartType.Column3D, 200, 800, 300, 300);
shape2.Chart.SeriesCollection.Add(worksheet.Range["A1:D6"], RowCol.Columns, true,
true);
shape2.Chart.HasLegend = true;
ILegend legend2 = shape2.Chart.Legend;
ILegendEntry legendentry2 = legend2.LegendEntries[0];
legendentry2.Delete();

Use Sparkline
You can use sparklines in cells to insert graphical illustration of trends in data. Sparklines are particularly useful for
analytical dashboards, presentations, business reports etc. The sparkline displays the most recent value as the
rightmost data point and compares it with earlier values on a scale, allowing you to view general changes in data
over time.

Using sparklines includes the following tasks.

Add a group of new sparklines
Clear sparkline
Clear sparkline groups
Create a group of existing sparklines
Add group of new sparklines with Date Axis
Configure layout of sparkline

Add a group of new sparklines

You can add a group of new sparklines for each row or column of data in your worksheet by first specifying the
data range and then using the Add method (on-line documentation) of the ISparklineGroups interface (on-
line documentation).

Refer to the following example code to add a group of new sparklines.

C#
//Create workbook and access its first worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");

Clear sparkline

You can remove a sparkline from your worksheet by first specifying the data range and then using the Clear

Documents for Excel, .NET Edition 93

Copyright © 2019 GrapeCity, Inc. All rights reserved.

method (on-line documentation) of the ISparklineGroups interface.

Refer to the following example code to clear sparkline.

C#
// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };

worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
// Defining data in the range
worksheet.Range["F1:H4"].Value = new object[,]
{
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};
// Add a group of new sparklines
worksheet.Range["J1:J4"].SparklineGroups.Add(SparkType.Line, "F1:H4");

//Clear D2 and J1 cell's sparkline.
worksheet.Range["D2, J1"].SparklineGroups.Clear();

Clear sparkline groups

You can remove a group of sparklines (added for a row or column) from your worksheet by specifying the data
range and then using the ClearGroups method (on-line documentation) of the ISparklineGroups interface.

Refer to the following example code to clear sparkline groups.

C#
// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
{
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};
// Add a group of new sparklines
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
// Defining data in the range
worksheet.Range["F1:H4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["J1:J4"].SparklineGroups.Add(SparkType.Line, "F1:H4");

//Clear sparkline groups.
worksheet.Range["D2, J1"].SparklineGroups.ClearGroups();

Documents for Excel, .NET Edition 94

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Create a group of existing sparklines

You can create a group of existing sparklines by specifying the data range and then using the Group() method
('Group Method' in the on-line documentation) of the ISparklineGroups interface.

Refer to the following example code to create a group of existing sparklines.

C#
// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
// Defining data in the range
worksheet.Range["F1:H4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["J1:J4"].SparklineGroups.Add(SparkType.Column, "F1:H4");

//Create a new group, according to Range["J2"]'s sparkline group setting.
worksheet.Range["A1:J4"].SparklineGroups.Group(worksheet.Range["J2"]);

Add group of new sparklines with Date Axis

You can add a group of new sparklines with date axis by first specifying the data range and then using
the DateRange property (on-line documentation) of the ISparklineGroup interface (on-line
documentation).

Refer to the following example code to add group of new sparkline with date axis.

C#
// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
 };
// Add a group of new sparklines
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
worksheet.Range["A7:C7"].Value = new object[] { new DateTime(2011, 12, 16), new
DateTime(2011, 12, 17), new DateTime(2011, 12, 18) };

//Set horizontal axis's Date range.
worksheet.Range["D1"].SparklineGroups[0].DateRange = "A7:C7";

worksheet.Range["D1"].SparklineGroups[0].Axes.Horizontal.Axis.Visible = true;
worksheet.Range["D1"].SparklineGroups[0].Axes.Horizontal.Axis.Color.Color =
Color.Green;
worksheet.Range["D1"].SparklineGroups[0].Axes.Vertical.MinScaleType =
SparkScale.SparkScaleCustom;
worksheet.Range["D1"].SparklineGroups[0].Axes.Vertical.MaxScaleType =

Documents for Excel, .NET Edition 95

Copyright © 2019 GrapeCity, Inc. All rights reserved.

SparkScale.SparkScaleCustom;
worksheet.Range["D1"].SparklineGroups[0].Axes.Vertical.CustomMinScaleValue = -2;
worksheet.Range["D1"].SparklineGroups[0].Axes.Vertical.CustomMaxScaleValue = 8;

Configure layout of sparkline

You can configure the layout of the sparkline by using the properties of the ISparklineGroup interface.

Refer to the following example code to configure the layout of the sparkline.

C#
// Defining data in the range
worksheet.Range["A1:C4"].Value = new object[,]
{
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};
// Adding sparkline
worksheet.Range["D1:D4"].SparklineGroups.Add(SparkType.Line, "A1:C4");
// Configuring the layout
var sparklinegroup = worksheet.Range["D1"].SparklineGroups[0];
sparklinegroup.LineWeight = 2.5;
sparklinegroup.Points.Markers.Color.Color = Color.Red;
sparklinegroup.Points.Markers.Visible = true;
sparklinegroup.SeriesColor.Color = Color.Purple;

Use Table
Tabular data is easy to read, interpret, visualize and manage.

GcExcel .NET supports the use of tables in worksheets by enabling users to perform different tasks on a table that
help them in handling large chunks of data quickly and efficiently.

In GcExcel .NET, you can use table in the following ways:

Create and Delete Tables
Modify Tables
Apply Table Sort
Set Table Filters
Add and Delete Table Columns and Rows
Apply Table Style

Create and Delete Tables
In GcExcel .NET, you can create and delete tables in spreadsheets using the Add method (on-line
documentation) of the ITables interface (on-line documentation) and the Delete Method (on-line
documentation) of the ITable Interface (on-line documentation), or simply transform a cell range into a
table by specifying the existing data lying in a worksheet.

Refer to the following example code to create and delete tables in a worksheet.

C#
//Create workbook and access its first worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
//Add first table
ITable table1 = worksheet.Tables.Add(worksheet.Range["A1:E5"], true);
//Add second table

Documents for Excel, .NET Edition 96

Copyright © 2019 GrapeCity, Inc. All rights reserved.

ITable table2 = worksheet.Tables.Add(worksheet.Range["F1:G5"], true);
//Delete second Table
worksheet.Tables[1].Delete();

Modify Tables
While working with tables in GcExcel .NET, you can configure it as per your spreadsheet requirements by
modifying the table using the properties and methods of the ITable interface (on-line documentation).

Modify table range
Modify table areas
Modify totals row of table column

Modify table range

GcExcel .NET allows you to modify the table range of your worksheet using the Resize method (on-line
documentation) of the ITable interface.

Refer to the following example code to modify table range.

C#
//Modify table range
table.Resize(worksheet.Range["B1:E4"]);

Modify table areas

You can modify the value of specific table areas by accessing its header range, data range and total range using
the HeaderRange property (on-line documentation), DataRange property (on-line
documentation) and TotalsRange property (on-line documentation) of the ITable interface.

Refer to the following example code to modify table areas in your worksheet.

C#
ITable table = worksheet.Tables.Add(worksheet.Range["A1:E5"], true);
table.ShowTotals = true;

//Populate table values
worksheet.Range["A2"].Value = 3;
worksheet.Range["A3"].Value = 4;
worksheet.Range["A4"].Value = 2;
worksheet.Range["A5"].Value = 1;
worksheet.Range["B2"].Value = 32;
worksheet.Range["B3"].Value = 41;
worksheet.Range["B4"].Value = 12;
worksheet.Range["B5"].Value = 16;
worksheet.Range["C2"].Value = 3;
worksheet.Range["C3"].Value = 4;
worksheet.Range["C4"].Value = 15;
worksheet.Range["C5"].Value = 18;

//Table second column name set to "Age".
worksheet.Tables[0].HeaderRange[0, 1].Value = "Age";

//"Age" Column's second row's value set to 23.
worksheet.Tables[0].DataRange[1, 1].Value = 23;

//"Age" column's total row function set to average.
worksheet.Tables[0].TotalsRange[0, 1].Formula = "=SUBTOTAL(101,[Age])";

Modify totals row of table column

Documents for Excel, .NET Edition 97

Copyright © 2019 GrapeCity, Inc. All rights reserved.

When you need to make changes to the total row's calculation function of a specific table column, you can use the
TotalsCalculation property (on-line documentation) of the ITableColumn interface (on-line
documentation).

Refer to the following example code to modify column total row's calculation function.

C#
worksheet.Tables.Add(worksheet.Range["A1:C5"], true);
worksheet.Tables[0].ShowTotals = true;

//Populate table values
worksheet.Range["A2"].Value = 3;
worksheet.Range["A3"].Value = 4;
worksheet.Range["A4"].Value = 2;
worksheet.Range["A5"].Value = 1;
worksheet.Range["B1"].Value = 13;
worksheet.Range["B2"].Value = 32;
worksheet.Range["B3"].Value = 41;
worksheet.Range["B4"].Value = 12;
worksheet.Range["B5"].Value = 16;
worksheet.Range["C1"].Value = 1;
worksheet.Range["C2"].Value = 3;
worksheet.Range["C3"].Value = 4;
worksheet.Range["C4"].Value = 15;
worksheet.Range["C5"].Value = 18;

//First table column's total row calculation fuction will be "=SUBTOTAL(101,[Column1])"
worksheet.Tables[0].Columns[1].TotalsCalculation = TotalsCalculation.Count;

Apply Table Sort
GcExcel .NET provides an option to apply sorting on a specific table in the worksheet. To accomplish this, you can
use the Sort property (on-line documentation) of the ITable interface (on-line documentation).
The Apply ('Apply Method' in the on-line documentation) method is used to apply the selected sort state and
display the results.

Refer to the following example code to apply table sorting in a worksheet.

C#
// Assigning Value to the range
 worksheet.Range["A2"].Value = 3;
 worksheet.Range["A3"].Value = 4;
 worksheet.Range["A4"].Value = 2;
 worksheet.Range["A5"].Value = 1;

 worksheet.Range["B2"].Value = 1;
 worksheet.Range["B3"].Value = 2;
 worksheet.Range["B4"].Value = 3;
 worksheet.Range["B5"].Value = 4;

 worksheet.Range["F2"].Value = "aaa";
 worksheet.Range["F3"].Value = "bbb";
 worksheet.Range["F4"].Value = "ccc";
 worksheet.Range["F5"].Value = "ddd";

 worksheet.Range["B2:B5"].FormatConditions.AddIconSetCondition();

//Sort by column A firstly, then by column B.
ValueSortField key1 = new ValueSortField(worksheet.Range["A1:A2"],
SortOrder.Ascending);

Documents for Excel, .NET Edition 98

Copyright © 2019 GrapeCity, Inc. All rights reserved.

IconSortField key2 = new IconSortField(worksheet.Range["B1:B2"],
workbook.IconSets[IconSetType.Icon3Arrows][1], SortOrder.Descending);

table.Sort.SortFields.Add(key1);
table.Sort.SortFields.Add(key2);
table.Sort.Apply();

Set Table Filters
When you have a lot of data to handle, you can create as many tables on a spreadsheet as you want and apply
separate filters on columns of each of the table to manage information in an effective manner.

GcExcel .NET provides users with the ability to set table filters while setting up worksheets for ensuring improved
data analysis.

