

ComponentOne

True DBGrid for WinForms

GrapeCity US

GrapeCity
201 South Highland Avenue, Suite 301
Pittsburgh, PA 15206
Tel: 1.800.858.2739 | 412.681.4343
Fax: 412.681.4384
Website: https://www.grapecity.com/en/
E-mail: us.sales@grapecity.com

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

https://www.grapecity.com/en/
mailto:us.sales@grapecity.com

Table of Contents
True DBGrid for WinForms 10

Help with WinForms Edition 10

Differences Between True DBGrid for WinForms and FlexGrid for WinForms 10

Key Features 11-12

True DBGrid for WinForms Quick Start 13

Step 1 of 3: Creating a True DBGrid for WinForms Application 13

Step 2 of 3: Binding True DBGrid for WinForms to a DataSet 13-16

Step 3 of 3: Customizing True DBGrid for WinForms Settings 16-18

True DBGrid for WinForms Top Tips 19-20

Object Model 21

True DBGrid for WinForms Objects and Collections 21-23

C1TrueDBGrid Class 23

C1TrueDBDropDown Class 23

C1DataColumnCollection Class 23

C1DataColumn Object 23

C1DisplayColumnCollection Class 23-24

C1DisplayColumn Class 24

GroupedColumnCollection Class 24

SplitCollection Class 24

Split Object 24-25

GridStyleCollection Class 25

Style Object 25

ValueItems Class 25-26

ValueItemCollection Class 26

ValueItem Class 26

PrintInfo Class 26

PrintPreviewWinSettings Class 26

HBar Class 26-27

VBar Class 27

GridLines Class 27

GridBorders Class 27

SelectedRowCollection Class 27

SelectedColumnCollection Class 27

Working with Objects and Collections 27

TrueDBGrid for WinForms 1

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Working with Collections 27-32

Adding Members 32-33

Removing Members 33

Working with the Count Property 33-35

Design-Time Support 36

Understanding the Object Model and Property Access 36

Accessing Global Grid Properties 36

Accessing Split-Specific Properties 36-37

Accessing Column Properties 37

Using the Split Collection Editor 37-38

Splits Properties 38-40

Using the C1DisplayColumnCollection Editor 40-41

DisplayColumns Properties 41-42

Using the ValueItemCollection Editor 42-43

Using the C1TrueDBGrid Style Editor 43-44

Using the C1TrueDBGrid Designer 44

Accessing the C1TrueDBGrid Designer 44-45

C1TrueDBGrid Designer Elements 45-47

Splits Properties 47-49

C1DataColumn Properties 49-50

DisplayColumns Properties 50-51

C1TrueDBGrid Tasks Menu 51-58

Column Tasks Menu 58-65

C1TrueDBGrid Context Menu 65-67

Run-Time Interaction 68

Navigation and Scrolling 68

Mouse Interaction 68

Clicking the Rightmost Column 68-69

Keyboard Interaction 69-70

Navigation at Row Boundaries 70

Navigation at Split Boundaries 70-71

Restricting Cell Navigation 71-72

Selection, Sorting, and Movement 72

Selecting Columns 72-73

Moving Columns 73-74

Moving Columns at Run Time 74-75

TrueDBGrid for WinForms 2

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Sorting Columns 75-76

Selecting Rows 76

Selecting a Range of Cells 76

Sizing and Splitting 76

Sizing Rows 76-77

Sizing Columns 77-78

Database Operations 78

Editing Data 78-79

Adding a New Record 79

Deleting a Record 79

Customized Grid Editors 79-80

Using Custom Editors 80-81

Creating Custom Editors 81

Additional User Interaction Features 81-82

Data Binding 83

Binding True DBGrid for WinForms to a Data Source 83

Preserving the Grid's Layout 83-84

Using Unbound Columns 84

Creating Unbound Columns 84-85

Implementing Multiple Unbound Columns 85-86

Updating Unbound Columns 86-87

Editing Unbound Columns 87-88

Creating an Unbound Grid 88-89

Adding New Rows to an Unbound Grid 89-93

Customizing the Grid's Appearance 94

Visual Styles 94-96

Captions, Headers, and Footers 96-97

Column and Grid Captions 97

Column Footers 97-98

Multiple-Line Headers and Footers 98

Split Captions 98-99

Three-Dimensional vs. Flat Display 99-101

Borders and Dividing Lines 101-102

Unpopulated Regions 102

The Rightmost Column 102-103

Unused Data Rows 103-104

TrueDBGrid for WinForms 3

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Highlighting the Current Row or Cell 104-107

Row Height and Word Wrap 107

Adjusting the Height of All Grid Rows 107

Enabling Wordwrap in Cells 107-108

Alternating Row Colors 108

Horizontal and Vertical Alignment 108-109

Data Presentation Techniques 110

Text Formatting 110

Numeric Field Formatting 110

Predefined Numeric Options 110-111

Custom Number Formatting 111-112

Input Validation with Built-In Formatting 112

Formatting with an Input Mask 112-113

Formatting with a Custom Event Handler 113-115

Automatic Data Translation with ValueItems 115

What are ValueItems? 115

Specifying Text-to-Text Translations 115-117

Specifying Text-to-Picture Translations 117-119

Displaying Both Text and Pictures in a Cell 119-123

Displaying Boolean Values as Check Boxes 123

Displaying Allowable Values as Radio Buttons 123-124

Context-Sensitive Help with CellTips 124-126

Scroll Tracking and ScrollTips 126-127

Data-Sensitive Cell Merging 127-132

Formatting Merged Cells 132-133

Column Grouping 133-134

Column Grouping with the GroupIntervalEnum Enumeration 134

Group Rows by Year 134-137

Group Rows by the First Character of the Value 137-140

Group Rows by Date Value (Outlook-Style) 140-144

Group Rows by Custom Setting 144-149

Expanding and Collapsing Grouped Rows 149-152

Data Display 152

Hierarchical Data Display 152-154

Drop-Down Hierarchical Data Display 154-156

TrueDBGrid for WinForms 4

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Form Data Display 156-157

Inverted Data Display 157

Multiple Line Data Display 157-158

Implications of Multiple-Line Mode 158

Multiple Line Fixed Data Display 158-159

Owner-Drawn Cells 159-162

Filtering Data in DataSets 162-163

Manually Filtering Data 163-164

Adding a Watermark to the Filter Bar 164-166

Filtering the Grid with Multiple Criteria 166-167

Adding a Filter Drop-Down List 167-168

Condition Filtering 168-169

Custom Filtering 169-170

How to Use Splits 171

Referencing Splits and their Properties 171-173

Split Properties Common to C1TrueDBGrid 173

Split-Only Properties Not Supported by C1TrueDBGrid 173-174

Split Matrix Notation 174

Creating and Removing Splits 174-176

Working with Columns in Splits 176

Sizing and Scaling Splits 176-180

Creating and Resizing Splits through User Interaction 180-182

Vertical Scrolling and Split Groups 182-184

Horizontal Scrolling and Fixed Columns 185-186

Navigation Across Splits 186

How to Use Styles 187

Built-In Named Styles 187-188

Named Style Defaults 188-189

Named Style Inheritance 189-190

Modifying Named Styles 190-191

Working with Style Properties 191

Modifying a Style Property Directly 191-192

Named Styles vs. Anonymous Styles 192-193

Anonymous Style Inheritance 193

Example 1 of 10: Inheriting from Containing Splits 193-194

Example 2 of 10: Affecting Only Data Cells in the First Split 194-195

TrueDBGrid for WinForms 5

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Example 3 of 10: Affecting All Elements Only in the First Split 195-196

Example 4 of 10: Affecting Only Data Cells in the First Column of the First Split 196

Example 5 of 10: Affecting All Elements Only in the First Column of the First Split 196-197

Example 6 of 10: Changing the BackColor of the Style Property 197-198

Example 7 of 10: Changing Only the Data Cells in the First Split 198

Example 8 of 10: Changing Only the Data Cells in the First Column of the First Split 198-199

