ComponentOne

Maps for WPF

GrapeCity US

GrapeCity

201 South Highland Avenue, Suite 301
Pittsburgh, PA 15206

Tel: 1.800.858.2739 | 412.681.4343

Fax: 412.681.4384

Website: https://www.grapecity.com/en/
E-mail: us.sales@grapecity.com

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

https://www.grapecity.com/en/
mailto:us.sales@grapecity.com

Maps for WPF and Silverlight

Table of Contents

Maps for WPF and Silverlight Overview
Help with WPF and Silverlight Edition
Maps for WPF and Silverlight Key Features
Maps for WPF and Silverlight Quick Start
Step 1 of 3: Creating an Application with a C1Maps Control
Step 2 of 3: Binding to a Data Source
Step 3 of 3: Running the Project
Quick XAML Reference
C1Maps Control Basics
Legal Requirements
HTTPS Support
C1Maps Concepts and Main Properties
Items Layering
Virtualization
Vector Layer
Vector Objects
Element Visibility
KML Import/Export
Data Binding
Tool Customization
Maps for WPF and Silverlight Layout and Appearance
How ClearStyle Works
C1Maps ClearStyle Properties
C1Maps Theming
Templates
Maps for WPF and Silverlight Task-Based Help
Adding a Labe
Adding a Polyline
Adding a Polygon
Displaying Geographic Coordinates on Mouseover
Rearranging the Map Tools
Changing the Map Source
Using C1Maps Themes

10-11
12
12
12
12-14
14-16
16-17
17
17-18
18
18-19
19-20
20
21
21
21-22
22-26
26
27
27-28
29-31
31-33
33-34
34-36
36-38
38-39

Maps for WPF and Silverlight 2

Maps for WPF and Silverlight Overview

Maps for WPF and Silverlight raises the bar on image viewing with smooth zooming, panning, and mapping
between screen and geographical coordinates. C1Maps allows you to display rich geographical information from
various sources, including Bing Maps and Google Maps.

Built on top of the Microsoft Deep Zoom technology, C1Maps enables end-users to enjoy extreme close-ups with
high-resolution images and smooth transitions. It also supports layers that allow you to superimpose your own
custom elements to the maps.

Help with WPF and Silverlight Edition

Getting Started

e For information on installing ComponentOne Studio WPF Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WPF Edition.

® For information on installing ComponentOne Studio Silverlight Edition, licensing, technical support,
namespaces and creating a project with the control, please visit Getting Started with Silverlight Edition.

http://help.grapecity.com/componentone/NetHelp/c1studiowpf/webframe.html
http://help.grapecity.com/componentone/NetHelp/c1studiosilverlight/webframe.html

Maps for WPF and Silverlight

Maps for WPF and Silverlight Key Features

Maps for WPF and Silverlight allows you to create customized, rich applications. Make the most of Maps for WPF
and Silverlight by taking advantage of the following key features:

Draw any Geometry
C1Maps' vector layer allows you to draw geometries/shapes/polygons/paths with geo coordinates on top of
the map. The vector layer is useful to draw:

e Political borders (such as countries or states)
® Geo details (for example, showing automobiles or airplane routes)
® Choropleth maps (based on statistical data, such as showing population per country)

You can use the vector layer instead of the regular Microsoft Virtual Earth source to show a world map
representation.

KML Support
The vector layer supports basic KML import/export (KML is the standard file format to exchange drawings on
top of maps). For more information, see KML Import/Export.

Rich Geographical Information
Display rich geographical information from various sources, including Bing Map or any custom source. For
example, you can build your own source for Yahoo! Maps.

Display a Large Number of Elements on the Map
Maps for WPF and Silverlight allows virtualization of local and server data. Using its virtual layer Maps only
displays and requests the elements currently visible.

Zoom, Pan, and Map Coordinates
Maps for WPF and Silverlight supports zooming and panning using the mouse or the keyboard. It also
supports mapping between screen and geographical coordinates.

Layers Support
Use layers to add your own custom elements to the maps. Elements are linked to geographical locations. For
more information, see Vector Layer, Virtualization, and Items Layering.

Silverlight Toolkit Themes Support

Add style to your Ul with built-in support for the most popular Microsoft Silverlight Toolkit themes, including
ExpressionDark, ExpressionLight, WhistlerBlue, RainierOrange, ShinyBlue, and BureauBlack. See C1Maps
Theming.

Maps for WPF and Silverlight 4

Maps for WPF and Silverlight Quick Start

The following quick start guide is intended to get you up and running with Maps for WPF and Silverlight. You'll start
in Expression Blend to create a new project with the C1Maps control. Once the control has been added, you will
customize its appearance, add a C1VectorLayer and a C1VectorPlacemark to it, create a data source, and then bind
properties of the C1VectorPlacemark to the data source. At the end of this quick start, you'll have a fully functional
map control that contains a series of labeled placemarks.

Step 1 of 3: Creating an Application with a C1Maps Control

In this step, you'll begin in Expression Blend to create a WPF or Silverlight application using the C1Maps control. You
will also set the control's properties.