When applying filters on tables in worksheets created, you need to first get the table range and then use
the AutoFilter method (on-line documentation) of the IRange interface (on-line documentation) to filter
the table.

Refer to the following example code to set table filters in a worksheet.

C#
//Add Table
ITable table = worksheet.Tables.Add(worksheet.Range["A1:E5"], true);

//Populate table values
worksheet.Range["A2"].Value = 3;
worksheet.Range["A3"].Value = 4;
worksheet.Range["A4"].Value = 2;
worksheet.Range["A5"].Value = 1;

//Apply table filter
worksheet.Tables[0].Range.AutoFilter(0, ">2");

Add and Delete Table Columns and Rows
You can add and delete columns and rows of a table using the methods and properties of the following interfaces:

ITableColumns Interface (on-line documentation) - Represents the table columns collection.
ITableRows Interface (on-line documentation) - Represents the table rows collection.
ITableColumn Interface (on-line documentation) - Represents an individual table column.
ITableRow Interface (on-line documentation) - Represents an individual table row.

Add and delete table columns

To add and delete table columns, you can use the Add method (on-line documentation) of the ITableColumns
interface and the Delete method (on-line documentation) of the ITableColumn interface respectively.

Refer to the following example code in order to add and delete table columns.

C#
//Create first table
ITable table1 = worksheet.Tables.Add(worksheet.Range["D3:I6"], true);

//Create second table
ITable table2 = worksheet.Tables.Add(worksheet.Range["A1:C6"], true);

//Insert a table column before first column in first table

Documents for Excel, .NET Edition 99

Copyright © 2019 GrapeCity, Inc. All rights reserved.

table1.Columns.Add(0);

//Insert a table column before first column in second table
table2.Columns.Add(0);

//Delete the first table column from the first table.
worksheet.Tables[0].Columns[0].Delete();

Add and delete table rows

To add and delete table rows, you can use the Add method (on-line documentation) of the ITableRows
interface and the Delete method (on-line documentation) of the ITableRow interface respectively.

Refer to the following example code in order to add and delete table rows.

C#
//insert a new row at the end of the first table.
table1.Rows.Add();

//insert a new row at the end of the second table.
table2.Rows.Add();

//Delete the second row in the second table.
table2.Rows[1].Delete();

Apply Table Style
In GcExcel .NET, you can create custom table style elements and apply them to your worksheet using
the ITableStyle Interface (on-line documentation). Also, you can format a table using any of the predefined
table styles provided by GcExcel .NET.

Typically, each workbook possesses an ITableStyle collection ('ITableStyleCollection Interface' in the on-
line documentation) that is used to store both built-in and custom table styles. If you want to insert a custom
table style, you use the Add method (on-line documentation) of the ITables interface (on-line
documentation), which returns the IStyle object representing the corresponding table style instance.

C#
//Use table style name get one build in table style.
ITableStyle tableStyle = workbook.TableStyles["TableStyleLight11"];
worksheet.Tables.Add(worksheet.Range[0, 0, 2, 2], true);

//set build in table style to table.
worksheet.Tables[0].TableStyle = tableStyle;

Modify Table with Custom Style
In order to manage the collection of table styles in your workbook, you can modify the existing table style with
your own custom table style that you have created. Each table style element represents the formatting for a
particular element of the table. When you define a custom style for your table, you need to first access the existing
table style element to customize table borders, set custom fill for your table, style row stripes or column stripes
etc.

As a default characteristic, you will find your workbook possessing a collection of table style for you to apply
formatting to tables. These default table styles are built-in table styles which represent no formatting is applied to
the tables. However, when you create a custom table style, it automatically gets added to the table style collection
of your workbook and can be reused as and when you require.

If you want to change the table style, you can use the TableStyle property. For accomplishing this task, you will

Documents for Excel, .NET Edition 100

Copyright © 2019 GrapeCity, Inc. All rights reserved.

first need to use the indexer notation of ITableStyleCollection to set the table style instance.

In case you want to delete the applied table style, you can use the Delete method.

C#
//Add one custom table style.
ITableStyle style = workbook.TableStyles.Add("test");

//Set WholeTable element style.
style.TableStyleElements[TableStyleElementType.WholeTable].Font.Italic = true;
style.TableStyleElements[TableStyleElementType.WholeTable].Font.ThemeColor =
ThemeColor.Accent6;
style.TableStyleElements[TableStyleElementType.WholeTable].Font.Strikethrough = true;
style.TableStyleElements[TableStyleElementType.WholeTable].Borders.LineStyle =
BorderLineStyle.Dotted;
style.TableStyleElements[TableStyleElementType.WholeTable].Borders.ThemeColor =
ThemeColor.Accent2;
style.TableStyleElements[TableStyleElementType.WholeTable].Interior.Color =
Color.FromArgb(24, 232, 192);

//Set FirstColumnStripe element style.
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Font.Bold = true;
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Font.Color =
Color.FromArgb(255, 0, 0);
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Borders.LineStyle =
BorderLineStyle.Thick;
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Borders.ThemeColor =
ThemeColor.Accent5;
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].Interior.Color =
Color.FromArgb(255, 255, 0);
style.TableStyleElements[TableStyleElementType.FirstColumnStripe].StripeSize = 2;

//Set SecondColumnStripe element style.
style.TableStyleElements[TableStyleElementType.SecondColumnStripe].Font.Color =
Color.FromArgb(255, 0, 255);
style.TableStyleElements[TableStyleElementType.SecondColumnStripe].Borders.LineStyle =
BorderLineStyle.DashDot;
style.TableStyleElements[TableStyleElementType.SecondColumnStripe].Borders.Color =
Color.FromArgb(42, 105, 162);
style.TableStyleElements[TableStyleElementType.SecondColumnStripe].Interior.Color =
Color.FromArgb(204, 204, 255);

ITable table = worksheet.Tables.Add(worksheet.Range["A1:C3"], true);

//Set custom table style to table.
table.TableStyle = style;

table.ShowTableStyleColumnStripes = true;

Modify Table Layout
In GcExcel .NET, Table Layout mode allows users to divide an area of a group into several rows and columns and
then place controls into the created cells by specifying the indexes and span values for rows and columns.
This functionality is similar to the one which is used while creating a table in HTML.

C#
ITable table = worksheet.Tables.Add(worksheet.Range["A1:B2"]);

//Show table header row.

Documents for Excel, .NET Edition 101

Copyright © 2019 GrapeCity, Inc. All rights reserved.

table.ShowHeaders = true;

//To make "first row stripe" and "second row stripe" table style element's style
effective.
table.ShowTableStyleRowStripes = false;

//Hide auto filter drop down button.
table.ShowAutoFilterDropDown = false;

//To make "first column" table style element's style effective.
table.ShowTableStyleFirstColumn = true;

//Show table total row.
table.ShowTotals = true;

//To make "last column" table style element's style effective.
table.ShowTableStyleLastColumn = true;

//To make "first column stripe" and "second column stripe" table style element's style
effective.
table.ShowTableStyleColumnStripes = true;

//Unfilter table column filters, and hide auto filter drop down button.
table.ShowAutoFilter = false;

Use Pivot Table
GcExcel .NET provides users with the ability to display aggregated data in a spreadsheet using pivot tables - a data
summarization tool that can perform complex analysis of information stored in cells for exploring, analyzing and
manipulating bulk data in a worksheet.

Pivot tables not only help in categorizing data but they also help in computing the totals and average of the values
in the cells as per the summary functions defined in the built-in functions list.

For incorporating and using pivot tables in worksheets, you can perform the following tasks:

Create Pivot Table
Pivot Table Settings

Create Pivot Table
GcExcel .NET allows you to create pivot tables in a spreadsheet. But, before generating a pivot table, you first
need to create the pivot cache using the PivotCaches collection to stores all the pivot caches in the workbook.

After you accomplish this, you need to call the Create method (on-line documentation) of the IPivotCaches
interface (on-line documentation) to create a new pivot cache. After creating pivot cache, the next step is to
create the new pivot table using CreatePivotTable ('CreatePivotTable Method' in the on-line
documentation) method of the IPivotCache interface (on-line documentation).

Refer to the following example code to create pivot table in a worksheet.

C#
 //Source data for PivotCache
 object[,] sourceData = new object[,] {
 { "Order ID", "Product", "Category", "Amount", "Date",
"Country" },
 { 1, "Carrots", "Vegetables", 4270, new DateTime(2012, 1, 6),
"United States" },
 { 2, "Broccoli", "Vegetables", 8239, new DateTime(2012, 1, 7),

Documents for Excel, .NET Edition 102

Copyright © 2019 GrapeCity, Inc. All rights reserved.

"United Kingdom" },
 { 3, "Banana", "Fruit", 617, new DateTime(2012, 1, 8),
"United States" },
 { 4, "Banana", "Fruit", 8384, new DateTime(2012, 1, 10),
"Canada" },
 { 5, "Beans", "Vegetables", 2626, new DateTime(2012, 1, 10),
"Germany" },
 { 6, "Orange", "Fruit", 3610, new DateTime(2012, 1, 11),
"United States" },
 { 7, "Broccoli", "Vegetables", 9062, new DateTime(2012, 1, 11),
"Australia" },
 { 8, "Banana", "Fruit", 6906, new DateTime(2012, 1, 16), "New
Zealand" },
 { 9, "Apple", "Fruit", 2417, new DateTime(2012, 1, 16),
"France" },
 { 10, "Apple", "Fruit", 7431, new DateTime(2012, 1, 16),
"Canada" },
 { 11, "Banana", "Fruit", 8250, new DateTime(2012, 1, 16),
"Germany" },
 { 12, "Broccoli", "Vegetables", 7012, new DateTime(2012, 1, 18),
"United States" },
 { 13, "Carrots", "Vegetables", 1903, new DateTime(2012, 1, 20),
"Germany" },
 { 14, "Broccoli", "Vegetables", 2824, new DateTime(2012, 1, 22),
"Canada" },
 { 15, "Apple", "Fruit", 6946, new DateTime(2012, 1, 24),
"France" },
};

 //Initialize the WorkBook and fetch the default WorkSheet
 Workbook workbook = new Workbook();
 IWorksheet worksheet = workbook.Worksheets[0];
 // Assigning data to the range
 worksheet.Range["A1:F16"].Value = sourceData;
 // Creating pivot
 var pivotcache = workbook.PivotCaches.Create(worksheet.Range["A1:F16"]);
 var pivottable = worksheet.PivotTables.Add(pivotcache,
worksheet.Range["L7"], "pivottable1");

Pivot Table Settings
You can modify the setting of the pivot table created in a spreadsheet by performing the following tasks:

Configure pivot table fields
Add field function
Filter pivot table
Managing pivot field level
Refresh pivot table

Configure pivot table fields

You can configure the fields of your pivot table using the properties and methods of the IPivotCaches interface
(on-line documentation) and IPivotTables interface (on-line documentation).

Refer to the following example code to configure the pivot table fields in a worksheet.

C#

Documents for Excel, .NET Edition 103

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Configuring pivot table fields
var field_Category = pivottable.PivotFields["Category"];
field_Category.Orientation = PivotFieldOrientation.RowField;

var field_Product = pivottable.PivotFields["Product"];
field_Product.Orientation = PivotFieldOrientation.ColumnField;

var field_Amount = pivottable.PivotFields["Amount"];
field_Amount.Orientation = PivotFieldOrientation.DataField;

var field_Country = pivottable.PivotFields["Country"];
field_Country.Orientation = PivotFieldOrientation.PageField;

Add field function

Refer to the following example code to add field function in a pivot table.