Example 9 of 10: Setting the Alignment of C1DisplayColumn Objects 199-200

Example 10 of 10: Setting the Alignment for Column Headers 200

Applying Styles to Cells 200-201

Specifying Cell Status Values 201-202

Applying Cell Styles by Status 202-204

Applying Cell Styles by Contents 204-205

Applying Cell Styles by Custom Criteria 205-208

Cell Style Evaluation Order 208

Applying Pictures to Grid Elements 208-209

Displaying Background Pictures 209-213

Displaying Foreground Pictures 213-214

Cell Editing Techniques 215

How Cell Editing Works 215

Initiating Cell Editing 215

Color and Wordwrap 215

Determining Modification Status 215

Determining Cell Contents 215-216

Terminating Cell Editing 216

Handling Editing Events 216

Standard Keystroke Events 216-217

Column Editing Events 217-218

Changing Cell Contents with a Single Keystroke 218-220

Working with Text 220

Limiting the Size of Data Entry Fields 220

Providing a Drop-Down Edit Control for Long Fields 220-221

Selecting and Replacing Text 221

Input Masking 221

Specifying an Input Mask for a Column 221-222

Using an Input Mask for Formatting 222

Controlling How Masked Input is Updated 222-223

TrueDBGrid for WinForms 6

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In-Cell Buttons 223

Enabling the In-Cell Button 223-224

Rendering Cells as Command Buttons 224-225

Detecting In-Cell Button Clicks 225

Customizing the In-Cell Button Bitmap 225-226

Drop-Down Controls 226

Using the Built-In Combo Box 226

Detecting Built-In Combo Box Selections 226-227

Using the C1TrueDBDropDown Control 227

Automatic Data Translation with C1TrueDBDropDown 227-228

Using an Arbitrary Drop-Down Control 228-229

Using the Built-In Column Button 229

True DBGrid for WinForms Samples 230-231

True DBGrid for WinForms Tutorials 232

Tutorial 1: Binding True DBGrid to a DataSet 232-235

Tutorial 2: Using True DBGrid for WinForms with SQL Query Results 235-238

Tutorial 3: Linking Multiple True DBGrid Controls 238-241

Tutorial 4: Interacting with Code and Other Bound Controls 241-247

Tutorial 5: Selecting Multiple Rows Using Bookmarks 247-249

Tutorial 6: Defining Unbound Columns in a Bound Grid 249-251

Tutorial 7: Displaying Translated Data with the Built-In Combo 251-253

Tutorial 8: Attaching a Drop-Down Control to a Grid Cell 253-254

Tutorial 9: Attaching an Arbitrary Drop-Down Control to a Grid Cell 254-259

Tutorial 10: Enhancing the User Interface with In-Cell Bitmaps 259-261

Tutorial 11: Using Styles to Highlight Related Data 261-264

Tutorial 12: Displaying Rows in Alternating Colors 264-266

Tutorial 13: Implementing Drag-and-Drop Functionality 266-272

Tutorial 14: Creating a Grid with Fixed, Nonscrolling Columns 272-274

Tutorial 15: Using PrintInfo and Print Preview 274-278

Tutorial 16: Using the Hierarchical Display 278-279

Tutorial 17: Creating a Grouping Display 279-280

Tutorial 18: Using Value Translation 280-281

Tutorial 19: Using Range Selection 281-283

Tutorial 20: Displaying Multiple Data Views 283-286

Tutorial 21: Adding a Filter Bar 286-288

TrueDBGrid for WinForms 7

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Tutorial 22: Borders, Scroll Tracking, and Scroll Tips 288-297

True DBGrid for WinForms Task-Based Help 298

Adding a New Row to C1TrueDBGrid 298-300

Selecting a Row 300-301

Accessing the Values of the Selected Rows in the Grid 301-303

Controlling Grid Interaction 303

Disabling Column Sorting 303-304

Locking a Cell from Being Edited 304-305

Freezing Columns 305-306

Restricting Editing in Specific Columns 306-308

Setting the Grid's Appearance 308

Adding a Gradient Fill to a Column 308-312

Formatting Rows by Specific Criteria 312-315

Hiding the Record Selectors Column 315-316

Highlighting the Row of the Selected Cell 316-319

Disabling Selected Highlight 319-320

Placing an Image in a Column Header 320-324

Setting Multiple Height Values for Rows 324-326

Setting the Background Color of a Row 326-327

Setting the Column's Caption Height 327-329

Setting the Font Style of a Column 329-333

Aligning the Column Headers 333-334

Moving the Focus in Code 334-335

Adding Custom Error Checking to C1TrueDBGrid 335-336

Changing the Column Order in the Grid 336-338

Resizing Columns During Grid Resizing 338-339

Exporting Grid Data 339-340

Exporting To All Available File Types 340-341

Exporting to Delimited Text 341-342

Exporting to Excel 342-344

Exporting to HTML 344-345

Exporting to PDF 345-346

Exporting to RTF 346-347

Getting the DataRow for a Row Index After Sorting or Filtering 347

Modifying the ConnectionString 347-349

Moving to the AddNew Row 349-351

TrueDBGrid for WinForms 8

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Saving the Layout of the Grid 351-352

Searching for Entries in a Column 352-355

Setting Default Values for New Rows 355-356

Displaying a Column Total in the Footer 356-358

Displaying the Current Column and Row 358-359

Displaying the Date and Time in a Column 359-360

Programmatically Entering Edit Mode 360-361

Changing the Filter Language 361-362

Creating a Custom Print Preview 362-366

TrueDBGrid for WinForms 9

Copyright © 2019 GrapeCity, Inc. All rights reserved.

True DBGrid for WinForms
True DBGrid for WinForms is a set of robust, easy-to-use .NET grid controls that
allow you to create complex bound and unbound grid applications quickly. True
DBGrid for WinForms's strength is data binding; with an ADO.NET managed
database interface, True DBGrid for WinForms offers features like Excel-like split
views and built-in hierarchical binding and grouping that'll boot end-user productivity.
Ease of use extends to the developer, too; controls are based on Microsoft
specifications, so you'll have no problems using True DBGrid for WinForms if you're
familiar with the Microsoft .NET object and collection models. The Target framework
for WindowsForms applications which use .Net 4 build of C1TrueDBGrid control should
be .NET Framework 4 Client Profile.

With two controls, C1TrueDBGrid, a full-featured grid control,
and C1TrueDBDropDown, a multicolumn drop-down list box for a grid column, True
DBGrid for WinForms includes dozens of advanced features including data access,
data presentation (such as splits, grouping, filtering, and customized navigation), and
user interface features (including Office 2007 and Office 2010 Visual Styles), that you
can use to build intuitive, reliable, professional-looking grid applications.

 Getting Started

Get started with the
following topics:

Key Features
Quick Start
Object Model
Samples
Tutorials

Help with WinForms Edition

Getting Started
For information on installing ComponentOne Studio WinForms Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WinForms Edition.

Differences Between True DBGrid for WinForms and
FlexGrid for WinForms
Many customers ask about the differences between our WinForms grid components. While both are robust, easy-to-
use grid controls that allow you to browse, edit, add, delete, and manipulate tabular data, there are several reasons
why you may want to use one over the other.

Both components can be used in bound or unbound mode, but True DBGrid for WinForms allows you to work more
easily in bound mode. True DBGrid for WinForms is better suited for data binding and, therefore, offers more
features in that area, including split views and built-in hierarchical binding and grouping.

FlexGrid for WinForms, on the other hand, is more suited for working with unbound data; FlexGrid for WinForms
includes features that allow you to customize trees and take advantage of its cell merging capabilities. You can also
derive from it to create customized grids.

If you plan to work with your grids in unbound mode or need to customize the grid beyond what the object model
offers, FlexGrid for WinForms is the right choice. However, if you plan to use your grids mainly in bound mode and
require advanced features such as splits and hierarchical views, True DBGrid for WinForms is the better choice.

If you have additional questions about True DBGrid for WinForms and FlexGrid for WinForms, please visit our Web
site at https://www.grapecity.com.

TrueDBGrid for WinForms 10

Copyright © 2019 GrapeCity, Inc. All rights reserved.

http://help.grapecity.com/componentone/NetHelp/c1studiowinforms/webframe.html
https://www.grapecity.com/

Key Features
True DBGrid for WinForms includes dozens of advanced data access, data presentation, and user interface features
that enable developers to build intuitive, professional-looking applications:

Extensive Design-time Support
Design-time features, including SmartTags and full-featured editors allow you to intuitively create grid
applications with little or no coding. For details, see Design-Time Support.
Multiple Data Views
Present data in the format that's most useful for you with GroupBy View and standard Microsoft Outlook-style
grouping, Hierarchical Data Display, Form View, Inverted View, MultipleLines View, and MultipleLinesFixed
View. See Data Display for more information.
Horizontal and Vertical Splits
Excel-like splits let you split the grid horizontally, vertically, or both. Plus, you have control over how splits
scroll, individually or together. For details, see How to Use Splits.
Drop-Down Object Support
Include a variety of drop-down objects for data entry, including a multicolumn control (the
C1TrueDBDropDown control), a combo box, and a multiline text editor. See Drop-Down Controls for more
information. Third-party drop-down controls also supported.
Multiple Export Options and Robust Print Options
Export your grid to multiple formats including Delimited Text, Excel (XLS and XLSX), PDF, HTML, RTF, and more!
For details see Exporting Grid Data. Control printing fully with features such as zoom, fit in window, stop
pagination, and print preview.