Complete the following steps:

1. In Expression Blend, select File | New Project.
2. In the New Project dialog box, select the Silverlight project type in the left pane and, in the right-pane,
select WPF Application + Website or Silverlight Application + Website.
3. Enter a Name and Location for your project, select a Language in the drop-down box, and click OK. Blend
creates a new application, which opens with the MainPage.xaml file displayed in Design view.
4. Add a reference to the C1.WPF.Maps or C1.Silverlight.Maps assembly by completing the following steps:
a. Select Project | Add Reference.
b. Browse to find the C1.WPF.Maps.dll or C1.Silverlight.Maps.5.dll assembly installed with Maps for
WPF.

] Note: The *.dll files are installed to C:\Program Files\ComponentOne\WPF Edition
and C:\Program Files\ComponentOne\Silverlight Edition by default.

c. Select C1.WPF.dIl and click Open. A reference is added to your project.
5. Add the C1Maps control to your project by completing the following steps:
a. On the menu, select Window | Assets to open the Assets tab.
b. Under the Assets tab, enter "C1Maps" into the search bar.
¢. The C1Maps control's icon appears.
d. Double-click the C1Maps icon to add the control to your project.
6. In the Objects and Timeline panel, select [C1Maps] and then, under the Properties panel, set the following
properties:
o Set the Name property to "C1Maps1" so that your control will have a unique identifier to call in code.
Set the Width property to "405".
Set the Height property to "472".
Set the C1Maps.Zoom property to "2" to set the zoom factor to 2x the original zoom.
Set the C1Maps.Center property to "-65, -25" so that only South America appears on the map.

O O O O

In this step, you created a Blend project and added a C1Maps control to it; in addition, you set the properties of the
C1Maps control.

Step 2 of 3: Binding to a Data Source

In this step, you will create a class with two properties, Name and LonglLat, and populate them with an array
collection. In addition, you will add a C1VectorLayer containing a C1VectorPlacemark to the control. You will then bind
the Name property to the C1VectorPlacemark's Label property and the LongLat property to the
C1VectorPlacemark's GeoPoint property.

Maps for WPF and Silverlight 5

Complete the following steps:

1. Open the MainPage.xaml code page (this will be either MainPage.xaml.cs or MainPage.xaml.vb depending
on which language you've chosen for your project).

2. Add the following class to your project, placing it beneath the namespace declaration:

3. This class creates a class with two properties: a string property named Name and a Point property named
LonglLat.

Visual Basic

Public Class City
Private LongLat As Point
Public Property LongLat () As Point
Get
Return LonglLat
End Get
Set (ByVal value As Point)
_LonglLat = value
End Set
End Property

Private Name As String
Public Property Name () As String

Get
Return Name

End Get

Set (ByVal value As String)
_Name = value

End Set

End Property

Public Sub New(ByVal location As Point, ByVal cityName As String)

Me.LongLat = location
Me.Name = cityName
End Sub
End Class

C#

public class City
{
public Point LongLat { get; set; }
public string Name { get; set; }

4. Add the following code beneath the InitializeComponent() method to create the array collection that will
populate the Name property and the LongLat property:

Maps for WPF and Silverlight 6

Visual Basic

Dim cities () As City =
New City () {

New City (New Point .40, -34.30), "Buenos Aires"),

New City (New Point
New City (Ne
New City (Ne
}

ClMaps.DataContext = cities

.10, 6.48), "Georgetown")
.10, 5.50), "Paramaribo"),
.11, -34.53),"Montevideo")

4

Point

((-58
New City (New Point(-47.92, -15.78), "Brasilia"),
New City(New Point (-70.39, -33.26), "Santiago"),
New City(New Point (-78.35, -0.15), "Quito"),
New City (New Point(-66.55, 10.30), "Caracas"),
New City (New Point (-77.03, -12.03), "Lima"),
New City(New Point (-57.40, -25.16), "Asuncion"),
New City(New Point (-74.05, 4.36), "Bogota"),
New City (New Point(-68.09, -16.30), "La Paz"),
(New (-58
(New (=55
(New (=56

Point

C#

City[] cities = new City[]

new City () { LongLat= new Point (-58.40, -34.36), Name="Buenos Aires"},
new City(){ LongLat= new Point(-47.92, -15.78), Name="Brasilia"},
new City(){ LongLat= new Point (-70.39, -33.26), Name="Santiago"},
new City () { LongLat= new Point (-78.35, -0.15), Name="Quito"},

new City () { LongLat= new Point (-66.55, 10.30), Name="Caracas"},

new City(){ LonglLat= new Point (-56.11], -34.53), Name="Montevideo"},
new City(){ LonglLat= new Point (-77.03, -12.03), Name="Lima"},

new City(){ LongLat= new Point (-57.40, -25.16), Name="Asuncion"},
new City () { LongLat= new Point (-74.05, 4.36), Name="Bogota"},

new City(){ LongLat= new Point (-68.09, -16.30), Name="La Paz"},

new City(){ LongLat= new Point (-58.10, 6.48), Name="Georgetown"},
new City () { LongLat= new Point (-55.10, 5.50), Name="Paramaribo"},

}i
ClMaps.DataContext = cities;

5. Switch to XAML view and change the <c7:C1Maps> markup so that it has a beginning and a closing tag so that
it looks as follows:
XAML

<cl:ClMaps x:Name="ClMapsl" FadeInTiles="False" Margin="0,0,235,8"
TargetCenter="-65,-25" Center="-58,-25" Zoom="2">
</cl>