C#
//Set field amount function
field_Amount.Function = ConsolidationFunction.Average;

Filter pivot table

Refer to the following example code to filter a pivot table.

C#
var field_product = pivottable.PivotFields[1];
field_product.Orientation = PivotFieldOrientation.RowField;

var field_Amount = pivottable.PivotFields[3];
field_Amount.Orientation = PivotFieldOrientation.DataField;

var field_Country = pivottable.PivotFields[5];
field_Country.Orientation = PivotFieldOrientation.PageField;

//row field filter.
field_product.PivotItems["Apple"].Visible = false;
field_product.PivotItems["Beans"].Visible = false;
field_product.PivotItems["Orange"].Visible = false;

//page filter.
field_Country.PivotItems["United States"].Visible = false;
field_Country.PivotItems["Canada"].Visible = false;

Managing pivot field level

Refer to the following example code to manage the field level of a pivot table.

C#
//product in level 1.
var field_product = pivottable.PivotFields["Product"];
field_product.Orientation = PivotFieldOrientation.RowField;

//category in level 2.
var field_category = pivottable.PivotFields["Category"];
field_category.Orientation = PivotFieldOrientation.RowField;

var field_Amount = pivottable.PivotFields[3];
field_Amount.Orientation = PivotFieldOrientation.DataField;

Documents for Excel, .NET Edition 104

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//category will in level 1 and product in level 2.
field_product.Position = 1;
field_category.Position = 0;

Refresh pivot table

Refer to the following example code to refresh a pivot table.

C#
var field_product = pivottable.PivotFields["Product"];
field_product.Orientation = PivotFieldOrientation.RowField;

var field_Amount = pivottable.PivotFields[3];
field_Amount.Orientation = PivotFieldOrientation.DataField;

//change pivot cache's source data.
worksheet.Range["D8"].Value = 3000;

//sync cache's data to pivot table.
worksheet.PivotTables[0].Refresh();

Use Slicer
GcExcel .NET allows users to add slicer in spreadsheets in order to enable them to perform quick filtration of the
data in tables and pivot tables.

Using slicer in a worksheet involves the following tasks:

Add Slicer in Table
Add Slicer in Pivot Table
Use Do Filter Operation
Apply Slicer Style

Add Slicer in Table
In GcExcel .NET, you can use slicer in a table by accessing the properties and methods of the ISlicer interface
(on-line documentation), ISlicerCache interface (on-line documentation), and ISlicerCaches interface
(on-line documentation).

To add slicer in your table, you need to first invoke the Add method (on-line documentation) of
the ISlicerCaches interface to create a new slicer cache for your table.

Refer to the following example code to add slicer in table.

C#
// Defining source data
object[,] sourceData = new object[,] {
 { "Order ID", "Product", "Category", "Amount", "Date",
"Country" },
 { 1, "Carrots", "Vegetables", 4270, new DateTime(2012, 1, 6),
"United States" },
 { 2, "Broccoli", "Vegetables", 8239, new DateTime(2012, 1, 7),
"United Kingdom" },
 { 3, "Banana", "Fruit", 617, new DateTime(2012, 1, 8),
"United States" },
 { 4, "Banana", "Fruit", 8384, new DateTime(2012, 1, 10),
"Canada" },
 { 5, "Beans", "Vegetables", 2626, new DateTime(2012, 1, 10),
"Germany" },

Documents for Excel, .NET Edition 105

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 { 6, "Orange", "Fruit", 3610, new DateTime(2012, 1, 11),
"United States" },
 { 7, "Broccoli", "Vegetables", 9062, new DateTime(2012, 1, 11),
"Australia" },
 { 8, "Banana", "Fruit", 6906, new DateTime(2012, 1, 16), "New
Zealand" },
 { 9, "Apple", "Fruit", 2417, new DateTime(2012, 1, 16),
"France" },
 { 10, "Apple", "Fruit", 7431, new DateTime(2012, 1, 16),
"Canada" },
 { 11, "Banana", "Fruit", 8250, new DateTime(2012, 1, 16),
"Germany" },
 { 12, "Broccoli", "Vegetables", 7012, new DateTime(2012, 1, 18),
"United States" },
 { 13, "Carrots", "Vegetables", 1903, new DateTime(2012, 1, 20),
"Germany" },
 { 14, "Broccoli", "Vegetables", 2824, new DateTime(2012, 1, 22),
"Canada" },
 { 15, "Apple", "Fruit", 6946, new DateTime(2012, 1, 24),
"France" },
};
// Initialize the workbook and fetch the default worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
// Adding data to the table
worksheet.Range["A1:F16"].Value = sourceData;
ITable table = worksheet.Tables.Add(worksheet.Range["A1:F16"], true);
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");
// Add slicer for table
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);
ISlicer slicer2 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate2", "Category",
100, 100, 100, 200);

Add Slicer in Pivot Table
In GcExcel .NET, you can use slicer to organize data in pivot table and multi pivot table by accessing the properties
and methods of the IPivotCache Interface (on-line documentation),IPivotCaches Interface (on-line
documentation),IPivotField Interface (on-line documentation),IPivotFields Interface (on-line
documentation),IPivotTable Interface (on-line documentation),IPivotTables Interface (on-line
documentation)IPivotItem Interface (on-line documentation).

To add slicer in a pivot table, you need to first invoke the Add method (on-line documentation) of
the ISlicerCaches interface to create a new slicer cache for your pivot table.

Refer to the following example code to add slicer in a pivot table.

C#
// Defining source data
object[,] sourceData = new object[,] {
 { "Order ID", "Product", "Category", "Amount", "Date",
"Country" },
 { 1, "Carrots", "Vegetables", 4270, new DateTime(2012, 1, 6),
"United States" },
 { 2, "Broccoli", "Vegetables", 8239, new DateTime(2012, 1, 7),
"United Kingdom" },
 { 3, "Banana", "Fruit", 617, new DateTime(2012, 1, 8),
"United States" },
 { 4, "Banana", "Fruit", 8384, new DateTime(2012, 1, 10),
"Canada" },
 { 5, "Beans", "Vegetables", 2626, new DateTime(2012, 1, 10),

Documents for Excel, .NET Edition 106

Copyright © 2019 GrapeCity, Inc. All rights reserved.

"Germany" },
 { 6, "Orange", "Fruit", 3610, new DateTime(2012, 1, 11),
"United States" },
 { 7, "Broccoli", "Vegetables", 9062, new DateTime(2012, 1, 11),
"Australia" },
 { 8, "Banana", "Fruit", 6906, new DateTime(2012, 1, 16), "New
Zealand" },
 { 9, "Apple", "Fruit", 2417, new DateTime(2012, 1, 16),
"France" },
 { 10, "Apple", "Fruit", 7431, new DateTime(2012, 1, 16),
"Canada" },
 { 11, "Banana", "Fruit", 8250, new DateTime(2012, 1, 16),
"Germany" },
 { 12, "Broccoli", "Vegetables", 7012, new DateTime(2012, 1, 18),
"United States" },
 { 13, "Carrots", "Vegetables", 1903, new DateTime(2012, 1, 20),
"Germany" },
 { 14, "Broccoli", "Vegetables", 2824, new DateTime(2012, 1, 22),
"Canada" },
 { 15, "Apple", "Fruit", 6946, new DateTime(2012, 1, 24),
"France" },
};
// Initialize the workbook and fetch the default worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];
// Adding data to the pivot table
worksheet.Range["A1:F16"].Value = sourceData;

IPivotCache pivotcache = workbook.PivotCaches.Create(worksheet.Range["A1:F16"]);
IPivotTable pivottable1 = worksheet.PivotTables.Add(pivotcache, worksheet.Range["K5"],
"pivottable1");
IPivotTable pivottable2 = worksheet.PivotTables.Add(pivotcache, worksheet.Range["O15"],
"pivottable2");

IPivotField field_product1 = pivottable1.PivotFields[1];
field_product1.Orientation = PivotFieldOrientation.RowField;

IPivotField field_Amount1 = pivottable1.PivotFields[3];
field_Amount1.Orientation = PivotFieldOrientation.DataField;

IPivotField field_product2 = pivottable2.PivotFields[5];
field_product2.Orientation = PivotFieldOrientation.RowField;

IPivotField field_Amount2 = pivottable2.PivotFields[2];
field_Amount2.Orientation = PivotFieldOrientation.DataField;
field_Amount2.Function = ConsolidationFunction.Count;

//Slicer just control pivot table1.
ISlicerCache cache = workbook.SlicerCaches.Add(pivottable1, "Product");
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "p1", "Product", 20,
20, 100, 200);

Refer to the following example code to add slicer in a multi pivot table.

C#
ISlicerCache cache = workbook.SlicerCaches.Add(pivottable1, "Product");
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "p1", "Product", 20,
20, 100, 200);
cache.PivotTables.AddPivotTable(pivottable2);

Documents for Excel, .NET Edition 107

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Use Do Filter Operation
You can set slicer filters to analyse bulk information in a spreadsheet quickly and efficiently.

Use slicer do-filter operation

Refer to the following example code to use slicer to perform do-filter operation.

C#
// Adding data to the table
worksheet.Range["A1:F16"].Value = sourceData;
ITable table = worksheet.Tables.Add(worksheet.Range["A1:F16"], true);
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");
// Add slicer for table
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);
ISlicer slicer2 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate2", "Category",
100, 100, 100, 200);

//do filter operation.
slicer1.SlicerCache.SlicerItems["Vegetables"].Selected = false;

Clear slicer filter

Refer to the following example code to clear slicer filter.

C#
// Adding data to the table
worksheet.Range["A1:F16"].Value = sourceData;
ITable table = worksheet.Tables.Add(worksheet.Range["A1:F16"], true);
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");
// Add slicer for table
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);
ISlicer slicer2 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate2", "Category",
100, 100, 100, 200);

//do filter operation.
slicer1.SlicerCache.SlicerItems["Vegetables"].Selected = false;

//clear filter.
slicer1.SlicerCache.ClearAllFilters();

Apply Slicer Style
When you create a slicer, it is mandatory to create a slicer cache first and then use the slicer cache created
base on the column of the table or the pivot table.

The SlicerCaches collection in GcExcel .NET holds all the slicer caches in the workbook.

Set slicer to built-in style

You can set your slicer to built-in style by using the Style property (on-line documentation) of the ISlicer
interface (on-line documentation).

Refer to the following example code to set slicer to built-in style.

C#
//create slicer cache for table.
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");

Documents for Excel, .NET Edition 108

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//add slicer
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);

//set slicer style to build in style.
slicer1.Style = workbook.TableStyles["SlicerStyleLight1"];

Modify Slicer with Custom Style
In GcExcel .NET, you can define your own custom style and add it in the slicer cache to modify your slicer as per
your preferences.

Refer to the following example code to see how you can modify your slicer with custom style.

C#
//create slicer cache for table.
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");

//add slicer
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);

ITableStyle slicerStyle = workbook.TableStyles.Add("test");
slicerStyle.ShowAsAvailableSlicerStyle = true;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Font.Name = "Arial";
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Font.Bold = false;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Font.Italic = false;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Font.Color =
Color.White;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Borders.Color =
Color.Red;
slicerStyle.TableStyleElements[TableStyleElementType.WholeTable].Interior.Color =
Color.Green;

slicer1.Style = slicerStyle;

Modify Table Layout for Slicer Style
You can modify the table layout for the slicer style applied in your spreadsheet by modifying some settings
including the RowHeight property (on-line documentation) and DisplayHeader property (on-line
documentation) of the ISlicer interface (on-line documentation).