Note: C1TrueDBGrid's export and printing features use Reports for WinForms' components internally,
and you may need to reference Reports for WinForms' assemblies (C1.Win.C1Report and C1.C1Report)
if you are receiving an error related to the assembly.

Office 2007 and 2010 Styling
True DBGrid for WinForms supports Visual Styles that mimic the styles available in Office 2007 and Office
2010. You can set the Visual Style easily though the VisualStyle property. For more information about available
Visual Styles, see Visual Styles.
Universal .NET Data Binding
True DBGrid for WinForms can bind to any .NET data source with little or no code, allowing you to create a
fully-navigational database browser in seconds. See Data Binding for more information.
Designed to Microsoft Specifications
True DBGrid for WinForms includes .NET objects designed according to Microsoft specifications so if you're
familiar with the Microsoft .NET object and collection models, you'll have no problem using True DBGrid for
WinForms.
Enhanced Keyboard Navigation
With just one property setting, control the relative position of the next cell when end-users press the ENTER
key. See Navigation and Scrolling for information.
Rich Scrolling Capabilities
Easily track the location of the scroll bar in the grid, set the vertical scroll bar thumb to scroll records as moved,
and provide an informational pop-up during scrolling. See Scroll Tracking and ScrollTips and Tutorial 22:
Borders, Scroll Tracking, and Scroll Tips for more information.
2D and 3D Cell Display
Choose two-dimensional, three-dimensional, or a combination of the two to control cell appearance to your
specifications. See Three-Dimensional vs. Flat Display for more information.
Style Border Properties
Customize the appearance, size, color, and type of cell borders. See Borders and Dividing Lines for more
information.
Excel and Word-Like Styles
Use hierarchical style objects to customize the grid's appearance with font, color, picture, and formatting

TrueDBGrid for WinForms 11

Copyright © 2019 GrapeCity, Inc. All rights reserved.

specifications.
Alternating Row Colors
Add alternating row colors to the grid to enhance the readability of the grid's display. See Alternating Row
Colors for more information.
In-Cell Objects
Add a variety of in-cell objects for data display and editing in the grid, including bitmaps, command buttons,
check boxes, and radio buttons. See In-Cell Buttons for more information.
Automatic Data Translation
Automatically translate database values into alternate text or graphics without coding in the grid. For example,
numeric codes can be rendered as words or even bitmaps. See Automatic Data Translation with ValueItems for
details.
Data-Sensitive Display
Apply different styles to individual cells depending upon their contents. For example, show negative numbers
in red, or fields containing a particular substring in bold. See Applying Styles to Cells for more information.
Input Masking
Assign input templates to columns in order to simplify the run-time data entry process and reduce end-user
data entry errors. See Input Masking for details.
Filter Bar
Implement custom end-user operations such as incremental search and record set filtering using the filter bar,
a special data entry row below the column headers. See Filtering Data in DataSets for more information.
Unbound Grids and Columns
Easily create an unbound grid – you can even add unbound columns to a bound grid. See Using Unbound
Columns and Creating an Unbound Grid for details.
Run-Time CellTips
Add context-sensitive help for end-users by using cell tips in the grid. See Context-Sensitive Help with CellTips
for details.
Fixed, Nonscrolling Columns
Create fixed, nonscrolling columns anywhere in the grid – create a fixed left or right-most column or even to fix
a column in the middle of the grid. Creating fixed columns is also easy to do with splits. See Freezing Columns
for more information.
Excel-style Cell Selection
Choose not only any row or column, but also any range of cells. See Selection, Sorting, and Movement for
more information.
Automatic Column Sizing
Keep your data viewable by resizing columns proportionately whenever the grid is resized horizontally. See
Sizing and Splitting for details.
Merge Contiguous Like-valued Cells
Merge adjacent rows of like-valued data from a specified column into a noneditable cell, or display all cell
values individually. See Data-Sensitive Cell Merging for more information.
Simplify Data Entry
Reduce the number of keystrokes needed for drop-down selection with the AutoDropdown and
AutoCompletion properties to simply end-user data entry.
Extensive Object Model
The True DBGrid has two separate column objects to help simplify the sometimes daunting object model. The
C1DataColumn object contains all of the properties related to data and data processing, while the
C1DisplayColumn object contains all of the properties related to the column’s display. See Object Model for
more information.
And Much More…
Customizable ENTER key behavior, drop-down hierarchical grid, tag property for column objects, right to left
support, and a wide variety of print enhancements.

TrueDBGrid for WinForms 12

Copyright © 2019 GrapeCity, Inc. All rights reserved.

True DBGrid for WinForms Quick Start
This quick start guide will walk you through the steps of creating a True DBGrid for WinForms application, binding
the grid to a data source, and customizing the grid's appearance and behavior settings. You'll discover that you can
easily create powerful database applications using True DBGrid for WinForms.

The quick start uses an Access database, C1NWind.mdb. The C1NWind.mdb database file is located in the Common
subdirectory of the WinForms Edition program. The tutorials assume that the database file C1NWind.mdb is in
the Documents\ComponentOne Samples\Common directory, and refer to it by filename instead of the full
pathname for the sake of brevity.

Step 1 of 3: Creating a True DBGrid for WinForms
Application
In this step you will add a C1TrueDBGrid control to the form and create a simple grid application. Complete the
following steps:

1. Create a new .NET project.

2. Open the Visual Studio Toolbox and double-click the C1TrueDBGrid icon .
The grid is added to the form and the C1TrueDBGrid Tasks menu appears.

3. In the C1TrueDBGrid Tasks menu, click Dock in parent container to dock the grid within the entire form. For
more information on accessing the C1TrueDBGrid Tasks menu, see C1TrueDBGrid Tasks Menu.

You've successfully created a simple grid application. In the next step, you'll learn how to bind the C1TrueDBGrid
control to a data source.

Step 2 of 3: Binding True DBGrid for WinForms to a DataSet
In this step, you'll learn how to bind a C1TrueDBGrid control to a DataSet. You will also learn about the basic True
DBGrid properties and observe the run-time features of the grid. Complete the following steps to bind a

TrueDBGrid for WinForms 13

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1TrueDBGrid control to a DataSet:

1. Click C1TrueDBGrid1's smart tag to open the C1TrueDBGrid Tasks menu, select the Choose Data Source
drop-down arrow, and click Add Project Data Source to add a new data source to your project.

2. The Data Source Configuration Wizard appears and Database is selected. Click Next.
3. Click the New Connection button to locate and connect to a database.
4. Click the Browse button and locate C1NWind.mdb in the Documents\ComponentOne Samples\Common

directory. Select it and click Open.
5. Click the Test Connection button to make sure that you have successfully connected to the database or server

and click OK. The new string appears in the data connection drop-down list.
6. Click the Next button to continue. A dialog box will appear asking if you would like to add the data file to your

project and modify the connection string. Click No.
7. In the next window, the Yes, save the connection as check box is checked by default and a name has been

automatically entered in the text box. Click Next to continue.
8. In the Choose Your Database Objects window, you can select the tables and fields that you would like in your

dataset. Select the Composer table.
The DataSet is given a default name in the DataSet name text box.

TrueDBGrid for WinForms 14

Copyright © 2019 GrapeCity, Inc. All rights reserved.

9. Click Finish to exit the wizard. The DataSet, BindingSource and TableAdapter now appear on your form.

10. Double-click the form. Notice that Visual Studio has added the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.ComposerTableAdapter.Fill(Me.DsComposer.Composer)

To write code in C#

C#

this.composerTableAdapter.Fill(this.DsComposer.Composer);

Run the program and observe the following:
Notice that the data from the Composers table is reflected in the grid:

TrueDBGrid for WinForms 15

Copyright © 2019 GrapeCity, Inc. All rights reserved.

True DBGrid retrieves the database schema information from the DataSet and automatically configures itself to
display all of the fields contained in the database table. Note that the field names are used as the default column
headings.

Congratulations, you have successfully completed binding a C1TrueDBGrid control to a DataSet. In the next section
you will customize the C1TrueDBGrid control's appearance and behavior settings.

Step 3 of 3: Customizing True DBGrid for WinForms
Settings
In the previous steps you've added C1TrueDBGrid to a project, set up the grid, and bound the grid to a data source.
In this step you'll customize the grid's appearance and behavior settings. Complete the following steps:

1. Switch to Design view and click on C1TrueDBGrid1's smart tag to open the C1TrueDBGrid Tasks menu.
2. In the C1TrueDBGrid Tasks menu set the following properties:

Set Caption property to "Composers" to add a caption to the grid.
Select the Enable Adding and Enable Editing check boxes to set the AllowAddNew and AllowUpdate
properties to True and allow users to edit the grid.
Select Enable Alternating Rows to set the AlternatingRows property to True.
Set the VisualStyle property to Office2007Blue to set the grid's appearance.