6. Add Foreground="Aqua" to the <c1:CiMaps> tag.

Maps for WPF and Silverlight 7

7. Place the following XAML markup between the <c7:CT1Maps> and </c1:C1Maps> tags:

XAML

<cl:ClMaps.Resources>
<!--Ttem template -->
<DataTemplate x:Key="templPts">
<cl:ClVectorPlacemark
GeoPoint="{Binding Path=LongLat}" Fill="Aqua" Stroke="Aqua"
Label="{Binding Path=Name}" LabelPosition="Top" >
<cl:ClVectorPlacemark.Geometry>
<EllipseGeometry RadiusX="2" Radiusy="2" />
</cl:ClVectorPlacemark.Geometry>
</cl:ClVectorPlacemark>
</DataTemplate>
</cl:ClMaps.Resources>
<cl:ClVectorLayer ItemsSource="{Binding}"
ItemTemplate="{StaticResource templPts}" HorizontalAlignment="Right" Width="403"

/>

This XAML creates a data template, a C1VectorPlacemark, and a C1VectorLayer. The

C1VectorlLayer's ItemsSource property is bound to the entire data source, and the

C1VectorPlacemark's GeoPoint property is bound to the value of the LongLat property while its Label property
is set to the value of the Name property. When you run the project, the Label and Name properties will be
populated by the data source to create a series of labeled placemarks on the map.

In this step, you created a data source and bound it to the properties of the C1VectorPlacemark. In the next step,
you'll run the program and view the results of the quick start project.

Step 3 of 3: Running the Project

In the previous steps, you created a Blend project with a C1Maps control, created a data source, added
a C1VectorLayer and a C1VectorPlacemark to the C1Maps control, and then bound the data source to properties of
the C1VectorPlacemark.

Complete the following steps:

1. Press F5 to run the project and observe that the C1Maps control appears as follows:

Maps for WPF and Silverlight

Caracas
»

Georgetown
Bogota e

'C_'I.I.! to

Lima
L]

Brasilia
»

Observe that there are two dots, one near Buenos Aires and the other in the vicinity of Georgetown, that
don't have names next to them.

2. Double-click in the area of Buenos Aires. Repeat this step twice and observe that another label, one marking
Montevideo, appears on the map.

Maps for WPF and Silverlight

Congratulations! You have completed the Maps for WPF and Silverlight quick start. We recommend that you
continue to familiarize yourself with the control by visiting the C1Maps Control Basics and Maps for WPF and
Silverlight Task-Based Help sections of the Help file.

Maps for WPF and Silverlight 10

Quick XAML Reference

This topic is dedicated to providing a quick overview of the XAML used to complete various tasks. For more
information, see the Maps for WPF and Silverlight Task-Based Help section.

Item Template

The following example illustrates how to use the maps item template:

XAML

<cl: x:Name="ClMapsl" FadeInTiles="False" Margin="0,0,235,8" TargetCenter="-65,-25"
Center="-58,-25" Zoom="2" Foreground="Aqua'">
<cl:ClMaps.Resources>
<!--Ttem template -->
<DataTemplate x:Key="templPts">
<cl:ClVectorPlacemark
GeoPoint="{Binding Path=LongLat}" Fill="Aqua" Stroke="Aqua"
Label="{Binding Path=Name}" LabelPosition="Top" >
<cl:ClVectorPlacemark.Geometry>
<EllipseGeometry RadiusX="2" Radiusy="2" />
</cl:ClVectorPlacemark.Geometry>
</cl:ClVectorPlacemark>
</DataTemplate>
</cl:ClMaps.Resources>
<cl:ClVectorLayer ItemsSource="{Binding}"

ItemTemplate="{StaticResource templPts}"™ HorizontalAlignment="Right" Width="403" />
</cl>

Vector Layer Label

The following example illustrates how to create labels using the vector layer:

XAML

<cl:ClMaps>
<cl:ClVectorLayer>
<cl:ClVectorPlacemark LabelPosition="Left" GeoPoint="-80.107008,42.16389"

StrokeThickness="2" Foreground="#FFEB1212" PinPoint="-80.010866,42.156831"
Label="Erie, PA"/>

</cl:ClVectorLayer>

VectorLayer - Polyline

The following example illustrates how to create a polyline (an open line) using the vector layer:

XAML

<cl:ClMaps>
<cl:ClVectorLayer Margin="2,0,-2,0">
<cl:ClVectorPolyline Points="-80.15,42.12 -123.08,39.09, -3.90,30.85"
StrokeThickness="3" Stroke="Red">
</cl:ClVectorPolyline>
</cl:ClVectorLayer>

Maps for WPF and Silverlight 12

C1Maps Control Basics

The C1.WPF.Maps and C1.Silverlight.Maps assembly contains the C1Maps control, which displays rich geographical
information from various sources, including Bing Maps, as well as your own custom data.

C1Maps supports zooming, panning, and mapping between screen and geographical coordinates. It also supports
layers that allow you to superimpose elements on the maps. The layers support item virtualization and allow you to
display static elements as well as elements that are attached to geographical locations.

The following topics introduce you to the basics of the C1Maps control.