Refer to the following example code to modify table layout for slicer style.

C#
//create slicer cache for table.
ISlicerCache cache = workbook.SlicerCaches.Add(table, "Category", "categoryCache");

//add slicer
ISlicer slicer1 = cache.Slicers.Add(workbook.Worksheets["Sheet1"], "cate1", "Category",
200, 200, 100, 200);

slicer1.NumberOfColumns = 2;
//slicer1.ColumnWidth = 10;
slicer1.RowHeight = 50;

Documents for Excel, .NET Edition 109

Copyright © 2019 GrapeCity, Inc. All rights reserved.

slicer1.DisplayHeader = false;

Documents for Excel, .NET Edition 110

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Manage File Operations
GcExcel .NET allows users to export (save) data from a spreadsheet into several different file types (.xlsx, .csv,
.pdf and .json files) and import data (open) files from several different file types (.xlsx, .csv and .json files) into
GcExcel .NET. Using code, you can save the whole component, a particular sheet, or data from a particular range
of cells to several different file types or streams.

Refer to the following procedures to handle file operations for a range of file types in GcExcel.NET:

Import and Export .xlsx Document
Import and Export CSV File
Import and Export JSON Stream
Import and Export Macros
Export to a PDF File

Import and Export .xlsx Document
This section summarizes how GcExcel .NET handles the spreadsheet documents(.xlsx files).

When you create a workbook using GcExcel .NET and save it, you automatically export it to an external location or
folder. When bringing an Excel file into GcExcel .NET (importing a file or opening a file) and when saving GcExcel
.NET files to an Excel format (exporting), most of the data can be imported or exported successfully. The intention
of the import and export capability is to handle as much of the data and formatting of a spreadsheet as possible.

Also, while importing a workbook, GcExcel .NET provides you with several import options including Import Flags
and DoNotRecalculateAfterOpened. The Import Flags option allows users to import the workbook with the specified
open options (three options are available: NoFlag, Data and Formulas). The DoNotRecalculateAfterOpened option
allows users to set a boolean value (True or False) in order to specify whether or not they want to get the formulas
recalculated when the file is being opened.

Refer to the following example code to import and export .xlsx document.

C#
//Create workbook and access its first worksheet
Workbook workbook = new Workbook();
IWorksheet worksheet = workbook.Worksheets[0];

// Assigning value to range
worksheet.Range["A3"].Value = 5;
worksheet.Range["A2"].Value = 5;
worksheet.Range["A1"].Value = 5;
worksheet.Range["B1"].Value = 5;

// Exporting .xlsx document
workbook.Save(@"savingfile.xlsx", SaveFileFormat.Xlsx);

// Exporting .xlsx document while setting password

XlsxSaveOptions options = new XlsxSaveOptions();
options.Password = "Pwd";
workbook.Save(@"savingfile.xlsx", options);

// Importing .xlsx document
 workbook.Open(@"Source.xlsx", OpenFileFormat.Xlsx);

// Importing .xlsx document with Open options

//Import only data from .xlsx document.
XlsxOpenOptions options = new XlsxOpenOptions();
options.ImportFlags = ImportFlags.Data;
workbook.Open(@"Source.xlsx", options);

Documents for Excel, .NET Edition 111

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//Don't recalculate after opened.
XlsxOpenOptions options1 = new XlsxOpenOptions();
options1.DoNotRecalculateAfterOpened = true;
workbook.Open(@"Source.xlsx", options1);

Import and Export CSV File
This section summarizes how GcExcel.NET handles the spreadsheet documents(.csv files).

While importing and exporting a workbook in order to open and save a csv file or stream, you can use
the following properties and methods of the CsvOpenOptions ('CsvOpenOptions Class' in the on-line
documentation) class and the CsvSaveOptions ('CsvSaveOptions Class' in the on-line documentation)
class in order to configure several open and save options in a workbook.

Settings Description

CsvOpenOptions.ConvertNumericData
('ConvertNumericData Property' in the on-line
documentation)

This property can be used to get or set a value that
indicates whether the string in text file is converted to
numeric data.

CsvOpenOptions.ConvertDateTimeData
('ConvertDateTimeData Property' in the on-line
documentation)

This property can be used to get or set a value that
indicates whether the string in text file is converted to
date data.

CsvOpenOptions.SeparatorString
('SeparatorString Property' in the on-line
documentation)

This property can be used to get or set the string
value as a separator.

CsvOpenOptions.Encoding ('Encoding Property' in
the on-line documentation)

This property can be used to get or set the default
encoding which is UTF-8.

CsvOpenOptions.ParseStyle ('ParseStyle Property'
in the on-line documentation)

This property can be used to specify whether the style
for parsed values should be applied while converting
the string values to number or date time.

CsvOpenOptions.HasFormula ('HasFormula
Property' in the on-line documentation)

This property can be used to specify whether the text
is formula if it starts with "=".

CsvSaveOptions.SeparatorString
('SeparatorString Property' in the on-line
documentation)

This property can be used to get or set the string
value as the separator. By default, this value is a
comma separator.

CsvSaveOptions.Encoding ('Encoding Property' in
the on-line documentation)

This property can be used to specify the default
encoding which is UTF-8.

CsvSaveOptions.ValueQuoteType
('ValueQuoteType Property' in the on-line
documentation)

This property can be used to get or set how to quote
values in the exported text file.

CsvSaveOptions.TrimLeadingBlankRowAndColumn
('TrimLeadingBlankRowAndColumn Property' in
the on-line documentation)

This property can be used to specify whether the
leading blank rows and columns should be trimmed
like in Excel.

Refer to the following example code in order to import a .csv file.

C#
IWorkbook workbook = new Workbook();

//Method1 - Opening a csv file
workbook.Open(@"test.csv", OpenFileFormat.Csv);

Documents for Excel, .NET Edition 112

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//Method2 - Opening a csv file using several open options
CsvOpenOptions options = new CsvOpenOptions();
options.ConvertNumericData = false;
options.ParseStyle = false;
workbook.Open(@"test.csv", options);

Refer to the following example code in order to export a .csv file from a workbook or a particular worksheet in the
workbook.

C#
 // Save a csv file from workbook

 IWorkbook workbook1 = new Workbook();

 // Saving to a csv file
 workbook1.Save(@"test.csv", SaveFileFormat.Csv);

 // Saving to a csv file with advanced settings
 CsvSaveOptions options1 = new CsvSaveOptions();
 options1.SeparatorString = "-";
 options1.ValueQuoteType = ValueQuoteType.Always;
 workbook1.Save(@"test.csv", options1);

// Save a csv file from worksheet

 IWorkbook workbook2 = new Workbook();
 IWorksheet worksheet = workbook2.Worksheets[0];

 // Saving to a csv file
 worksheet.Save(@"test.csv", SaveFileFormat.Csv);

 // Saving to a csv file with advanced settings
 CsvSaveOptions options2 = new CsvSaveOptions();
 options2.SeparatorString = "-";
 options2.ValueQuoteType = ValueQuoteType.Always;
 worksheet.Save(@"test.csv", options2);

Import and Export JSON Stream
The sole purpose of facilitating users in importing and exporting to and from json stream is to enable them to
exchange and organize object data as and when required. This reference summarizes how GcExcel .NET handles
the import and export of json stream using .Net core.

This topic includes the following tasks.

Import and Export JSON Stream
SpreadJS SSJSON Support
Import and Export SpreadJS JSON Files with Shapes

Import and Export JSON Stream

You can export a workbook to a json string/stream using the ToJson method (on-line documentation) of
the IWorkbook interface (on-line documentation). You can also import a json string or stream to your
workbook using the FromJson method (on-line documentation) of the IWorkbook interface.

Refer to the following example code to import and export json stream.

C#
//ToJson&FromJson can be used in combination with spread.sheets product

Documents for Excel, .NET Edition 113

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//GcExcel import an excel file.
//change the path to real source file path.
string source = "savingfile.xlsx";
workbook.Open(source);

//GcExcel export to a json string.
var jsonstr = workbook.ToJson();
//use the json string to initialize spread.sheets product.
//spread.sheets will show the excel file contents.

//spread.sheets product export a json string.
//GcExcel use the json string to initialize.
workbook.FromJson(jsonstr);
//GcExcel export workbook to an excel file.
//change the path to real export file path.

string export = "export.xlsx";
workbook.Save(export);

SpreadJS SSJSON Support

GcExcel .NET provides support for SpreadJS SSJSON. You can import a SSJSON file created with Spread.Sheets
Designer and save it back after modifying it as per your preferences.

C#
//Create a new workbook
Workbook workbook = new Workbook();

//Load SSJSON file
var stream = new System.IO.FileStream("Chart_Spread.ssjson", System.IO.FileMode.Open);
workbook.FromJson(stream);

//Save file
workbook.Save("workbook_ssjson.xlsx");

Import and Export SpreadJS JSON Files with Shapes

GcExcel .NET allows users to load and save Grapecity SpreadJS JSON files with shapes. Besides importing the
existing Spread JS JSON files with shapes, users can also modify the exported Spread JS JSON files containing
shapes and save them back to the original Spread JS JSON files as and when required.

C#
// Create a new workbook
Workbook workbook = new Workbook();

// Initialize another workbook - workbookWithShape
Workbook workbookWithShape = new Workbook();

// Fetch default worksheet of workbookWithShape
IWorksheet worksheet = workbookWithShape.Worksheets[0];

// Add a shape in the worksheet
IShape shape = worksheet.Shapes.AddShape(AutoShapeType.Parallelogram, 1, 1, 200, 100);
shape.Line.DashStyle = LineDashStyle.Dash;
shape.Line.Style = LineStyle.Single;
shape.Line.Weight = 2;
IColorFormat color = shape.Fill.Color;
shape.Line.Transparency = 0.3;
color.ObjectThemeColor = ThemeColor.Accent6;

// Converting workbook containing shape to JsonString

Documents for Excel, .NET Edition 114

Copyright © 2019 GrapeCity, Inc. All rights reserved.

String jsonString = workbookWithShape.ToJson();

// GcExcel can load json string containing shapes
workbook.FromJson(jsonString);

// Saving the workbook
workbook.Save(@"7-LoadSaveShapesSSJSON.xlsx");

Import and Export Macros
This section summarizes how GcExcel.NET handles the import and export of Excel files containing macros. Using
GcExcel.NET, users can load and save Excel files containing macros (.xlsm files) without any hassles. Please note
that GcExcel will not execute these macros.

Typically, this feature has been introduced in order to allow users to load and save macro-enabled spreadsheets.
Macros help automate repetitive tasks and hence, reduce significant amount of time while working with
spreadsheets. Now, users can load such spreadsheets in GcExcel directly as Xlsm files, modify them easily and
quickly and then save them back.

During the execution of import and export operations on the Excel files, all the macros will also be preserved
concurrently along with the data. While opening and saving the Excel workbooks or Excel macro-enabled
workbooks, macros will always be imported and exported respectively. The form controls and ActiveX controls are
also supported during the import and export operations.

When the OpenFileFormat ('OpenFileFormat Enumeration' in the on-line documentation) is Xlsm, macros
will be imported. When the SaveFileFormat ('SaveFileFormat Enumeration' in the on-line documentation)
is Xlsm, macros will be exported.

Note: While preserving the macros on import or export of Excel files, GcExcel will not execute these macros.