TrueDBGrid for WinForms 16

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. In the Properties window, set the EvenRowStyle.BackColor property to LightSteelBlue.

Run the program and observe:
You've customized the C1TrueDBGrid control. Notice that you've changed the appearance of the grid and can now
add and edit the grid's content.

TrueDBGrid for WinForms 17

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Congratulations, you've completed the True DBGrid quick start! You've created a True DBGrid for WinForms
application, bound the grid to a data source, and changed the grid's appearance and behavior settings without
writing a single line of code.

TrueDBGrid for WinForms 18

Copyright © 2019 GrapeCity, Inc. All rights reserved.

True DBGrid for WinForms Top Tips
The following tips were compiled from frequently asked user questions posted in the C1TrueDBGrid newsgroup and
forum.

Tip 1: Use the SetDataBinding method to keep layout of grid intact.
If the DataSource is reset through code, it will show all of the data in the grid and will not keep the initial layout
created with the Designer.

You can ensure that the grid layout remains as designed by using the SetDataBinding method with the HoldFields
parameter set to True. For example:

To write code in Visual Basic

Visual Basic

C1TrueDBGrid1.SetDataBinding(DbDataSet, "Customer", True)

To write code in C#

C#

this.c1TrueDBGrid1.SetDataBinding(this.DbDataSet, "Customer", true);

Tip 2: Setting column styles through FetchCellStyle event.
Since columns can be moved and sorted, you should generally be careful about using the display column index and
the column index as these may refer to different columns.

You can ensure that a style is associated with a particular display column. In the following example, a style is
associated with a display column through the FetchCellStyle event:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FetchCellStyle(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchCellStyleEventArgs) Handles C1TrueDBGrid1.FetchCellStyle
 If Me.C1TrueDBGrid1.Splits(0).DisplayColumns(e.Col).DataColumn.Value.GetType
Is GetType(Integer) Then
 e.CellStyle.ForeColor = Color.Red
 End If
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_FetchCellStyle(object sender, FetchCellStyleEventArgs e)
{
 if (this.c1TrueDBGrid1.Splits[0].DisplayColumns[e.Col].DataColumn.Value.GetType()
== typeof(string))
 {
 e.CellStyle.ForeColor = Color.Red;

TrueDBGrid for WinForms 19

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/forums
https://www.grapecity.com/en/forums

 }
}

Tip 3: Getting current column and row number of the Grid.
It can be really useful to find out what cell a user is interacting with, or what cell is currently selected. Getting the
column number and row number of the selected cell is very simple to do.

For example, the following code determines and displays the row and column number of the current cell:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Row = Me.C1TrueDBGrid1.RowContaining(C1TrueDBGrid1.Row)
Me.C1TrueDBGrid1.Col = Me.C1TrueDBGrid1.ColContaining(C1TrueDBGrid1.Col)
MessageBox.Show("The number of the column is " & Me.C1TrueDBGrid1.Col & " the row row
number is " & Me.C1TrueDBGrid1.Row)

To write code in C#

C#

this.c1TrueDBGrid1.Row = this.c1TrueDBGrid1.RowContaining(c1TrueDBGrid1.Row);
this.c1TrueDBGrid1.Col = this.c1TrueDBGrid1.ColContaining(c1TrueDBGrid1.Col);
MessageBox.Show("The number of the column is " + this.c1TrueDBGrid1.Col + " the row
row number is " + this.c1TrueDBGrid1.Row);

Tip 4: Stop users from collapsing the grid into the normal data view
when in the hierarchical data view
When the grid is in the hierarchical data view you can easily stop users from collapsing the grid back to the normal
data view.

Using the Collapse event, set e.Cancel = True to prevent users from collapsing the expand icon. For example:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_Collapse(ByVal sender As System.Object, ByVal e As
C1.Win.C1TrueDBGrid.BandEventArgs) Handles C1TrueDBGrid1.Collapse
 e.Cancel = True
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_Collapse(object sender, BandEventArgs e)
{
 e.Cancel = true;
}

TrueDBGrid for WinForms 20

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Object Model
True DBGrid for WinForms was developed using the latest .NET technologies. The True DBGrid for WinForms
controls and their programmable components are all .NET objects designed according to Microsoft specifications. If
you're already familiar with the Microsoft .NET object and collection models, you'll have no problem using True
DBGrid for WinForms.

If you're new to Visual Studio, please read Working with Objects and Collections, which illustrates how to manipulate
True DBGrid for WinForms objects in code. Although individual objects are designed to perform different tasks, the
techniques used to manipulate them are the same. Once you have mastered these common programming constructs,
using Visual Studio controls will be quite easy and intuitive.

Regardless of your experience level, please read the following section, as it provides a thumbnail sketch of all True
DBGrid for WinForms objects and collections.

True DBGrid for WinForms Objects and Collections
True DBGrid for WinForms has a rich object model with the following elements:

TrueDBGrid for WinForms 21

Copyright © 2019 GrapeCity, Inc. All rights reserved.

True DBGrid for WinForms provides a rich set of properties, methods, and events that enable you to develop
sophisticated database applications. The organization imposed by True DBGrid's object model makes it easier to
work with such a large feature set.

Objects and collections that refer to visual entities, such as columns, can be customized in the designer or in code.
Objects and collections that refer to abstract entities, such as arrays and bookmarks, are only available in code.

Two controls are available in the .NET Toolbox for addition into a project:

Control Description

C1TrueDBGrid True DBGrid for WinForms grid control.

C1TrueDBDropDown True DBGrid for WinForms drop-down box control.

The namespace for True DBGrid for WinForms also contains definitions for the following objects:

Object Description

C1DataColumn Represents a column of data within a grid.

C1DisplayColumn Represents a column of data relative to a split.

GridLines Represents the gridlines which separate items in the grid.

HBar Represents the horizontal scroll bar and its properties.

PrintPreviewWinSettings Encapsulates the print preview window and its properties.

PrintInfo Encapsulates page setup and print job settings.

Split Represents a group of adjacent columns that scroll as a unit.

Style Encapsulates font, color, picture, and formatting information.

ValueItems Encapsulates both the Values collection and ValueItem properties.

ValueItem Allowable column input values, with optional translation.

VBar Represents the vertical scroll bar and its properties.

A collection is an object used to group similar data items, such as grid columns or styles. In general, a group of similar
items in True DBGrid for WinForms is implemented as a collection. Since a collection is an object, it can be
manipulated in code just like any other object. True DBGrid in WinForms exposes the following collections:

Collection Description

C1DataColumnCollection Contains zero or more C1DataColumn objects in a grid.

C1DisplayColumnCollection Contains zero or more C1DisplayColumn objects in a grid.

GroupedColumnCollection Contains zero or more C1DataColumn objects in the grouping area.

SelectedRowCollection Contains zero or more selected row indexes.

SelectedColumnCollection Contains zero or more C1DataColumn objects that represent selected
columns.

SplitCollection Contains one or more Split objects in a grid.

GridStyleCollection Contains built-in and user-defined Style objects for a grid.

ValueItemCollection Contains zero or more ValueItem objects for a column.

TrueDBGrid for WinForms 22

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The following sections provide a brief overview of True DBGrid for WinForm's objects and collections.

C1TrueDBGrid Class
The C1TrueDBGrid control is the primary object of True DBGrid for WinForms. Use its C1DataColumnCollection and
C1DisplayColumnCollection objects to create, access, and modify the column objects that define the mappings
between the grid's physical columns and the underlying database fields. Using its SplitCollection object, the grid can
be divided into multiple horizontal or vertical panes to provide different views of the same data source.

C1TrueDBDropDown Class
The C1TrueDBDropDown control, which is a subset of the C1TrueDBGrid control, is used as a multicolumn drop-
down list box for a grid column. The C1TrueDBDropDown control cannot be used as a standalone control.

In the designer, place a C1TrueDBDropDown control on a form just as you would a C1TrueDBGrid control. However,
the drop-down control will be invisible at run time unless it is attached to a C1DataColumn object of a C1TrueDBGrid
control.

To use the drop-down control, set the DropDown property of a grid column to the name of a C1TrueDBDropDown
control at either in the designer or in code. At run time, when the user clicks the in-cell button for that column, the
C1TrueDBDropDown control will appear below the grid's current cell. If the user selects an item from the drop-down
control, the grid's current cell is updated. The C1TrueDBDropDown control also supports incremental search.