Legal Requirements

C1Maps allows you to use geographical information from Bing Maps. Before using this service, you should check the
licensing requirements associated with it. These licensing terms can be found at:

http://www.microsoft.com/maps/product/terms.htmi

HTTPS Support

Microsoft Silverlight restricts cross-zone, cross-domain, and cross-scheme URL access for security reasons. The
following table summarizes these rules:

Downloader Media, images, ASX | XAML files, Font files Streaming media
object
Allowed schemes HTTP, HTTPS HTTP, HTTPS, FILE HTTP, HTTPS, FILE HTTP
Cross-scheme access No No No Not from HTTPS
Cross-Web domain No If not HTTPS No Yes
access
Cross-zone access No No No No
(Windows)
Cross-zone access No Yes No Yes
(Macintosh)
Redirection allowed Same domain Same domain Same domain No
(Firefox/Safari
only)

For more detailed information on Silverlight HTTPS support, visit the Silverlight URL Access Policy on MSDN, which
is located at http://msdn.microsoft.com/en-us/library/bb820909.aspx.

] Note: It is possible to use a €1 control with HTTPS; however, the image tiles must come from the same domain
as the Silverlight application.

http://www.microsoft.com/maps/product/terms.html
http://msdn.microsoft.com/en-us/library/bb820909.aspx

Maps for WPF and Silverlight 14

Cartesian, which means the scale of the map may change as you pan.

® Logical coordinates go from 0 to 1 on each axis for the whole extent of the map, and they are easier to work
with because they are Cartesian coordinates.

® Screen coordinates are the pixel coordinates of the Control relative to the top-left corner. These are useful for
positioning items within the control and for handling mouse events.

C1Maps provides four methods for converting between these coordinate

systems: ScreenToGeographic, ScreenTolLogic, GeographicToScreen, and LogicToScreen. The conversion between
geographic and logic coordinates is done by the projection configured using the C1Maps.Projection property. The
projection can be changed to support a different map, the default is the Mercator projection used by LiveMaps and
most other providers.

Information Layers

In addition to the geographical information provided by the source, you can add layers of information to the map.
C1Maps includes five layers by default:

e C1MapltemsLayer is the layer used to display arbitrary items positioned geographically on the map. This layer
is an ItemsControl, so it supports directly adding UIElement objects or generic data objects with a
DataTemplate that can convert them into visual items.

e C1MapVirtualLayer displays items that are virtualized; this means they are only loaded when the region of the
map they belong to is visible. It also supports asynchronous requests, so that new items can be downloaded
from the server only when they come into view.

® C1VectorlLayer displays vector data, like lines and polygons, whose vertices are geographically positioned. It
can save and load data from KML files.

e C1MapToolsLayer is the next layer, used to display tools for panning and zooming, and a scale. This layer is
built into C1Maps' template, so it's not necessary to add it manually.

e C1MapTilesLayer is the background layer where the map tiles are displayed. You normally don't have to use
this layer because it is managed by C1Maps automatically.

] Note: C1Maps only works in solutions that include a Web site or Web application project. If you use it in a
standalone, single-project Silverlight solution, it will not display anything.

Items Layering

C1MapltemsLayer is the easiest way to display items over a map. It inherits from ItemsControl so it supports directly
adding UlElement objects or generic data objects with a DataTemplate that can convert them into visual items.
Elements added to a C1MapltemsLayer are positioned using the C1MapCanvas.LongLat attached property. Let's look
at a sample:

XAML

<cl:ClMaps>
<cl:ClMaps.Layers>
<cl:ClMapItemsLayer>
<Ellipse Width="20" Height="20" Fill="Red"
cl:ClMapCanvas.LongLat="-79.9247, 40.4587"
cl:ClMapCanvas.Pinpoint="10, 10"/>
</cl:ClMapltemsLayer>
</cl:ClMaps.Layers>
</cl:ClMaps>

Maps for WPF and Silverlight 16

in a TextBlock.

Using ItemTemplate and ItemsSource it's easy to load data from a database. You only have to setup a Web service
returning a collection of data objects, set the collection as ItemsSource, and create a DataTemplate binding the
appropriate values.

Virtualization

C1MapVirtualLayer displays elements over the map supporting virtualization and asynchronous data loading. It can
be used to display an unlimited number of elements, as long as not many of them are visible at the same time. Its
object model is quite different from C1MapltemsLayer; C1MapVirtualLayer requires a division of the map space in
regions, and the items' source must implement the IMapVirtualSource interface.

The division of map space is defined using the C1MapVirtualLayer.Slices collection of MapSlice. Each map slice defines
a minimum zoom level for its division, and the maximum zoom level for a slice is the minimum zoom layer of the next
slice (or, if it is the last slice, its maximum zoom level is the maximum zoom of the map). In turn, each slice is divided
in a grid of latitude/longitude divisions.

Take the following layer as an example:

C#

var layer = new ClMapVirtuallLayer
{
Slices =
{
new MapSlice(2, 2, 5),
new MapSlice (4, 4, 10)

}i

There are two slices: one goes from zoom 5 to 10, and the other one from zoom 10 to the maximum zoom. When the
zoom value moves from one slice to another, the virtual layer will request data from its source. Also, the first slice has
a 2 by 2 lat/long division; this means that map is divided in 4 regions, and the layer only requests data for the current
visible regions. The second slice is divided into 16 regions, higher zoom values require more divisions to perform well.