Refer to the following example code in order to import and export macros in spreadsheet documents.

C#
// Open a .xlsm file with file name
var workbook = new Workbook();
workbook.Open("testfile.xlsm");

// Save workbook as Excel macro-enabled workbook file
var workbook = new Workbook();
workbook.Save("file.xlsm");

// Save workbook as Excel macro enabled workbook into stream
var workbook = new Workbook();
var request = WebRequest.CreateHttp("https://path/to/excel/file/upload");
request.Method = "POST";
request.ContentType = "application/x-www-form-urlencoded";
var workbookContent = new MemoryStream();
workbook.Save(workbookContent, SaveFileFormat.Xlsm);
workbookContent.Seek(0, SeekOrigin.Begin);
request.ContentLength = workbookContent.Length;
using (var reqStream = request.GetRequestStream())
{
 workbookContent.CopyTo(reqStream);
}

Export to a PDF File
GcExcel .NET allows users to save all visible spreadsheets in a workbook to a Portable Document File (PDF) by
using the Save() ('Save Method' in the on-line documentation) method of the IWorkbook ('IWorkbook
Interface' in the on-line documentation) interface. Each worksheet in a workbook is saved to a new page in

Documents for Excel, .NET Edition 115

Copyright © 2019 GrapeCity, Inc. All rights reserved.

the PDF file.

However, if users want to export only the current sheet (active sheet) to PDF format, they can use the Save()
('Save Method' in the on-line documentation)method of the IWorksheet ('IWorksheet Interface' in the
on-line documentation) interface.

Refer to the following example code to export a spreadsheet to a PDF file.

C#
//create workbook and add two sheets.
Workbook workbook = new Workbook();
IWorksheet sheet1 = workbook.Worksheets[0];
IWorksheet sheet2 = workbook.Worksheets.Add();

//export workbook to pdf file, the exported file has two pages.
workbook.Save(@"D:\workbook.pdf", SaveFileFormat.Pdf);

//just export a particular sheet to pdf file
sheet1.Save(@"D:\sheet1.pdf", SaveFileFormat.Pdf);

While executing the export operation, you can configure fonts, set style and specify the page setup options in
order to customize the PDF as per your preferences. Refer to the following topics for more details:

Set Pagination
Configure Fonts and Set Style
Export Vertical Text

Note: The Export to PDF feature doesn't support shapes, charts, slicers and comments while saving a
spreadsheet into PDF format. Besides this, picture settings such as LineFormat, FillFormat, Brightness,
Contrast, Watermark Color Type and black and white pictures in emf format are not supported in this version
of GcExcel .NET.

Set Pagination
GcExcel .NET allows users to paginate each worksheet using the properties of the IPageSetup ('IPageSetup
Interface' in the on-line documentation)interface.

You can customize the page size, print area, print title rows, print title columns; specify horizontal page breaks,
vertical page breaks, the maximum number of pages for horizontal and vertical pagination etc. along with zoom
and scale factors('IWorksheet Interface' in the on-line documentation)as per your preferences while
exporting a spreadsheet to a PDF file.

In order to set pagination in a workheet, users can explore the following properties of the IPageSetup
('IPageSetup Interface' in the on-line documentation) interface and the IWorksheet ('IWorksheet
Interface' in the on-line documentation) interface:

Settings Description

IPageSetup.PaperSize
('PaperSize Property' in the
on-line documentation)

This property can be used to determine the size of each page. For more
information on implementation of this property, refer to Configure Paper
Settings.

IPageSetup.Orientation
('Orientation Property' in the
on-line documentation)

This property can be used to specify whether the worksheet should be
printed in landscape orientation or portrait orientation. For more information
on implementation of this property, refer to Configure Page Settings.

IPageSetup.PrintTitleRows
('PrintTitleRows Property' in
the on-line documentation)

This property can be used to specify the rows that you want to print at the
top of each page. For more information on implementation of this property,
refer to Configure Rows to Repeat at Top.

IPageSetup.PrintTitleColumns
('PrintTitleColumns Property'
in the on-line documentation)

This property can be used to specify the columns that you want to print at
the left of each page. For more information on implementation of this
property, refer to Configure Columns to Repeat at Left.

Documents for Excel, .NET Edition 116

Copyright © 2019 GrapeCity, Inc. All rights reserved.

IPageSetup.PrintArea
('PrintArea Property' in the
on-line documentation)

This property can be used to specify the print area in a worksheet. If the
print area is not specified by the user, the used range of the sheet is printed
by default. For more information on implementation of this property, refer
to Configure Print Area.

IPageSetup.Zoom ('Zoom
Property' in the on-line
documentation)

This property can be used to use the result of zoom in order to paginate a
worksheet. For more information on implementation of this property, refer
to Configure Paper Settings.

IPageSetup.FitToPagesWide
('FitToPagesWide Property' in
the on-line documentation)

This property can be used to specify the maximum number of pages for
horizontal pagination. After this property is set, the worksheet can be scaled
to fit all columns to the pages. For more information on implementation of
this property, refer to Configure Paper Settings.

IPageSetup.FitToPagesTall
('FitToPagesTall Property' in
the on-line documentation)

This property can be used to specify the maximum number of pages for
vertical pagination. After this property is set, the worksheet can be scaled to
fit all rows to the pages. For more information on implementation of this
property, refer to Configure Paper Settings.

IPageSetup.IsPercentScale
('IsPercentScale Property' in
the on-line documentation)

This property specifies a boolean value to control how the worksheet is
scaled while exporting to PDF. If the value is set to True, you can use the
Zoom property of the IPageSetup interface and if the value is set to false,
you can use the FitToPagesWide and FitToPagesTall property of the
IPageSetup interface. For more information on implementation of this
property, refer to Configure Paper Settings.

IWorksheet.HPageBreaks
('HPageBreaks Property' in
the on-line documentation)

This property can be used to specify the horizontal page breaks that will split
rows to multiple pages. However, this property doesn't work when the
property IsPercentScale is set to false. For more information on
implementation of this property, refer to Configure Page Breaks.

IWorksheet.VPageBreaks
('VPageBreaks Property' in
the on-line documentation)

This property can be used to specify the vertical page breaks that will split
columns to multiple pages. However, this property doesn't work when the
property IsPercentScale is set to false. For more information on
implementation of this property, refer to Configure Page Breaks.

For more information on setting pagination, refer to Configure Print Settings via Page Setup.

Note: The Export to PDF feature doesn't support inserting double underline, superscripts and subscripts etc.
while working with page set up settings in a spreadsheet.

Configure Fonts and Set Style
GcExcel .NET allows users to configure fonts and set style while saving their worksheets into the PDF format.

Before performing the export operation, users need to ensure that they set the FontsFolderPath
('FontsFolderPath Property' in the on-line documentation) property of the Workbook ('Workbook Class'
in the on-line documentation) class in order to specify the font that should be used while saving the PDF.

If the folder path to the font is not specified and the user is working on Windows OS, the path "C:\Windows\Fonts"
will be used by default. However, if the folder path to the font is not specified and the user is working on any other
operating system, it is mandatory that the user set the font folder path and copy the used font files to the folder
"C:\Windows\Fonts".

You can use the GetUsedFonts() ('GetUsedFonts Method' in the on-line documentation) method of
the IWorkbook ('IWorkbook Interface' in the on-line documentation) interface in order to get the collection
of all the fonts that are used in the workbook.

While saving PDF, GcExcel .NET uses the fonts specified in the Workbook.FontsFolderPath in order to render the
PDF. However, if the used font doesn't exist, it will make use of some fallback fonts. In case, fallback fonts don't
exist in the file, GcExcel .NET will throw the exception :"There is no available fonts. Please set a valid path to the
FontsFolderPath property of the Workbook!"

Refer to the following example code to see how you can confirgure fonts and set style while saving to a PDF.

C#
//create workbook and add two sheets.

Documents for Excel, .NET Edition 117

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Workbook workbook = new Workbook();
IWorksheet sheet1 = workbook.Worksheets[0];
IWorksheet sheet2 = workbook.Worksheets.Add();

//set style.
sheet1.Range["A1"].Value = "Sheet1";
sheet1.Range["A1"].Font.Name = "Wide Latin";
sheet1.Range["A1"].Font.Color = Color.Red;
sheet1.Range["A1"].Interior.Color = Color.Green;

//create a table in sheet1.
sheet1.Tables.Add(sheet1.Range["C1:E5"], true);

sheet2.Range["A1"].Value = "Sheet2";

//specify font path.
Workbook.FontsFolderPath = @"D:\Fonts";

//get the used fonts list in workbook, the list are:"Wide Latin", "Calibri"
var fonts = workbook.GetUsedFonts();

//export workbook to pdf file, the exported file has two pages.
workbook.Save(@"D:\workbook.pdf", SaveFileFormat.Pdf);

//just export sheet1 to pdf file.
sheet1.Save(@"D:\sheet1.pdf", SaveFileFormat.Pdf);

Note: The Export to PDF feature doesn't support the following styles:

a) Usage of Double, Single Acounting, Double Accounting underline, Superscript effect, Subscript effect.

b) Alignment Preferences like Center across selection, Fill alignment, Orientation, Text reading order etc.

c) Rectange Gradient Fill is not supported.

d) Pivot Table Style is not supported for PDF rendering.

Export Vertical Text
GcExcel.NET allows users to export Excel files with vertical text to PDF without any issues.

While saving an Excel file with vertical text correctly to a PDF file, the following properties can be used -

IRange.Orientation - The Orientation ('Orientation Property' in the on-line documentation)
property of the IRange ('IRange Interface' in the on-line documentation) interface sets the
orientation of the text.
IRange.Font.Name - Sets the specific font name using the Font ('Font Property' in the on-line
documentation) property of the IRange ('IRange Interface' in the on-line
documentation) interface. If the font name starts with "@", each double-byte character in the text is
rotated to 90 degrees.

Refer to the following example code in order to export Vertical Text to PDF.

C#
// Create workbook and a worksheet.
Workbook workbook = new Workbook();
IWorksheet sheet = workbook.Worksheets[0];

// Specify the font name
sheet.Range["A1"].Font.Name = "@Meiryo";

// Set orientation and wrap text

Documents for Excel, .NET Edition 118

Copyright © 2019 GrapeCity, Inc. All rights reserved.

sheet.Range["A1"].Orientation = -90;
sheet.Range["A1"].WrapText = true;

// Set value and configure horizontal and vertical alignment
sheet.Range["A1"].Value = "日本列島で使用されてきた言語である。GrapeCity";
sheet.Range["A1"].HorizontalAlignment = HorizontalAlignment.Right;
sheet.Range["A1"].VerticalAlignment = VerticalAlignment.Top;

// Set column width and row height

sheet.Range["A1"].ColumnWidth = 27;
sheet.Range["A1"].RowHeight = 190;

// Export the worksheet with vertical text ("sheet") to pdf file.
sheet.Save(@"D:\sheet.pdf", SaveFileFormat.Pdf);

Note: The following limitations must be kept in mind while exporting Excel files with vertical text to PDF -
The orientation can only be set to 0, 90, -90 and 255. Other values will be treated as 0 while
rendering the PDF file.
If the font name starts with "@" and the orientation is 255, GcExcel will ignore the "@".

Documents for Excel, .NET Edition 119

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Apply Conditional Formatting
You can apply conditional formatting in individual cells or a range of cells using rules or conditional operators. The
set of conditional formatting rules for a range is represented with the FormatConditions property (on-line
documentation) of the IRange interface (on-line documentation).