C1DataColumnCollection Class
The C1TrueDBGrid control and the C1TrueDBDropDown control both maintain a C1DataColumnCollection object to
hold and manipulate C1DataColumn objects. This collection is contained under the C1TrueDBGrid object, and can be
modified through the C1TrueDBGrid Designer. It can be accessed through the Columns property of the True
DBGrid for WinForms controls.

C1DataColumn Object
Each column within a C1TrueDBGrid or C1TrueDBDropDown control is represented by two column objects, one global
and one split-specific. All of the properties related to data access and formatting are contained under the
C1DataColumn object. The properties of the C1DataColumn object are global in scope; changing a C1DataColumn
property changes that value for all columns, even across splits. The C1DataColumn object can be accessed as follows:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns(0).Caption = "Region"

To write code in C#

C#

this.c1TrueDBGrid1.Columns[0].Caption = "Region";

C1DisplayColumnCollection Class

TrueDBGrid for WinForms 23

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The C1TrueDBGrid control and the C1TrueDBDropDown control both maintain a C1DisplayColumnCollection object to
hold and manipulate C1DisplayColumn objects. This collection is contained under the Split object, and is available
through the Split's DisplayColumns property. In addition, this collection can be modified in .NET through the
C1DisplayColumnCollection Editor. For more information, see Using the C1DisplayColumnCollection Editor.

C1DisplayColumn Class
Each split within the grid contains at least one C1DisplayColumn object. All of the properties related to a column's
display are contained under this object. Unlike the C1DataColumn properties, the properties of the C1DisplayColumn
object are split-specific. Changing a C1DisplayColumn property will change that value for only the specified column
inside the specified split. The object can be accessed as follows:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0,0).DisplayColumns(0).Style.ForeColor =
System.Drawing.Color.Blue

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0,0].DisplayColumns[0].Style.ForeColor =
System.Drawing.Color.Blue;

GroupedColumnCollection Class
When the DataView property is set to DataViewEnum.GroupBy, a grouping area is created above the grid. This
collection object represents the columns (C1DataColumn object) in the grouping area. As columns are dragged into or
dragged out of the grouping area, the corresponding column in the collection will be added or deleted.

SplitCollection Class
The C1TrueDBGrid control maintains a SplitCollection collection to hold and manipulate Split objects. A grid has one
split by default, but may contain multiple splits. This collection is accessed using the Splits property of the
C1TrueDBGrid. In addition this collection can be modified in .NET through the Split Collection Editor. See Using the
Split Collection Editor for more information.

Split Object
True DBGrid for WinForms supports Excel-like splits that divide the grid into vertical and horizontal panes to provide
users with different views of the data source. Each split is represented by a Split object and contains a group of
adjacent columns that scroll as a unit.

When a C1TrueDBGrid control is created, it contains one Split object by default. Many of the properties of the Split
object also apply to the C1TrueDBGrid control as a whole, so there is no need to be concerned with splits until needed
such as when creating fixed, nonscrolling columns. The object can be accessed as follows:

To write code in Visual Basic

Visual Basic

TrueDBGrid for WinForms 24

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Me.C1TrueDBGrid1.Splits(0).Caption = "Split00"

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].Caption = "Split00";

GridStyleCollection Class
The C1TrueDBGrid and C1TrueDBDropDown controls store all built-in and user-defined Style objects in the
GridStyleCollection object. Access the members of this collection by name in code, and then apply them to a grid,
column, or split in order to control the appearance of the object in question. This collection is accessed using the
Styles property in the True DBGrid for WinForms controls. In addition, this collection and its members can be
modified in .NET through the C1TrueDBGrid Style Editor.

Style Object
Style objects encapsulate font, color, picture, and formatting information for a C1TrueDBGrid, C1TrueDBDropDown,
Split, or C1DisplayColumn object. The Style object is a very flexible and powerful tool that provides Excel- and Word-
like formatting capabilities for controlling the appearance of the grid's display.

When a C1TrueDBGrid or C1TrueDBDropDown control is created, it contains ten built-in styles. Modify the built-in
styles or add custom styles either in the designer or in code. Both controls also support several optional events that
use Style objects to convey formatting information on a per-cell or per-row basis. The object can be accessed as
follows:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Styles("Normal").Backcolor = System.Drawing.Color.Gray

To write code in C#

C#

this.c1TrueDBGrid1.Styles["Normal"].Backcolor = System.Drawing.Color.Gray;

ValueItems Class
The ValueItems object contains a collection and a couple of properties that can create alternate display values for
database values in the grid. It can specify an allowable input value for a given C1DataColumn object, or it can also be
used to translate raw data values into alternate text or graphics for display (for example, to display Balance Due and
Paid in Full instead of the numeric data values 0 and 1). The ValueItems object contains display properties and a
collection of ValueItem objects, the ValueItemCollection. This object can be accessed as follows:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid.Columns(0).ValueItems.MaxComboItems = 5

To write code in C#

TrueDBGrid for WinForms 25

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

this.c1TrueDBGrid.Columns[0].ValueItems.MaxComboItems = 5;

ValueItemCollection Class
Each C1DataColumn object within a C1TrueDBGrid or C1TrueDBDropDown control stores its set of display value/value
pairs in objects called ValueItem objects. The ValueItemCollection object is a collection of these pairs. This collection
can be accessed through the Values property of the ValueItems object. For instance, in order to alter the first
ValueItem in the collection, the code would look like:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid.Columns(0).ValueItems.Values(0).DisplayValue = "Canada"

To write code in C#

C#

this.c1TrueDBGrid.Columns[0].ValueItems.Values[0].DisplayValue = "Canada";

ValueItem Class
The ValueItem object consists of two properties: DisplayValue and Value. The Value property specifies the underlying
value in the database and the DisplayValue property specifies the value to be displayed in the grid. These objects are
contained in the ValueItemCollection object, and can be edited in .NET's ValueItemCollection Editor. This editor is
available in the C1TrueDBGrid Designer under the ValueItems object. For more information, see Using the
ValueItemCollection Editor.

PrintInfo Class
The PrintInfo object is used to specify page layout and print job characteristics such as the name of the output device,
margin settings, page headers and footers, and the number of copies to print.

The PrintInfo property of a C1TrueDBGrid control returns the object that modifies the print job.

The PrintInfo object is persistent, which means that a print layout can be defined at design time, and then recalled in
code at run time.

PrintPreviewWinSettings Class
The PrintPreviewWinSettings object provides access to properties of the Print Preview window of the grid. Through
this object, page headers, page footers, and other visual aspects can be set to the preview window. This object is
accessed through the PreviewInfo property of the C1TrueDBGrid control.

HBar Class
The HBar object is used to specify properties of the horizontal scrollbar. Through the use of the HScrollBar property,

TrueDBGrid for WinForms 26

Copyright © 2019 GrapeCity, Inc. All rights reserved.

the developer can specify the height of the scroll bar, and whether is shows up automatically or not at all.

VBar Class
The VBar object is used to specify properties of the vertical scrollbar. Through the use of the VScrollBar property, the
developer can specify the width of the scroll bar, and whether is shows up automatically or not at all.

GridLines Class
The GridLines object is used to specify characteristics of the ColumnDivider and RowDivider properties. Both the color
and style of the column and row lines can be manipulated at run time or design time through the use of the GridLines
object.

GridBorders Class
The GridBorders object is used to specify the characteristics of the Borders property of a Style. This property sets the
column borders for the cell. Through the use of this object, the developer can specify the width of each border around
a cell and the color of the cell border.

SelectedRowCollection Class
When the user selects and highlights one or more rows of a C1TrueDBGrid control at run time, the row index of the
selected rows are stored in the SelectedRowCollection object. In code, the Item property and IndexOf method of the
collection can be used to determine which rows are selected. Also select and deselect records programmatically using
its Add and RemoveAt methods.

SelectedColumnCollection Class
When the user selects and highlights one or more columns of a C1TrueDBGrid control at run time, the C1DataColumn
objects for those rows are stored in the SelectedColumnCollection object. In code, use the Item property and IndexOf
method of the collection to determine which rows are selected. Also select and deselect records programmatically
using its Add and RemoveAt methods.

Working with Objects and Collections
This section describes how to work with objects and collections in code, with an emphasis on efficiency. Although the
concepts are illustrated with True DBGrid for WinForms objects and collections, the same fundamentals can be
applied to all Visual Studio objects and collections.

A C1TrueDBGrid object is created when a True DBGrid for WinForms control is placed on a form. C1TrueDBGrid
objects created in Visual Studio will have default names of C1TrueDBGrid1, C1TrueDBGrid2, and so forth. The control
name can be changed in the Properties window at design time.