To understand the IMapVirtualSource interface, let's look at an implementation from the Factories sample:

C#

public class ServerStoreSource : IMapVirtualSource
{
public void Request (double minZoom, double maxZoom,
Point lowerLeft, Point upperRight,
Action<ICollection> callback)

if (minZoom < minStoreZoom)
return;
var client = CreateFactoriesService();
client.GetStoresCompleted += (s, e) =>
{
if (e.Error == null)
callback (e.Result);

Maps for WPF and Silverlight 17

client.GetStoresAsync (lowerLeft.Y, lowerLeft.X,
upperRight.Y, upperRight.X);

The Request method receives a region of the map space as parameter, and expects a collection of items to be
returned using a callback. This particular implementation first checks if the minimal zoom requested is less than an
application parameter, if true it does nothing. Otherwise, it calls a Web service to obtain the data.

Server-side we have the implementation of GetStores. It iterates through all the elements in a database, and returns
the items that are inside the bounds requested:

C#

public List<Store> GetStores (double lowerLeftlat, double lowerLeftLong,
double upperRightLat, double upperRightLong)

var stores = new List<Store>();
var dataBase = DataBase.GetInstance (Context);
foreach (var store in dataBase.Stores)
{
if (store.Latitude > lowerLeftlat

&& store.Longitude > lowerLeftLong

&& store.Latitude <= upperRightLat

&& store.Longitude <= upperRightLong)

stores.Add (store) ;

}

return stores;

A better implementation should have the stores already divided in regions to prevent iterating through all of them.

Vector Layer

The Vector layer allows you to place various objects with geographic coordinates on the map.

Vector Objects

There are following main vector elements that can be used on the vector layer:

® C1VectorPolyline — similar to Polygon class, except that this object needn't be a closed shape. The polyline is
formed using geographical coordinates. Typical usage: paths, routes. For task-based help, see Adding a
Polyline.

® C1VectorPolygon — similar to Polyline class, but it draws a polygon, which is a connected series of lines that
form a closed shape. The polygon is formed using geographical coordinates. Typical usage: borders, regions.
For task-based help, see Adding a Polygon.

® C1VectorPlacemark — an object attached to the geographical point. The placemarks have scale-independent
geometry which coordinates are expressed in pixel coordinates and optional label (any UlElement). Typical

Maps for WPF and Silverlight 18

usage: labels, icons, marks on the map. For task-based help, see Adding a Label.

Element Visibility

There are several properties that can control element visibility depending on the current map scale. For example, you
can show more details when zooming in and hide them when zooming out.

The global control is performed by C1VectorLayer.MinSize property that specifies at which minimal linear screen size
the element becomes visible.

There is a special property that controls the visibility of C1VectorPlacemark labels. C1VectorLayer.LabelVisibilty can
have the following values:

e Hide - labels are not visible, they are shown as ToolTips.
e AutoHide — overlapped labels are hidden.
e Visible - all labels are visible.

Additionally, each vector element can have its own visibility settings that are stored in LOD property and has priority
over the global values.

LOD (Level of Details) structure has the following properties:

e MinSize, MaxSize - specifies the visible range of linear screen size of an element, if the size does not fit in the
range the element is hidden.

® MinZoom, MaxZoom - alternatively you can specify the range of map scales (C1.Zoom property) in which the
element should be displayed.

KML Import/Export

KML is an XML-based language for geographic visualization and annotation that was originally created for Google
Earth. For more information, see https://developers.google.com/kml/documentation.

KML import is performed by KmIReader class that has static methods that create collection of vector objects from the
supplied KML source (string or stream). The collection can be easily added to the C1VectorLayer. The DataContext of
the imported object is set to the corresponding XElement from the KML source so you can use the original element
to perform custom operation during import.

Import limitations:

Only KML Placemark elements are supported.
Inner polygons are not supported.

Icons are not supported.

External links are not supported.

KML export is performed by KmlWriter class, which has static methods that write the collection of vector objects to
the provided stream in KML format.

The KmlWriter.Write() method has parameter saveElementCallback that allows you to perform custom operations
during export. The method is called for each element that is saved in KML stream. For example, using the callback
method you can add KML custom data to the elements.

Export limitation:

® C1VectorPlacemark.Geometry is not saved in KML stream.

https://developers.google.com/kml/documentation/

Maps for WPF and Silverlight 19

Data Binding

C1VectorLayer has two properties to support data binding:

® ItemsSource — specifies a collection of source objects.
e ItemTemplate — specifies the appearance of each object on the layer. The Item template must define the class,
which is inherited from C1VectorltemBase.

Data Binding Example

Suppose you have a collection of City objects:

C#

public class City
{
public Point LongLat { get; set; }
public string Name { get; set; }
}

The template defines how to create C1VectorPlacemark from the City class.

XAML

<cl:ClMaps x:Name="maps" Foreground="LightGreen">
<cl:ClMaps.Resources>
<!-- Ttem template -->
<DataTemplate x:Key="templPts">
<cl:ClVectorPlacemark
GeoPoint="{Binding Path=LongLat}" Fill="LightGreen" Stroke="DarkGreen"
Label="{Binding Path=Name}" LabelPosition="Top" >
<cl:ClVectorPlacemark.Geometry>
<EllipseGeometry RadiusX="2" Radiusy="2" />
</cl:ClVectorPlacemark.Geometry>
</cl:ClVectorPlacemark>
</DataTemplate>
</cl:ClMaps.Resources>
<cl:ClVectorLayer ItemsSource="{Binding}"
ItemTemplate="{StaticResource templPts}"™ />
</cl:ClMaps>

Finally, you need to use some real collection as a data source.