Shared below is a list of conditional formatting rules that can be applied in a worksheet.

Add Cell Value Rule
Add Date Occurring Rule
Add Average Rule
Add Color Scale Rule
Add Data Bar Rule
Add Top Bottom Rule
Add Unique Rule
Add Icon Sets Rule
Add Expression Rule

If you want to delete the formatting rule applied to the cell range in a worksheet, you can do it by using the
Delete method (on-line documentation) of IFormatCondition interface (on-line documentation)

Add Cell Value Rule
The cell value rule compares values entered in the cells with the condition specified in the conditional formatting
rule. In order to add a cell value rule, you can use the Formula1 property (on-line
documentation) and Formula2 property (on-line documentation) of the IFormatCondition interface (on-
line documentation). You can also use the Operator property (on-line documentation) of the
IFormatCondition interface to set the operator that will perform the comparison operation, like "Between", "Less
Than" etc.

Refer to the following example code to add cell value rule to a range of cells in a worksheet.

C#
// Assigning value using object
worksheet.Range["A1:A5"].Value = new object[,]
{
 {1},{3},{5},{7},{9}
};
// Defining format rules.
IFormatCondition condition =
worksheet.Range["A1:A5"].FormatConditions.Add(FormatConditionType.CellValue,
FormatConditionOperator.Between, 1, 5) as IFormatCondition;
condition.NumberFormat = "0.000";

Add Date Occurring Rule
The date occurring rule in conditional formatting feature compares the values entered in date format in the cells or
a range of cells. This rule can be added using the DateOperator property (on-line documentation) of
the IFormatCondition interface (on-line documentation).

Refer to the following example code to add date occurring rule to a range of cells in a worksheet.

C#
// Adding Date occuring rules
IFormatCondition condition =
worksheet.Range["A1:A4"].FormatConditions.Add(FormatConditionType.TimePeriod) as
IFormatCondition;
condition.DateOperator = TimePeriods.Yesterday;
condition.Interior.Color = Color.FromArgb(128, 0, 128);

Documents for Excel, .NET Edition 120

Copyright © 2019 GrapeCity, Inc. All rights reserved.

DateTime now = DateTime.Today;
worksheet.Range["A1"].Value = now.AddDays(-2);
worksheet.Range["A2"].Value = now.AddDays(-1);
worksheet.Range["A3"].Value = now;
worksheet.Range["A4"].Value = now.AddDays(1);

Add Average Rule
The average rule in conditional formatting can be added and deleted using the properties and methods of
the IAboveAverage interface (on-line documentation).

Refer to the following example code to add average rule to a range of cells in a worksheet.

C#
// Adding average rule
worksheet.Range["A1"].Value = 1;
worksheet.Range["A2"].Value = 2;
worksheet.Range["A3"].Value = 3;
worksheet.Range["A4"].Value = 4;
worksheet.Range["A5"].Value = 60000000;

IAboveAverage averageCondition =
worksheet.Range["A1:A5"].FormatConditions.AddAboveAverage();
averageCondition.AboveBelow = AboveBelow.AboveAverage;
averageCondition.NumStdDev = 2;
averageCondition.NumberFormat = "0.00";

Add Color Scale Rule
The color scale rule uses a sliding color scale to format cells or a range of cells. For instance, if numeric cell value 1
is represented with color yellow and 50 with green, then 25 would be light green. This rule can be added using the
properties and methods of the IColorScale interface (on-line documentation).

Refer to the following example code to add color scale rule to a cell range in a worksheet.

C#
// Adding colorscale rule
IColorScale twoColorScaleRule =
worksheet.Range["A2:E2"].FormatConditions.AddColorScale(ColorScaleType.TwoColorScale);

worksheet.Range["A2"].Value = 1;
worksheet.Range["B2"].Value = 2;
worksheet.Range["C2"].Value = 3;
worksheet.Range["D2"].Value = 4;
worksheet.Range["E2"].Value = 5;

twoColorScaleRule.ColorScaleCriteria[0].Type = ConditionValueTypes.Number;
twoColorScaleRule.ColorScaleCriteria[0].Value = 1;
twoColorScaleRule.ColorScaleCriteria[0].FormatColor.Color = Color.FromArgb(255, 0, 0);

twoColorScaleRule.ColorScaleCriteria[1].Type = ConditionValueTypes.Number;
twoColorScaleRule.ColorScaleCriteria[1].Value = 5;
twoColorScaleRule.ColorScaleCriteria[1].FormatColor.Color = Color.FromArgb(0, 255, 0);

Add Data Bar Rule
The data bar rule in conditional formatting displays a bar in the cell on the basis of cell values entered in a range.

Documents for Excel, .NET Edition 121

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This rule can be added using the properties and methods of the IDataBar interface (on-line documentation).

Refer to the following example code to add data bar rule to a range of cells in a worksheet.

C#
// Adding Databar rule
worksheet.Range["A1:A5"].Value = new object[,]
{
 {1},
 {2},
 {3},
 {4},
 {5}
};

IDataBar dataBar = worksheet.Range["A1:A5"].FormatConditions.AddDatabar();

dataBar.MinPoint.Type = ConditionValueTypes.LowestValue;
dataBar.MinPoint.Value = null;
dataBar.MaxPoint.Type = ConditionValueTypes.HighestValue;
dataBar.MaxPoint.Value = null;

dataBar.BarFillType = DataBarFillType.Solid;
dataBar.BarColor.Color = Color.Green;
dataBar.Direction = DataBarDirection.Context;
dataBar.AxisColor.Color = Color.Red;
dataBar.AxisPosition = DataBarAxisPosition.Automatic;
dataBar.NegativeBarFormat.BorderColorType = DataBarNegativeColorType.Color;
dataBar.NegativeBarFormat.BorderColor.Color = Color.FromArgb(128, 0, 212);
dataBar.NegativeBarFormat.ColorType = DataBarNegativeColorType.Color;
dataBar.NegativeBarFormat.Color.Color = Color.FromArgb(128, 0, 240);
dataBar.ShowValue = false;

Add Top Bottom Rule
The top bottom rule checks whether the values in the top or bottom of a cell range match with the required values
in the cell. In case the values don't match, the data is considered as invalid. This rule can be added using the
properties and methods of the ITop10 interface (on-line documentation).

The following options are available while adding top bottom rule in a worksheet:

Top 10
Top 10%
Bottom 10
Bottom 10%
Above Average
Below Average

Refer to the following example code to add top bottom rule in a worksheet.

C#
// Adding ToBottom rule
worksheet.Range["A1:A5"].Value = new object[,]
{
 {1},
 {2},
 {3},
 {4},
 {5}
};

Documents for Excel, .NET Edition 122

Copyright © 2019 GrapeCity, Inc. All rights reserved.

ITop10 condition = worksheet.Range["A1:A5"].FormatConditions.AddTop10();
condition.TopBottom = TopBottom.Top10Top;
condition.Rank = 50;
condition.Percent = true;
condition.Interior.Color = Color.FromArgb(128, 0, 128);

Add Unique Rule
The unique rule in conditional formatting is applied to check whether the value entered in a cell is a unique value
in that particular range. This is possible only when the duplication option is set to false. To check for the duplicate
values, the duplicate rule is applied separately.

Unique rule can be added using the properties and methods of the IUniqueValues interface (on-line
documentation).

Refer to the following example code to add unique rule in a worksheet.

C#
// Adding Unique Rule
worksheet.Range["A1:A5"].Value = new object[,]
{
 {1},
 {2},
 {1},
 {3},
 {4}
};

IUniqueValues condition2 = worksheet.Range["A1:A5"].FormatConditions.AddUniqueValues();
condition2.DupeUnique = DupeUnique.Unique;
condition2.Font.Name = "Arial";

Add Icon Sets Rule
The icon sets rule in conditional formatting displays the icons on the basis of values entered in the cells. Each
value represents a distinct icon that appears in a cell if it matches the icon sets rule applied on it. This rule can be
added using the properties and methods of the IIconSetCondition interface (on-line documentation).

Refer to the following example code to add icon sets rule in a worksheet.

C#
// Adding IconSets rule
IIconSetCondition condition =
worksheet.Range["A1:A5"].FormatConditions.AddIconSetCondition();
condition.IconSet = workbook.IconSets[IconSetType.Icon3Symbols];
condition.IconCriteria[1].Operator = FormatConditionOperator.GreaterEqual;
condition.IconCriteria[1].Value = 50;
condition.IconCriteria[1].Type = ConditionValueTypes.Percent;
condition.IconCriteria[2].Operator = FormatConditionOperator.GreaterEqual;
condition.IconCriteria[2].Value = 70;
condition.IconCriteria[2].Type = ConditionValueTypes.Percent;

worksheet.Range["A1"].Value = 1;
worksheet.Range["A2"].Value = 2;
worksheet.Range["A3"].Value = 3;
worksheet.Range["A4"].Value = 4;
worksheet.Range["A5"].Value = 5;

Documents for Excel, .NET Edition 123

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Add Expression Rule
The expression rule in conditional formatting is used to set the expression rule's formula. This rule can be added
using the properties and methods of the IFormatCondition interface (on-line documentation).

Refer to the following example code to add expression rule in a worksheet.

C#
// Adding Expression Rule
worksheet.Range["A1:B5"].Value = new object[,]
{
 {1, 2},
 {0, 1},
 {0, 0},
 {0, 3},
 {4, 5}
};
IFormatCondition condition =
worksheet.Range["B1:B5"].FormatConditions.Add(FormatConditionType.Expression, 0, "=A1")
as IFormatCondition;
condition.Interior.Color = Color.FromArgb(255, 0, 0);

Documents for Excel, .NET Edition 124

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Apply Data Validations
You can use the data validation feature in GcExcel .NET to ensure users enter only the valid values into a cell while
working in a spreadsheet.

For instance, let's say you have a worksheet where you want users to enter only whole numbers between 1 to 15.
To accomplish this, you can create a data validation rule that restricts users to enter cell values other than a whole
number between 1 to 15. You can even create custom dropdown lists to specify the possible values that can be
entered in the cells or display messages or error alerts to validate the data and get notified if there is something
wrong with the information entered in the worksheets.

Applying data validations in worksheets involves the following tasks.

Add Validations
Modify Validations
Delete Validation

Add Validations
You can use the Add method (on-line documentation) of the IValidation interface (on-line
documentation) to apply data validation to individual cells or a range of cells in a spreadsheet. A single cell can
have only one validation rule and if you try to apply validation on a cell that already possesses a validation rule, it
will throw an exception.

Validation rule instance for a range is represented with the Validation property (on-line documentation) of
the IRange interface (on-line documentation). If you want to know whether a cell range already contains the
validation rule, you can use the HasValidation property (on-line documentation) of the IRange interface. If
all the cells in a range possess the same validation rule applied to them, it is represented with
the ValidationIsSame property (on-line documentation) of the IRange interface.

Shared below is a list of data validations operations that can be implemented in GcExcel .NET.

Add Whole Number Validation
Add Decimal Validation
Add List Validation
Add Date Validation
Add Time Validation
Add Text Length Validation
Add Custom Validation

Add whole number validation

You can validate your data and ensure users add only whole numbers in cells or a range of cells by applying the
whole number validation in a worksheet.

Refer to the following example code to add whole number validation.