Working with Collections
A C1TrueDBGrid object has eight separate collections that govern its diverse objects. Each of these collections has an
associated property within the C1TrueDBGrid object that returns the collection object. This prevents the need for the
developer to enter the entire collection name when using the grid in code. The following table outlines these

TrueDBGrid for WinForms 27

Copyright © 2019 GrapeCity, Inc. All rights reserved.

mappings:

Collection Associated Property

C1DataColumnCollection Columns property

C1DisplayColumnCollection DisplayColumns property

GridStyleCollection Styles property

SelectedColumnCollection SelectedCols property

SelectedRowCollection SelectedRows property

SplitCollection Splits property

ValueItemCollection Values property

By default, the SplitCollection object contains one Split object. The GridStyleCollection object contains ten default
Style objects: Normal, Heading, Footing, Selected, Caption, HighlightRow, EvenRow, OddRow,
RecordSelector,and FilterBar.

Reference an object in a collection using its zero-based index. Read or set the Split object's properties as follows:

To write code in Visual Basic

Visual Basic

' Read a Split object property.
variable = Me.C1TrueDBGrid1.Splits(0).Property

' Set a Split object property.
Me.C1TrueDBGrid1.Splits(0).Property = variable

To write code in C#

C#

// Read a Split object property.
variable = this.c1TrueDBGrid1.Splits[0].Property;

// Set a Split object property.
this.c1TrueDBGrid1.Splits[0].Property = variable;

Create a reference to an object in a collection using the collection's Item method. The following code creates a
reference to a grid's default Split object:

To write code in Visual Basic

Visual Basic

' Declare Split0 as a Split object.
Dim Split0 As C1.Win.C1TrueDBGrid.Split

' Set Split0 to reference the first Split in the collection.
Split0 = Me.C1TrueDBGrid1.Splits(0)

To write code in C#

TrueDBGrid for WinForms 28

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

// Declare Split0 as Split object.
C1.Win.C1TrueDBGrid.Split Split0;

// Set Split0 to reference the first Split in the collection.
Split0 = this.c1TrueDBGrid1.Splits[0];

Note the use of the namespace qualifier in the preceding example. Using the namespace qualifier is recommended in
order to resolve potential naming conflicts with other controls. For example, if another control is used in the same
project that also defines an object named Split, the True DBGrid for WinForms namespace qualifier is required, as is
the namespace qualifier for the other control.

Since the Item method is implicit for collections, it can be omitted:

To write code in Visual Basic

Visual Basic

' Declare Split0 as a Split object.
Dim Split0 As C1.Win.C1TrueDBGrid.Split

' Set Split0 to reference the first Split in the collection.
Split0 = Me.C1TrueDBGrid1.Splits(0)

To write code in C#

C#

// Declare Split0 as Split object.
C1.Win.C1TrueDBGrid.Split Split0;

// Set Split0 to reference the first Split in the collection.
Split0 = this.c1TrueDBGrid1.Splits[0];

Use Split0 to read or set the Split object's properties or to execute its methods:

To write code in Visual Basic

Visual Basic

' Read a Split object property.
variable = Split0.Property

' Set a Split object property.
Split0.Property = variable

' Execute a Split object method.
Split0.Method (arg1, arg2, ...)

To write code in C#

C#

// Read a Split object property.
variable = Split0.Property;

TrueDBGrid for WinForms 29

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Set a Split object property.
Split0.Property = variable;

// Execute a Split object method.
Split0.Method (arg1, arg2, ...);

Very often, you need to read and set more than one of an object's properties. For example:

To write code in Visual Basic

Visual Basic

' Read a Split object's properties.
variable1 = Me.C1TrueDBGrid1.Splits(0,0).Property1
variable2 = Me.C1TrueDBGrid1.Splits(0,0).Property2

' Set a Split object's properties.
Me.C1TrueDBGrid1.Splits(0,0).Property1 = variable1
Me.C1TrueDBGrid1.Splits(0,0).Property2 = variable2

To write code in C#

C#

// Read a Split object's properties.
variable1 = this.c1TrueDBGrid1.Splits[0,0].Property1;
variable2 = this.c1TrueDBGrid1.Splits[0,0].Property2;

// Set a Split object's properties.
this.c1TrueDBGrid1.Splits[0,0].Property1 = variable1;
this.c1TrueDBGrid1.Splits[0,0].Property2 = variable2;

This code is very inefficient because the amount of times the object C1TrueDBGrid1.Splits(0,0) is accessed. It is more
efficient to create a single reference to the object up front and use it repeatedly:

To write code in Visual Basic

Visual Basic

' Declare Split0 as a Split.
Dim Split0 As C1TrueDBGrid.Split

' Set Split0 to reference the first Split in the collection.
Split0 = Me.C1TrueDBGrid1.Splits.Item(0,0)

' Read a Split object's properties.
variable1 = Split0.Property1
variable2 = Split0.Property2

' Set a Split object's properties.
Split0.Property1 = variable1
Split0.Property2 = variable2

To write code in C#

TrueDBGrid for WinForms 30

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

// Declare Split0 as Split object.
C1TrueDBGrid.Split Split0;

// Set Split0 to reference the first Split in the collection.
Split0 = this.c1TrueDBGrid1.Splits[0,0];

// Read a Split object's properties.
variable1 = Split0.Property1;
variable2 = Split0.Property2;

// Set a Split object's properties.
Split0.Property1 = variable1;
Split0.Property2 = variable2;

This code is much more efficient and also easier to read. If the Visual Studio application accesses collection objects
frequently, the performance of your code can be improved significantly by adhering to these guidelines.

Similarly, this technique can be applied to other objects and collections of True DBGrid, and of Visual Studio in
general. Of particular importance to the grid are the C1DataColumn and C1DataColumnCollection objects (also
applies to C1DisplayColumn object):

To write code in Visual Basic

Visual Basic

' Declare Cols as a Columns collection object, then set it to reference
C1TrueDBGrid1's C1DataColumnCollection object.
Dim Cols As C1.Win.C1TrueDBGrid.C1DataColumnCollection
Cols = Me.C1TrueDBGrid1.Columns

' Declare Col0 as a C1DataColumn object, then set it to referencethe first Column
object in the collection.
Dim Col0 As New C1.Win.C1TrueDBGrid.C1DataColumn
Col0 = Cols(0)

' Read and set the C1DataColumn object's Property1.
variable1 = Col0.Property1
Col0.Property1 = variable1

' Execute the C1DataColumn object's Method1 (declared as a Sub).
Col0.Method1 (arg1, arg2, ...)

' Execute the C1DataColumn object's Method2 (declared as aFunction).
variable2 = Col0.Method2(arg1)

To write code in C#

C#

// Declare Cols as a Columns collection object, then set it to reference
C1TrueDBGrid1's C1DataColumnCollection object.
C1.Win.C1TrueDBGrid.C1DataColumnCollection Cols;
Cols = this.c1TrueDBGrid1.Columns;

TrueDBGrid for WinForms 31

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Declare Col0 as a C1DataColumn object, then set it to referencethe first Column
object in the collection.
C1.Win.C1TrueDBGrid.C1DataColumn Col0 = new C1TrueDBGrid.DataColumn();
Col0 = Cols[0];

// Read and set the C1DataColumn object's Property1.
variable1 = Col0.Property1;
Col0.Property1 = variable1;

// Execute the C1DataColumn object's Method1 (declared as a Sub).
Col0.Method1 (arg1, arg2, ...);

// Execute the C1DataColumn object's Method2 (declared as a Function).
variable2 = Col0.Method2(arg1);

Visual Basic also provides an efficient With statement for setting multiple properties of an object without explicitly
assigning it to a variable. For example, the following code sets multiple properties of the first column of a grid (recall
that collections are zero-based):

To write code in Visual Basic

Visual Basic

With Me.C1TrueDBGrid1.Columns(0)
 .Property1 = variable1
 .Property2 = variable2
End With

To write code in C#

C#

this.c1TrueDBGrid1.Columns[0].Property1 = variable1;
this.c1TrueDBGrid1.Columns[0].Property2 = variable2;

Adding Members
To create and add an object to a collection, use the collection's Add method. The method takes an object as its only
argument. For example, create more valueitems for a column by adding new ValueItem objects to the
ValueItemCollection object:

To write code in Visual Basic

Visual Basic

' Create a ValueItem object.
Dim v As C1TrueDBGrid.ValueItem = new C1TrueDbGrid.ValueItem()
Me.C1TrueDBGrid1.Columns(0).ValueItems.Values.Add(v)

To write code in C#

C#

TrueDBGrid for WinForms 32

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Create a ValueItem object.
C1TrueDBGrid.ValueItem v = new C1TrueDBGrid.ValueItem();
this.c1TrueDBGrid1.Columns[0].ValueItems.Values.Add(v);

This code adds a ValueItem object to the ValueItemCollection of C1TrueDBGrid1. Alternatively, create a ValueItem
object with index 1 with the Insert method:

To write code in Visual Basic

Visual Basic

' Create a Split object with index 1.
Dim S As C1TrueDBGrid.ValueItem
Me.C1TrueDBGrid1.Columns(0).ValueItems.Values.Insert(1, S)

To write code in C#

C#

// Create a Split object with index 1.
C1TrueDBGrid.ValueItem S;
this.c1TrueDBGrid1.Columns[0].ValueItems.Values.Insert(1, S);

The only object that is unable to add or remove members using the Add or RemoveAt methods is the Split object.
InsertHorizontalSplit / RemoveHorizontalSplit and InsertVerticalSplit / RemoveVerticalSplit methods of the split object
must be used to correctly add or remove Splits. These methods are also available in the grid's right-click context menu
at design time.