C#

City[] cities = new City[]
{

new City .32,59.93), Name="Saint Petersburg"},

() { LongLat= new Point (30)

new City(){ LongLat= new Point (24.94,60.17), Name="Helsinki"},
() { (18.07,59.33), Name="Stockholm"},
(0 { (10)

.75,59.91), Name="Oslo"},

new City Longlat= new Point

new City LongLat= new Point

Maps for WPF and Silverlight

new City(){ LongLat= new Point (12.58,55.67), Name="Copenhagen"}

}i

maps.DataContext = cities;

Tool Customization

20

The panning and zooming tools displayed by default in the map are implemented in the C1MapToolsLayer. It is
included in C1Maps' template, so it's not necessary to add it to the Layers collection. To customize the tools you will

first hide the default tools by setting C1Maps.ShowTools to False, and then add your own

C1MapToolsLayer instance. Here is the XAML for this:

XAML

<cl:ClMaps ShowTools="false">
<cl:ClMaps.Layers>
<cl:ClMapToolsLayer/>
</cl:ClMaps.Layers>
</cl:ClMaps>

Note that you could also implement a different layer for the tools, but you'll just modify the template of the built-in
tools in this example. Now, to edit this XAML in Blend, you can right-click the ToolsLayer and select Edit Control

Parts (Template) | Edit a Copy:

¥ Objects and Temefine

L [UserControd]

v = [LserControl]
S Layroc
¥ & |[ClMaps)

trol x:Class="SilverlightApplicati
="http:/Sschemas .microsoft.com/wi
tu="http://schemas . microsoft. comy
Rename :cimaps="rlr-nasespace: 1. 51lver]
Align i x:Names"LayoutRoot™ Backgrounds®
Auto Sire clmaps :ClMaps ShowTools="false™:
{cilmaps:C1Maps.Layerss
<clmaps:CiMapToolsLayer) »
{fclmapsiCiMaps. Layers?

Group Info

Oirder
fclmaps : ClMaps»

Make: Control e

Create Empty.-

Now you can just edit the template in Blend, and the changes will be reflected in the map.

Maps for WPF and Silverlight 21

Maps for WPF and Silverlight Layout and Appearance

The following topics detail how to customize the C1Maps control's layout and appearance. You can use built-in layout
options to lay your controls out in panels such as Grids or Canvases. Themes allow you to customize the appearance
of the grid and take advantage of Silverlight's XAML-based styling. You can also use templates to format and lay out
the control and to customize the control's actions.

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style
properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a DataGrid
has SelectedBrush and MouseOverBrush for rows.

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource created
by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors). Or let's
say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is also possible
because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old
fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with those
less common situations where a full custom design is required.

C1Maps ClearStyle Properties

Maps for WPF and Silverlight supports ClearStyle technology that allows you to easily change control colors without
having to change control templates. By just setting a few color properties you can quickly style the entire grid.

The following table outlines the brush properties of the C1Maps control:

Brushes Description
Background Gets or sets the brush of the control's background.
MouseOverBrush Gets or sets the System.Windows.Media.Brush used to highlight the map buttons when

the mouse is hovered over them.

PressedBrush Gets or sets the System.Windows.Media.Brush used to highlight the buttons when they
are clicked on.

You can completely change the appearance of the C1Maps control by setting a few properties, such as the
Background property, which sets the background color of the map'’s tools. For example, if you set the Background
property to "##FFE40005", the C1Maps control would appear similar to the following:

Maps for WPF and Silverlight 22

It's that simple with ComponentOne’s ClearStyle technology. For more information on ClearStyle, see ComponentOne
ClearStyle Technology.

C1Maps Theming

Silverlight themes are a collection of image settings that define the look of a control or controls. The benefit of using themes is
that you can apply the theme across several controls in the application, thus providing consistency without having to repeat
styling tasks.

When you add the C1Maps control to your project, it appears with the default theme:

You can change this appearance by using one of the built-in themes or by creating your own custom theme. All of the built-in
themes are based on WPF Toolkit themes. The built-in themes are described and pictured below. Note that in the images below, a
row has been selected to show selected styles:

Full Theme Name Appearance

C1ThemeBureauBlack

https://www.grapecity.com/en/forums/silverlight-edition/clearstyle-technology-wher
https://www.grapecity.com/en/forums/silverlight-edition/clearstyle-technology-wher

Maps for WPF and Silverlight 26

' Using Merged Dictionaries
Application.Current.Resources.MergedDictionaries.Add (ClTheme.GetCurrentThemeResources (theme))
End Sub

C#

private void Window Loaded(object sender, RoutedEventArgs e)
{
ClThemeExpressionDark theme = new ClThemeExpressionDark();
//Using Merged Dictionaries
Application.Current.Resources.MergedDictionaries.Add (ClTheme.GetCurrentThemeResources (theme)) ;

}

Note that this method works only when you apply a theme for the first time. If you want to switch to another ComponentOne
theme, first remove the previous theme from Application.Current.Resources.MergedDictionaries.

You can add any of these themes to the C1Maps controls by declaring the theme around the control in markup. For task-based
help about adding a theme to the C1Maps control, see Using C1Maps Themes.