C#
//Add whole number validation
worksheet.Range["A1:A3"].Validation.Add(ValidationType.Whole,
ValidationAlertStyle.Stop, ValidationOperator.Between, 1, 8);
IValidation validation = worksheet.Range["A1:A3"].Validation;
validation.IgnoreBlank = true;
validation.InputTitle = "Tips";
validation.InputMessage = "Input a value between 1 and 8, please";
validation.ErrorTitle = "Error";
validation.ErrorMessage = "input value does not between 1 and 8";
validation.ShowInputMessage = true;
validation.ShowError = true;

Add decimal validation

You can validate your data and ensure users add only decimal numbers in cells or a range of cells by applying the

Documents for Excel, .NET Edition 125

Copyright © 2019 GrapeCity, Inc. All rights reserved.

decimal validation in a worksheet.

Refer to the following example code to add decimal validation.

C#
//Add Decimal validation
worksheet.Range["B1:B3"].Validation.Add(ValidationType.Decimal,
ValidationAlertStyle.Stop, ValidationOperator.Between, 3.4, 102.8);

Add list validation

You can also validate lists inserted in cells or a range of cells by applying the list validation in your worksheet .

Refer to the following example code to add list validation.

C#
//Add List Validation
worksheet.Range["C4"].Value = "aaa";
worksheet.Range["C5"].Value = "bbb";
worksheet.Range["C6"].Value = "ccc";

//Use cell reference.
worksheet.Range["C1:C3"].Validation.Add(ValidationType.List, ValidationAlertStyle.Stop,
ValidationOperator.Between, "=c4:c6");

//Or use string.
//this._worksheet.Range["C2:E4"].Validation.Add(ValidationType.List,
ValidationAlertStyle.Stop, ValidationOperator.Between, "aaa, bbb, ccc");

//Display list dropdown
IValidation dvalidation = worksheet.Range["C1:C3"].Validation;
dvalidation.InCellDropdown = true;

Add date validation

You can validate data entered in date format in cells or a range of cells by applying the date validation in a
worksheet.

Refer to the following example code to add date validation.

C#
//Add Date validation
worksheet.Range["D1:D3"].Validation.Add(ValidationType.Date, ValidationAlertStyle.Stop,
ValidationOperator.Between, new DateTime(2015, 12, 13), new DateTime(2015, 12, 18));

Add time validation

You can validate the time entered in cells or a range of cells by applying the time validation in a worksheet.

Refer to the following example code to add time validation.

C#
//Add Time Validation
worksheet.Range["E1:E3"].Validation.Add(ValidationType.Time, ValidationAlertStyle.Stop,
ValidationOperator.Between, new TimeSpan(13, 30, 0), new TimeSpan(18, 30, 0));

Add text length validation

You can validate the length of the text entered in cells or a range of cells by applying the text length validation in a
worksheet.

Refer to the following example code to add text length validation.

Documents for Excel, .NET Edition 126

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#
//Add Text Length Validation
worksheet.Range["C2:E4"].Validation.Add(ValidationType.TextLength,
ValidationAlertStyle.Stop, ValidationOperator.Between, 2, 3);

Add custom validation

You can add a custom validation rule to validate data in a worksheet by applying custom validation.

Refer to the following example code to add custom validation.

C#
//Add custom validation
worksheet.Range["A2"].Value = 1;
worksheet.Range["A3"].Value = 2;
worksheet.Range["C2"].Value = 1;
//when use custom validation, validationOperator and formula2 parameters will be
ignored even if you have given.
worksheet.Range["A2:A3"].Validation.Add(ValidationType.Custom,
ValidationAlertStyle.Information, formula1: "=C2");

Delete Validation
You can delete the applied validation rule using the Delete method (on-line documentation) of
the IValidation interface (on-line documentation).

Refer to the following example code to know how you can delete validation rule applied to a cell or a range of cells
in a worksheet.

C#
//Add validation
worksheet.Range["A1:A3"].Validation.Add(ValidationType.Whole,
ValidationAlertStyle.Stop, ValidationOperator.Between, 1, 8);
worksheet.Range["B1:B3"].Validation.Add(ValidationType.Whole,
ValidationAlertStyle.Stop, ValidationOperator.Between, 11, 18);

//Delete validation.
worksheet.Range["A1:A2"].Validation.Delete();

Modify Validation
You can change the validation rule for a range by using either of the two ways described below:

Set properties of the IValidation interface (on-line documentation) (Type property (on-line
documentation), Formula1 property (on-line documentation), Formula2 property (on-line
documentation), and many more).
Use Delete method (on-line documentation) of the IValidation interface to first delete validation rule
and then use the Add method (on-line documentation) to add the new rule.

Refer to the following example code to know how you can modify an existing validation rule applied to a cell or a
range of cells in a worksheet.

C#
//Add validation
worksheet.Range["A1:A2"].Validation.Add(ValidationType.Date, ValidationAlertStyle.Stop,
ValidationOperator.Between, new TimeSpan(13, 30, 0), new TimeSpan(18, 30, 0));

//Modify validation.

Documents for Excel, .NET Edition 127

Copyright © 2019 GrapeCity, Inc. All rights reserved.

worksheet.Range["A1:A2"].Validation.Type = ValidationType.Time;
worksheet.Range["A1:A2"].Validation.AlertStyle = ValidationAlertStyle.Stop;
worksheet.Range["A1:A2"].Validation.Operator = ValidationOperator.Between;
worksheet.Range["A1:A2"].Validation.Formula1 = new TimeSpan(13, 30,
0).TotalDays.ToString();
worksheet.Range["A1:A2"].Validation.Formula2 = new TimeSpan(18, 30,
0).TotalDays.ToString();

Documents for Excel, .NET Edition 128

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Configure Print Settings via Page Setup
GcExcel .NET allows users to configure print settings by customizing the page setup properties as per their
preferences.

1. Configure Page Header and Footer
2. Configure Page Settings
3. Configure Page Breaks
4. Configure Paper Settings
5. Configure Print Area
6. Configure Columns to Repeat at Left
7. Configure Rows to Repeat at Top
8. Configure Sheet Print Settings

Configure Page Header and Footer
In GcExcel .NET, you can use the LeftHeader property (on-line documentation), LeftFooter property (on-
line documentation), ('LeftFooter Property' in the on-line documentation)CenterFooter property (on-
line documentation), RightHeader property (on-line documentation), CenterHeader property (on-line
documentation), and the RightFooter property (on-line documentation) of the IPageSetup interface (on-
line documentation) in order to configure header and footer for a page.

C#
//Configure PageHeader and PageFooter
//Set header for the page
worksheet.PageSetup.LeftHeader = "&\"Arial,Italic\"LeftHeader";
worksheet.PageSetup.CenterHeader = "&P";

//Set footer graphic for the page
worksheet.PageSetup.CenterFooter = "&G";
worksheet.PageSetup.CenterFooterPicture.Filename = @"Resource\logo.png";

For special settings, you can also perform the following tasks in order to customize the configuration of the header
and footer of your page:

1. Configure first page header and footer
2. Configure even page header and footer

Configure first page header and footer

If you want a different header and footer in your first page, you first need to set
the DifferentFirstPageHeaderFooter property (on-line documentation) of the IPageSetup interface to true.
When this is done, you can use the properties of the IPageSetup interface in order to configure the first page
header and footer.

C#
//Set first page header and footer
worksheet.PageSetup.DifferentFirstPageHeaderFooter = true;

worksheet.PageSetup.FirstPage.CenterHeader.Text = "&T";
worksheet.PageSetup.FirstPage.RightFooter.Text = "&D";

//Set first page header and footer graphic
worksheet.PageSetup.FirstPage.LeftFooter.Text = "&G";
worksheet.PageSetup.FirstPage.LeftFooter.Picture.Filename = @"Resource\logo.png";

Configure even page header and footer

If you want a different header and footer for all the even pages, you first need to set

Documents for Excel, .NET Edition 129

Copyright © 2019 GrapeCity, Inc. All rights reserved.

the OddAndEvenPagesHeaderFooter property (on-line documentation) to true. When this is done, you can
use the properties of the IPageSetup interface in order to configure the even page header and footer.

C#
//Set even page header and footer
worksheet.PageSetup.OddAndEvenPagesHeaderFooter = true;

worksheet.PageSetup.EvenPage.CenterHeader.Text = "&T";
worksheet.PageSetup.EvenPage.RightFooter.Text = "&D";

//Set even page header and footer graphic
worksheet.PageSetup.EvenPage.LeftFooter.Text = "&G";
worksheet.PageSetup.EvenPage.LeftFooter.Picture.Filename = @"Resource\logo.png";

Configure Page Settings
In GcExcel .NET, you can use the properties of the IPageSetup interface (on-line documentation) in order to
configure page settings.

Configuring page settings involves the following tasks:

1. Configure Page Margins
2. Configure Page Orientation
3. Configure Page Order
4. Configure Page Center
5. Configure First Page Number

Configure Page Margins

You can use the TopMargin property (on-line documentation), RightMargin property (on-line
documentation) and BottomMargin property (on-line documentation) of the IPageSetup interface in order
to configure margins for a page.

C#
//Set page margins, in points.
worksheet.PageSetup.TopMargin = 36;
worksheet.PageSetup.BottomMargin = 36;
worksheet.PageSetup.RightMargin = 72;

Note: While you set margins for your page, it is necessary to ensure that it should not be less than Zero.

Configure Page Orientation

You can use the Orientation property (on-line documentation) of the IPageSetup interface in order to set the
orientation for a page to Portrait or Landscape as per your preferences.

C#
//Set page orientation.

worksheet.PageSetup.Orientation = PageOrientation.Landscape;

Configure Page Order

You can use the Order property (on-line documentation) of the IPageSetup interface in order to configure the
order of the page as per your choice.

C#

Documents for Excel, .NET Edition 130

Copyright © 2019 GrapeCity, Inc. All rights reserved.

//Set page order. The default value is DownThenOver.

 worksheet.PageSetup.Order = Order.OverThenDown;

Configure Page Center

You can use the CenterHorizontally property (on-line documentation) and the CenterVertically property
(on-line documentation) of the IPageSetup interface in order to configure the center of your page according to
your preferences.

C#
//Set center. The default value is false.

worksheet.PageSetup.CenterHorizontally = true;
worksheet.PageSetup.CenterVertically = true;

Configure First Page Number

You can use the FirstPageNumber property (on-line documentation) of the IPageSetup interface in order to
configure the number for your first page as per your choice.

C#
//Set first page number. The default value is p1.

worksheet.PageSetup.FirstPageNumber = 3;

Configure Page Breaks
GcExcel .NET allows users to configure the vertical and horizontal page breaks by using the VPageBreaks
('VPageBreaks Property' in the on-line documentation) property and HPageBreaks ('HPageBreaks
Property' in the on-line documentation) property of the IWorksheet ('IWorksheet Interface' in the on-
line documentation) interface.

Refer to the following example code in order to configure page breaks for customized printing.

C#
// add page breaks

worksheet.Range["A1:B5"].Value = new object[,]
{
 {1, 2}, {3, 4},{5, 6},{7, 8},{9, 10}
};

worksheet.HPageBreaks.Add(worksheet.Range["B3"]);
worksheet.VPageBreaks.Add(worksheet.Range["B3"]);

Configure Paper Settings
In GcExcel .NET, you can use the properties of the IPageSetup interface (on-line documentation) in order to
configure paper settings for customized printing.

Configuring paper settings involves the following tasks:

1. Configure Paper Scaling

Documents for Excel, .NET Edition 131

Copyright © 2019 GrapeCity, Inc. All rights reserved.