Removing Members
Regardless of how a collection implements the Add or Insert methods, the syntax for removing items is the same. To
remove an existing item from a collection, use the RemoveAt method:

To write code in Visual Basic

Visual Basic

' Remove the Split object with index 1.
Me.C1TrueDBGrid1.Columns(0).ValueItems.Values.RemoveAt(1)

To write code in C#

C#

// Remove the Split object with index 1.
this.c1TrueDBGrid1.Columns[0].ValueItems.Values.RemoveAt(1);

After this statement is executed, all splits with collection indexes greater than 1 will be shifted down by 1 to fill the
place of the removed split. Note that the RemoveAt method's parameter is the location of the member to be
removed.

Working with the Count Property
Determine the number of objects in a collection using the collection's Count property:

TrueDBGrid for WinForms 33

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

' Set a variable equal to the number of Splits in C1TrueDBGrid1.
variable = Me.C1TrueDBGrid1.Splits.Count

To write code in C#

C#

// Set a variable equal to the number of Splits in C1TrueDBGrid1.
variable = this.c1TrueDBGrid1.Splits.Count;

Iterate through all objects in a collection using the Count property as in the following example, which prints the
Caption string of each C1DataColumn object in a grid:

To write code in Visual Basic

Visual Basic

For n = 0 To Me.C1TrueDBGrid1.Columns.Count - 1
 Debug.WriteLine(Me.C1TrueDBGrid1.Columns(n).Caption)
Next n

To write code in C#

C#

for (n = 0; n < this.c1TrueDBGrid1.Columns.Count; n++)
{
 Console.WriteLine(this.c1TrueDBGrid1.Columns[n].Caption);
}

The Count property is also useful for appending and removing columns:

To write code in Visual Basic

Visual Basic

' Determine how many columns there are.
Dim NumCols As Integer
NumCols = Me.C1TrueDBGrid1.Columns.Count

' Append a column to the end of the Columns collection.
Dim C As C1TrueDBGrid.C1DataColumn = New C1TrueDBGrid.C1DataColumn()
Me.C1TrueDBGrid1.Columns.Insert(NumCols, C)

' Make the new column visible, since columns created at run timeare invisible by
default.
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(C).Visible = True

' The following loop removes all columns from the grid.
While Me.C1TrueDBGrid1.Columns.Count
 Me.C1TrueDBGrid1.Columns.RemoveAt(0)
End While

TrueDBGrid for WinForms 34

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

// Determine how many columns there are.
int NumCols;
NumCols = this.c1TrueDBGrid1.Columns.Count;

// Append a column to the end of the Columns collection.
C1TrueDBGrid.C1DataColumn C = new C1TrueDBGrid.C1DataColumn();
this.c1TrueDBGrid1.Columns.Insert(NumCols, C);

// Make the new column visible, since columns created at run time are invisible by
default.
this.c1TrueDBGrid1.Splits[0].DisplayColumns[C].Visible = true;

// The following loop removes all columns from the grid.
while (this.c1TrueDBGrid1.Columns.Count > 0)
{
 this.c1TrueDBGrid1.Columns.RemoveAt(0);
}

An efficient For Each...Next statement that can be used iterate through the objects in a collection without using the
Count property:

To write code in Visual Basic

Visual Basic

Dim C As C1TrueDBGrid.C1DataColumn
For Each C In Me.C1TrueDBGrid1.Columns
 Debug.WriteLine(C.Caption)
Next S

To write code in C#

C#

C1TrueDBGrid.C1DataColumn c;
foreach (c In this.c1TrueDBGrid1.Columns)
{
 Console.WriteLine(c);
}

In fact, using the For Each...Next statement is the easiest way to iterate through the objects in a collection.

TrueDBGrid for WinForms 35

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Design-Time Support
You can easily configure True DBGrid for WinForms at design time using the Properties window in Visual Studio. The
following sections describe how to use True DBGrid for WinForms' design-time environment to configure the
C1TrueDBGrid control. Most of the following material also applies to the C1TrueDBDropDown control since it is a
subset of C1TrueDBGrid. Specific differences between the two controls are discussed at the end of this chapter.

Understanding the Object Model and Property Access
True DBGrid for WinForms supports a rich object model that reflects the organization of its visual components.
Therefore, in order to customize a grid's appearance and behavior, you need to know how the Properties window and
collection editors reflect the grid's object model.

A split is similar to the split window features of products such as Microsoft Excel and Word. Splits can be used to
present data in multiple vertical or horizontal panes. These panes, or splits, can display data in different colors and
fonts. The panes can scroll as a unit or individually, and they can display different sets of columns or the same set.
Splits can also be used to prevent one or more columns or rows from scrolling. By default, a grid contains a single
split comprising all of its columns. Note that most of the split properties are not present in the main Properties
window. For example, the AlternatingRows property cannot be set without opening up the Split Collection editor and
modifying the Split object, because the value of this property can vary from split to split. The term split-specific is used
to describe such properties, since they apply to individual splits rather than the grid as a whole.

Conversely, the term global is used to describe properties that apply to the grid as a whole, such as DataView and
BorderStyle. Global properties are accessible through the Properties window, which is initially located in the lower
right of the Visual Studio IDE. The latter also shows extender properties specific to the Visual Basic environment, such
as Align and Tag.

The distinction between split-specific and global properties also extends to the two column objects which represent
the columns of data within the grid. Both of these objects govern a column's properties. The C1DataColumn object
contains all of the column properties related to data access and formatting. The C1DisplayColumn object contains all
column properties related to the column's visual display. The C1DataColumn properties are global column properties.
These are properties that apply to all of the columns in the grid, no matter their placement among the splits. For
instance, when a column is added or removed, the associated C1DataColumn would be added or removed. On the
other hand, the C1DisplayColumn properties are split-specific properties. Setting one of these properties in one split
does not mean that the properties are then set in all splits.

Accessing Global Grid Properties
Properties which apply to the entire grid object are considered global properties. Once set these properties will
remain set no matter what split-specific or column properties are set. These properties can be accessed through the
Properties window. It enables easy access to all of the grid's properties and allows you to set their values at design-
time. The Properties window orders the properties either categorically or alphabetically. In order to allow the user
access to objects and collections, the property page supports a tree view structure where objects can be expanded to
show their constituent properties.

Accessing Split-Specific Properties
In the Properties window, split properties are accessed through the Splits property. By clicking on the ellipsis button
(...) next to the Splits node, the editor for the Split Collection will appear. This editor can be used to access all of the
split-specific properties as well as the C1DisplayColumnCollection properties for the current split. For more
information on using the collection editor see Using the Split Collection Editor.

TrueDBGrid for WinForms 36

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In addition, split-specific properties are available in the C1TrueDBGrid Designer. For more information see Using the
C1TrueDBGrid Designer.

Accessing Column Properties
In the Properties window, global column properties, also known as C1DataColumn properties, are accessed through
the C1DataColumnCollection object property. By clicking on the ellipsis button (...) next to the Columns node in the
Visual Studio Properties window, the C1TrueDBGrid Designer will appear. For more information on using the
collection editor see Using the C1TrueDBGrid Designer.

In the Visual Studio Properties window, each member of the SplitCollection exposes a DisplayColumns property, also
known as the C1DisplayColumnCollection object. These C1DisplayColumn properties are split-specific properties. By
clicking on the ellipsis button next to the Splits node in the Properties window, then clicking on the ellipsis button
next to the DisplayColumns node in the editor for the Split Collection, the editor for the C1DisplayColumnCollection
will be brought up. For more information on using this editor, see Using the C1DisplayColumnCollection Editor.

Using the Split Collection Editor
The SplitCollection is a collection of Split objects which provides access to most of the grid's display properties and
properties specific to a Split. Accessing these properties in code is done through the C1TrueDBGrid object and is
demonstrated by the following:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).AllowColMove = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].AllowColMove = true;

.NET contains useful collection editors which make the altering of a collection much easier. The SplitCollection can be
modified at design-time through a .NET collection editor. The collection editor for the SplitCollection can be accessed
by clicking on the ellipsis button (...) next to the Splits property in the Properties window. Notice that clicking on the
ellipsis button next to the DisplayColumns property in the SplitCollection Collection Editor will bring up the
C1DisplayColumnCollection editor.