Templates

One of the main advantages to using a WPF or Silverlight control is that controls are "lookless" with a fully
customizable user interface. Just as you design your own user interface (Ul), or look and feel, for Silverlight
applications, you can provide your own Ul for data managed by Maps for WPF and Silverlight. Extensible
Application Markup Language (XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple
approach to designing your Ul without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1Maps control and, in the menu, selecting
Edit Template. Select Edit a Copy to create an editable copy of the current template or select Create Empty to
create a new blank template.

MainPage.xaml* *

Edit Template 4
Edit a Copy... k‘

Create Empty...

@ Note: If you create a new template through the menu, the template will automatically be linked to that
template's property. If you manually create a template in XAML you will have to link the appropriate template
property to the template you've created.

Note: You can use the Template property to customize the template.

http://msdn2.microsoft.com/en-us/library/ms592524

Maps for WPF and Silverlight 27

Maps for WPF and Silverlight Task-Based Help

The task-based help assumes that you are familiar with programming in Visual Studio and know how to use the
C1Maps control in general. If you are unfamiliar with the Maps for Silverlight and WPF product, please see the Maps
for Silverlight and WPF Quick Start first.

Each topic in this section provides a solution for specific tasks using the Maps for Silverlight and WPF product.

Each task-based help topic also assumes that you have created a new Silverlight project.

Adding a Label

In this topic, you will add a label to a geographic point — the geographic coordinates of Erie, Pennsylvania (USA) -
using a C1VectorLayer and a C1VectorPlacemark. For more information on vector layers, see Vector Layer.

In XAML

Complete the following steps:

1. Add the following XAML between the <c1:C1Maps> and </cl:C1lMaps> tags:

XMAL

<cl:ClVectorLayer>

<cl:ClVectorPlacemark LabelPosition="Left" GeoPoint="-80.107008,42.16389"
StrokeThickness="2" Foreground="#FFEB1212" PinPoint="-80.010866,42.156831"
Label="Erie, PA"/>

</cl:ClVectorLayer>

2. Run the project.
In Code

1. In XAML view, add x:Name="C1Maps1" to the <c1:C1Maps> tag so that the object will have a unique identifier
for you to call in code.
2. Enter Code view and import the following namespace:

Visual Basic

Imports Cl.Silverlight.ClMaps

C#

using Cl.Silverlight.ClMaps;

3. Add the following code beneath the InitializeComponent() method:

Visual Basic

' Create layer and add it to the map
Dim vl As ClVectorLayer = New ClVectorLayer ()
ClMapsl.Layers.Add (v1l)

'Create a vector placemark and add it to the layer
Dim vpl As ClVectorPlacemark = New ClVectorPlacemark ()
v1l.Children.Add (vpl)

Maps for WPF and Silverlight 29

Adding a Polyline

You can connect geographic coordinates with a polyline by adding a C1VectorPolyline to the C1VectorLayer
(see Vector Layer for more information). In this topic, you will create a 3-point polyline using XAML and code.

In XAML

Complete the following steps:

1. Place the following XAML markup between the <c1:C1Maps> and </cl:C1Maps> tags:

C#

<cl:ClVectorLayer Margin="2,0,-2,0">

<cl:ClVectorPolyline Points="-80.15,42.12 -123.08,39.09, -3.90,30.85"
StrokeThickness="3" Stroke="Red">

</cl:ClVectorPolyline>
</cl:ClVectorLayer>

2. Press F5 to run the project.

In Code

Complete the following steps:

1. In XAML view, add x:Name="C1Maps1" to the <c1:C1Maps> tag so that the object will have a unique identifier
for you to call in code.

2. Enter Code view and import the following namespace:

Visual Basic

Imports Cl.Silverlight.ClMaps

C#
using Cl.Silverlight.ClMaps;
3. Add the following code beneath the InitializeComponent() method:

Visual Basic

A\l

Create layer and add it to the map

Dim ClVectorLayerl As New ClVectorLayer ()
ClMapsl.Layers.Add (ClVectorLayerl)

1

Initial track

Dim pts As Point () = New Point() {New Point (-80.15, 42.12), New Point(-123.08,
39.09), New Point(-3.9, 30.85)}

' Create collection and fill it

Dim pcoll As New PointCollection()

For Each pt As Point In pts

Maps for WPF and Silverlight 31

Adding a Polygon

You can connect geographic coordinates with a polygon by adding a C1VectorPolygon to the C1VectorLayer
(see Vector Layer for more information). In this topic, you will create a 3-point polygon using XAML and code.

In XAML

Complete the following steps:

1. Place the following XAML markup between the <c1:C1Maps> and </cl:ClMaps> tags:

XAML

<cl:ClVectorLayer Margin="2,0,-2,0">

<cl:ClVectorPolygon Points="-80.15,42.12 -123.08,39.09, -3.90,30.85"
StrokeThickness="3" Stroke="Red">

</cl:ClVectorPolygon>
</cl:ClVectorLayer>

2. Press F5 to run the project.

In Code

Complete the following steps:

1. In XAML view, add x:Name="C1Maps1" to the <c1:C1Maps> tag so that the object will have a unique identifier
for you to call in code.

2. Enter Code view and import the following namespace:
Visual Basic

Imports Cl.Silverlight.ClMaps

C#

using Cl.Silverlight.ClMaps;

3. Add the following code beneath the InitializeComponent() method:

Visual Basic

)

Create layer and add it to the map

Maps for WPF and Silverlight 33

// Appearance
ClVectorPolygonl.Stroke = new SolidColorBrush (Colors.Red);
ClVectorPolygonl.StrokeThickness = 3;

4. Press F5 to run the project.

This Topic lllustrates the Following:

The following image depicts a C1Maps control with three geographical coordinates connected by a polygon.