2. Configure Paper Size

Configure Paper Scaling

You can use the IsPercentScale property (on-line documentation) in order to control how to the spreadsheet
is scaled; the FitToPagesTall property (on-line documentation) and the FitToPagesWide property (on-line
documentation) in order to set its size; and the Zoom property (on-line documentation) in order to adjust
the size of the paper that will be used for printing.

C#
//Set paper scaling via percent scale

worksheet.PageSetup.IsPercentScale = true;
worksheet.PageSetup.Zoom = 150;

//Set paper scaling via FitToPagesWide and FitToPagesTall

worksheet.PageSetup.IsPercentScale = false;
worksheet.PageSetup.FitToPagesWide = 3;
worksheet.PageSetup.FitToPagesTall = 4;

Configure Paper Size

You can use the PaperSize property (on-line documentation) in order to set the paper size for the paper that
will be used for printing.

C#
//Set built-in paper size. The Default is Letter

worksheet.PageSetup.PaperSize = PaperSize.A4;

Configure Print Area
At times, you may want to print only a specific area in a worksheet instead of printing the whole worksheet.

GcExcel .NET supports customized printing by allowing users to select a range of cells in order to configure the
desired print area in a worksheet. This can be done by using the PrintArea property (on-line
documentation) of the IPageSetup interface (on-line documentation).

C#
//Set print area in the worksheet
worksheet.PageSetup.PrintArea = "D5:G10";

Configure Columns to Repeat at Left
You can configure columns in a worksheet in order to repeat them at the left by using the PrintTitleColumns
property (on-line documentation) of the IPageSetup interface (on-line documentation).

C#
//Set columns to repeat at left
worksheet.PageSetup.PrintTitleColumns = "$D:$G";

Documents for Excel, .NET Edition 132

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Configure Rows to Repeat at Top
You can configure rows in a worksheet in order to repeat them at the top by using the PrintTitleRows
('PrintTitleRows Property' in the on-line documentation)property ('PrintTitleColumns Property' in the
on-line documentation) of the IPageSetup interface (on-line documentation).

C#
//Set rows to repeat at top
worksheet.PageSetup.PrintTitleRows = "$5:$10";

Configure Sheet Print Settings
You can set the PrintGridlines property (on-line documentation), PrintHeadings property (on-line
documentation), BlackAndWhite property (on-line documentation), PrintComments property (on-line
documentation) and PrintErrors property (on-line documentation) of the IPageSetup interface (on-line
documentation) in order to configure the print settings for the sheet.

C#
//Configure sheet print settings

worksheet.PageSetup.PrintGridlines = true;
worksheet.PageSetup.PrintHeadings = true;
worksheet.PageSetup.BlackAndWhite = true;
worksheet.PageSetup.PrintComments = PrintLocation.InPlace;
worksheet.PageSetup.PrintErrors = PrintErrors.Dash;

Documents for Excel, .NET Edition 133

Copyright © 2019 GrapeCity, Inc. All rights reserved.

API Reference
The complete GcExcel .NET component includes the assembly listed in the table shared below. For more details,
you can click on the name of the assembly to know about the namespaces defined in it.

Assembly Description

Grapecity.Documents.Excel
('GrapeCity.Documents.Excel Assembly' in the on-line
documentation)

Provides the namespaces for the GcExcel .NET
component functionality for .Net Core.

For help with using the product, refer to the Key Features.

Documents for Excel, .NET Edition 134

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Index
Access a Range, 29

Access Areas in a Range, 29-30

Access Cells, Rows and Columns in a Range, 30-31

Add and Delete Table Columns and Rows, 99-100

Add Average Rule, 121

Add Cell Value Rule, 120

Add Color Scale Rule, 121

Add Data Bar Rule, 121-122

Add Date Occurring Rule, 120-121

Add Expression Rule, 124

Add Icon Sets Rule, 123

Add Slicer in Pivot Table, 106-107

Add Slicer in Table, 105-106

Add Top Bottom Rule, 122-123

Add Unique Rule, 123

Add Validations, 125-127

Allow Sort, 46-48

API Reference, 134

Apply Comments, 60-62

Apply Conditional Formatting, 120

Apply Data Validations, 125

Apply Filters, 48-50

Apply Grouping, 52

Apply Slicer Style, 108-109

Apply Style, 54-55

Apply Table Sort, 98-99

Apply Table Style, 100

Apply Theme, 25-26

Axis and Other Lines, 86-88

Chart, 18

Chart Area, 72-74

Chart Title, 72

Comments, 17-18

Conditional Format, 18

Documents for Excel, .NET Edition 135

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Configure Chart, 71-72

Configure Chart Axis, 88-90

Configure Chart Series, 78-85

Configure Columns to Repeat at Left, 132

Configure Fonts and Set Style, 117-118

Configure Page Breaks, 131

Configure Page Header and Footer, 129-130

Configure Page Settings, 130-131

Configure Paper Settings, 131-132

Configure Print Area, 132

Configure Print Settings via Page Setup, 129

Configure Rows to Repeat at Top, 133

Configure Sheet Print Settings, 133

Create and Delete Chart, 71

Create and Delete Tables, 96-97

Create and Set Custom Named Style, 58-60

Create Pivot Table, 102-103

Create Row or Column Group, 52-53

Create Workbook, 22

Customize Chart Objects, 74-75

Customize User Interaction, 22

Customize Worksheets, 42-44

Cut or Copy Across Sheets, 24

Cut or Copy Cell Ranges, 31

Cut or Copy Shape, Slicer, Chart and Picture, 31-33

Data Label, 91-92

Data Validation, 18-19

Delete Validation, 127

Enable or Disable Calculation Engine, 24-25

End User License Agreement, 16

Export to a PDF File, 115-116

Export Vertical Text, 118-119

Features, 17

Floor, 90-91

Formula, 19

Freeze Panes in a Worksheet, 38

Documents for Excel, .NET Edition 136

Copyright © 2019 GrapeCity, Inc. All rights reserved.

GcExcel .NET Overview, 6

Get Row and Column Count, 33

Get Started, 9-13

Group, 19

Hide Rows and Columns, 33

Hyperlinks, 19

Import and Export .xlsx Document, 111-112

Import and Export CSV File, 112-113

Import and Export JSON Stream, 113-115

Import and Export Macros, 115

Insert And Delete Cell Ranges, 33-35

Insert and Delete Rows and Columns, 35-36

Key Features, 7-8

Legends, 92-93

License Information, 13-16

Manage Data, 71

Manage File Operations, 111

Manage Formulas, 67

Manage Hyperlinks, 50-52

Manage Workbook, 22

Manage Worksheet, 26-27

Merge Cells, 36

Modify Slicer with Custom Style, 109

Modify Table Layout, 101-102

Modify Table Layout for Slicer Style, 109-110

Modify Table with Custom Style, 100-101

Modify Tables, 97-98

Modify Validation, 127-128

Open, Save and Protect Workbook, 22-24

Page Setup, 19

PDF Export, 19

Pivot Table Settings, 103-105

Plot Area, 74

Range Operations, 28-29

Redistribution, 16

Remove a Group, 53-54

Documents for Excel, .NET Edition 137

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Rich Text, 20

Series, 75-78

Set Array Formula, 69-70

Set Formula to Range, 67-68

Set Pagination, 116-117

Set Rich Text in a Cell, 62-66

Set Row Height and Column Width, 36-37

Set Sheet Styling, 55-58

Set Summary Row, 54

Set Table Filters, 99

Set Table Formula, 68-69

Set Values to a Range, 36

Shape and Picture, 20

Sparkline, 20

Style, 20

Table, 21

Technical Support, 16

Theme, 20-21

Use Chart, 71

Use Do Filter Operation, 108

Use Pivot Table, 102

Use Slicer, 105

Use Sparkline, 93-96

Use Table, 96

Walls, 85-86

Work with Shape And Picture, 38-42

Work with Used Range, 37-38

Work with Workbook Views, 26

Work with Worksheet Views, 44-46

Work with Worksheets, 27-28

Documents for Excel, .NET Edition 138

Copyright © 2019 GrapeCity, Inc. All rights reserved.

	Table of Contents
	GcExcel .NET Overview
	Key Features
	Get Started
	License Information
	Technical Support
	Redistribution
	End User License Agreement

	Features
	Comments
	Chart
	Conditional Format
	Data Validation
	Formula
	Group
	Hyperlinks
	Page Setup
	PDF Export
	Rich Text
	Shape and Picture
	Style
	Sparkline
	Theme
	Table

	Customize User Interaction
	Manage Workbook
	Create Workbook
	Open, Save and Protect Workbook
	Cut or Copy Across Sheets
	Enable or Disable Calculation Engine
	Apply Theme
	Work with Workbook Views

	Manage Worksheet
	Work with Worksheets
	Range Operations
	Access a Range
	Access Areas in a Range
	Access Cells, Rows and Columns in a Range
	Cut or Copy Cell Ranges
	Cut or Copy Shape, Slicer, Chart and Picture
	Get Row and Column Count
	Hide Rows and Columns
	Insert And Delete Cell Ranges
	Insert and Delete Rows and Columns
	Merge Cells
	Set Values to a Range
	Set Row Height and Column Width
	Work with Used Range

	Freeze Panes in a Worksheet
	Work with Shape And Picture
	Customize Worksheets
	Work with Worksheet Views

	Allow Sort
	Apply Filters
	Manage Hyperlinks
	Apply Grouping
	Create Row or Column Group
	Remove a Group
	Set Summary Row

	Apply Style
	Set Sheet Styling
	Create and Set Custom Named Style

	Apply Comments
	Set Rich Text in a Cell

	Manage Formulas
	Set Formula to Range
	Set Table Formula
	Set Array Formula

	Manage Data
	Use Chart
	Create and Delete Chart
	Configure Chart
	Chart Title
	Chart Area
	Plot Area

	Customize Chart Objects
	Series
	Configure Chart Series

	Walls
	Axis and Other Lines
	Configure Chart Axis

	Floor
	Data Label
	Legends

	Use Sparkline
	Use Table
	Create and Delete Tables
	Modify Tables
	Apply Table Sort
	Set Table Filters
	Add and Delete Table Columns and Rows
	Apply Table Style
	Modify Table with Custom Style
	Modify Table Layout

	Use Pivot Table
	Create Pivot Table
	Pivot Table Settings

	Use Slicer
	Add Slicer in Table
	Add Slicer in Pivot Table
	Use Do Filter Operation
	Apply Slicer Style
	Modify Slicer with Custom Style
	Modify Table Layout for Slicer Style

	Manage File Operations
	Import and Export .xlsx Document
	Import and Export CSV File
	Import and Export JSON Stream
	Import and Export Macros
	Export to a PDF File
	Set Pagination
	Configure Fonts and Set Style
	Export Vertical Text

	Apply Conditional Formatting
	Add Cell Value Rule
	Add Date Occurring Rule
	Add Average Rule
	Add Color Scale Rule
	Add Data Bar Rule
	Add Top Bottom Rule
	Add Unique Rule
	Add Icon Sets Rule
	Add Expression Rule

	Apply Data Validations
	Add Validations
	Delete Validation
	Modify Validation

	Configure Print Settings via Page Setup
	Configure Page Header and Footer
	Configure Page Settings
	Configure Page Breaks
	Configure Paper Settings
	Configure Print Area
	Configure Columns to Repeat at Left
	Configure Rows to Repeat at Top
	Configure Sheet Print Settings

	API Reference
	Index