Displaying Geographic Coordinates on Mouseover

In this topic, you will add code to your project that will return the geographical coordinates of the current mouse
position. These geographical coordinates will then be written as a string to the Text property of a TextBox control.

To get the geographical coordinates of the current mouse position, complete the following steps:

1. Add a StackPanel, a TextBox control, and a C1Maps control to your project.
2. In the Objects and Timeline panel, rearrange the controls so they appears as follows:

Objects and Timeline
[UserControl]

v & [UserControl]

v T LayoutRoot & o

v B [stackPanel] o
E [CiMaps] @

@ [Label] o

3. Set the StackPanel's properties as follows:
o Locate the Width property and click its glyph | | to set the Width property to Auto.
o Locate the Height property and click its glyph ! ' to set the Height property to Auto.
4. Set the TextBox control's Name property to "ShowCoordinates".
5. Set the C1Maps control's properties as follows:
o Set the Width property to "350".
o Set the Height property to "250".

Maps for WPF and Silverlight 34

6. Select the C1Maps control and then, in the Properties panel, click the Events button .

7. In the MouseMove text box, enter "MouseMoveCoordinates" and press ENTER to add the
MouseMoveCoordinates event handler to your project.

8. Replace the code comment with the following code:

Visual Basic

Dim map As ClMaps = TryCast (sender, ClMaps)
Dim p As Point = map.ScreenToGeographic(e.GetPosition (map))
ShowCoordinates.Text = String.Format ("{0:f6},{l:f6}", p.X, p.Y)

C#

ClMaps map = sender as ClMaps;
Point p = map.ScreenToGeographic(e.GetPosition (map)):;
ShowCoordinates.Text = string.Format ("{0:£f6},{1:f6}", p.X, p.Y);

9. Import the following namespace:

Visual Basic

Imports Cl.WPF.ClMaps

C#

using Cl.WPF.ClMaps;

10. Press F5 to run the project. Once the project is loaded, run your cursor over the map and observe that
geographical coordinates appear in the text box.

|21.?958?5r50.?35455 |

Rearranging the Map Tools

You can modify map tools using the C1MapToolsLayer (see Tool Customization for more information) and template.

Complete the following steps:

1. Select C1Maps to reveal its list of properties in the Properties panel.
2. Clear the Show Tools check box. This will hide the default tools.

Maps for WPF and Silverlight 36

MainPage.xaml.cs MainPage.xaml* =

[ClMapToolslayer] > &3 > @ [Grid]

Fd B

Changing the Map Source

C1Maps can display geographical information from several sources. By default, C1Maps uses Microsoft LiveMaps
aerial photographs as the source, but you can change that using the Source property, which takes an object of type
MultiScaleTileSource. By default, this is set to display Bing Maps (see Legal Requirements prior to using this service)
aerial photographs, but you can change it to display the road source or hybrid source.

Changing to Road Source
Complete the following steps:
1. In XAML view, add xxName="CTMaps1" to the <c1:C1Maps> tag so that the object will have a unique identifier
for you to call in code.
2. Enter Code view and import the following namespace:
Visual Basic

Imports Cl.Silverlight.ClMaps

C#

using Cl.Silverlight.ClMaps;

3. Add the following code beneath the InitializeComponent() method:

Visual Basic

Maps for WPF and Silverlight 38

For more information about map sources, see C1Maps Concepts and Main Properties.

Using C1Maps Themes

The C1Maps control comes equipped with a light blue default theme, but you can also apply six themes (see C1Maps
Theming) to the control. In this topic, you will change the C1Maps control's theme to C1ThemeRainierOrange.

In Blend

Complete the Following steps:

S e o

7.

Click the Assets tab.

In the search bar, enter "C1ThemeRainierOrange". The C1ThemeRainierOrange icon appears.
Double-click the C1ThemeRainierOrange icon to add it to your project.

In the search bar, enter "C1Maps" to search for the C1Maps control.

Double-click the C1Maps icon to add the C1Maps control to your project.

In the Objects and Timeline panel, select [C1Maps] and use a drag-and-drop operation to place it under
[C1ThemeRainierOrange].

Run the project.

In Visual Studio

Complete the following steps:

1.
2.
3.

6.

Open the .xaml page in Visual Studio.
Place your cursor between the <Grid></Grid> tags.

In the Tools panel, double-click the C1ThemeRainierOrange icon to declare the theme. Its tags will appear as
follows:

<my:CT1ThemeRainierOrange></my:C1ThemeRainierOrange >

Place your cursor between the <my:C1ThemeRainierOrange> and </my:C1ThemeRainierOrange> tags.
In the Tools panel, double-click the C1Maps icon to add the control to the project. Its tags will appear as
children of the <my:C1ThemeRainierOrange> tags, causing the markup to resemble the following:

XAML

<my:ClThemeRainierOrange>
<cl:ClMaps Height="172" Width="288" Margin="200,0,34,0"/>
</my:ClThemeRainierOrange>

Run your project.

This Topic lllustrates the Following:

The following image depicts a C1Maps control with the C1ThemeRainierOrange theme.