TrueDBGrid for WinForms 37

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Notice that the editor does not contain buttons to add and delete Splits. Even though the collection editor cannot be
used to create and delete splits, this can still be accomplished at design-time. Right-clicking the grid will bring up the
grid's context menu. From the context menu, choose Design and use the C1TrueDBGrid Designer to add or remove
splits.

Splits Properties
The following SplitCollection object properties are available in the Split Collection Editor through the Properties
window:

Property Description

AllowColMove Gets or sets a value indicating the ability to move columns.

AllowColSelect Gets or sets a value indicating the ability to select columns.

AllowFocus Gets or sets a value indicating whether the split can receive focus.

AllowHorizontalSizing Gets or sets a value indicating whether a user is allowed to resize horizontal
splits.

AllowRowSelect Gets or sets a value indicating the ability to select rows.

AllowRowSizing Gets or sets how interactive row resizing is performed.

AllowVerticalSizing Gets or sets a value indicating whether a user is allowed to resize vertical
splits.

AlternatingRowStyle Gets or sets a value indicating whether the split uses the OddRowStyle for
odd-numbered rows and EvenRowStyle for even-numbered rows.

BorderStyle Gets or sets the type of border rendered for a split.

Caption Gets or sets the caption.

TrueDBGrid for WinForms 38

Copyright © 2019 GrapeCity, Inc. All rights reserved.

CaptionHeight Gets or sets the height of the caption.

CaptionStyle Gets or sets the Style object that controls the appearance of the caption area.

ColumnCaptionHeight Gets or sets the height of the column captions.

ColumnFooterHeight Gets or sets the height of column footers.

DisplayColumns Gets a collection of C1DisplayColumn objects.

EditorStyle Gets or sets the Style object that controls the appearance of the cell editor
within a grid.

EvenRowStyle Gets or sets the Style object that controls the appearance of an even-
numbered row when using AlternatingRows.

ExtendRightColumn Gets or sets a value that determines how the last column will extend to fill the
dead area of the split.

FetchRowStyles Gets or sets a value indicating whether the FetchRowStyle event will be raised.

FilterBar Gets or sets a value indicating the visibility of the FilterBar.

FilterBarStyle Gets or sets the Style object that controls the appearance of the FilterBar.

FilterBorderStyle Controls the appearance of the separator for the FilterBar.

FooterStyle Gets or sets the Style object that controls the appearance of column footers.

HeadingStyle Gets or sets the Style object that controls the appearance of the grids column
headers.

Height Gets or sets the height of a split.

HighlightRowStyle Gets or sets the Style object that controls the current row/cell when the
MarqueeStyle is set to Highlight Row/Cell.

HorizontalScrollGroup Gets or sets the group which synchronizes horizontal scrolling between splits.

HScrollBar Gets the HBar object that controls the appearance of the horizontal scroll bar.

InactiveStyle Gets or sets the Style object that controls the grids caption when it doesn't
have focus.

Locked Gets or sets a value indicating if the cells of a split can be edited.

MarqueeStyle Gets or sets the MarqueeStyle for a Split.

MinHeight Gets or sets the minimum height that a split can be interactively resized.

MinWidth Gets or sets the minimum width that a split can be interactively resized.

Name Gets or sets the name of a split.

OddRowStyle Gets or sets the Style object that controls the appearance of an odd-
numbered row when using AlternatingRows.

RecordSelectors Gets or sets a value indicating the visibility of row headers for Split.

RecordSelectorStyle Gets or sets the Style object that controls the appearance of the
RecordSelectors.

RecordSelectorWidth Gets or sets the width of the row headers.

SelectedStyle Gets or sets the Style object that controls the appearance of selected rows

TrueDBGrid for WinForms 39

Copyright © 2019 GrapeCity, Inc. All rights reserved.

and columns.

SplitSize Gets or sets the size of a split.

SplitSizeMode Gets or sets a value indicating how the SplitSize property is used to determine
the actual size of a split.

SpringMode Gets or sets a value that determines how columns will resize when the grid is
resized.

Style Gets or sets the root Style object for the Split.

VerticalScrollGroup Gets or sets the group which synchronizes vertical scrolling between splits.

VScrollBar Gets the VBar object that controls the appearance of the vertical scroll bar.

Using the C1DisplayColumnCollection Editor
The C1DisplayColumnCollection is a collection of the column properties which relate to display, color, font, and so on.
These properties are contained under the Columns identifier under the SplitCollection. These properties are also split-
specific; each C1DisplayColumn property can have a different value in different splits. Accessing these properties in
code is done through this SplitCollection, and is demonstrated by the following:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Merge = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Merge = true;

Given True DBGrid for WinForms' object model with its split-specific column properties and diverse collections,
many of its properties might be tough to find and set efficiently. Luckily, .NET contains collection editors which help in
categorizing and setting the C1TrueDBGrid control's collection properties. This editor is accessible through the Split
Collection Editor, which can be accessed by clicking on the ellipsis button (...) next to the Splits property of the grid
in the Properties window. In the Split Collection Editor, clicking on the ellipsis button next to the DisplayColumns
property will bring up the editor.

TrueDBGrid for WinForms 40

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The editor has two panes. The left pane contains the current columns in the grid under the Members heading. By
clicking on the Add or Remove buttons the columns in the left pane can be created or deleted accordingly. The right
pane contains the display-related properties for the specific column highlighted in the left pane.

Notice that there are not any add or remove buttons in the C1DisplayColumnCollection Editor. Due to the fact that
there can be multiple DisplayColumns for each split in the grid, the addition or deletion of columns must occur in the
C1TrueDBGrid Designer. This ensures that a column is added to all splits, or removed from all splits.

DisplayColumns Properties
The following C1DisplayColumnCollection object properties are available in the C1DisplayColumnCollection Editor
in the Properties window:

Property Description

AllowFocus Gets or sets a value indicating the ability of a column to receive focus.

AllowSizing Gets or sets a value indicating whether column resizing is allowed.

AutoComplete Gets or sets a value indicating whether the drop-down auto fills the edit
portion with the matched entry.

AutoDropDown Gets or sets a value indicating whether the drop-down opens automatically
when a key is typed.

Button Gets or sets a value indicating whether a drop-down button will be
displayed in this column.

ButtonAlways Gets or sets a value indicating whether buttons will be displayed when the
cell does not contain focus.

ButtonFooter Gets or sets a value indicating whether a column footer will act like a
button.

TrueDBGrid for WinForms 41

Copyright © 2019 GrapeCity, Inc. All rights reserved.

ButtonHeader Gets or sets a value indicating whether a column header will act like a
button.

ButtonText Gets or sets a value indicating whether cells in this column look like
buttons.

ColumnDivider Gets or sets the style of the border drawn between columns.

DropDownList Gets or sets a value indicating whether the drop-down acts like a drop-
down list (text portion is not editable).

EditorStyle Gets or sets the Style used for the cell editor.

FetchStyle Gets or sets a value indicating whether the FetchCellStyle event will be
raised for a column.

FilterButton Gets or sets a value indicating whether a drop-down button will be
displayed in this column.

FooterDivider Gets or sets a value indicating whether to display the column divider in the
footer area.

FooterStyle Gets or sets the Style object that controls the appearance of column
footers.

Frozen Gets or sets a value indicating whether the column scrolls.

GroupFooterStyle Gets or sets the Style used to render the cell in the grouped footer row.

GroupHeaderStyle Gets or sets the Style used to render the cell in the grouped header row.

HeaderDivider Gets or sets a value indicating whether to display the column divider in the
header area.

HeadingStyle Gets or sets the Style that controls the appearance of the column headers.

Height Gets or sets the height of the column.

Locked Gets or sets a value indicating whether editing is permitted in a column.

Merge Gets or sets a value indicating whether contiguous like-value cells of this
column are merged into one large cell.

MinWidth Gets or sets the minimum width a column can be resized to when in
SpringMode.

Name Gets the caption of the associated C1DataColumn objects.

OwnerDraw Gets or sets a value indicating whether cells in this column are drawn by
the user in the OwnerDrawCell event.

Style Gets or sets the root Style for this column.

Visible Gets or sets a value indicating the visibility of a column.

Width Gets or sets the width of a column.

Property Description

Using the ValueItemCollection Editor
The ValueItemCollection is a collection of values and display values which allows for translated data within a column.

TrueDBGrid for WinForms 42

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This collection object can be accessed through C1DataColumn.ValueItems.Values property. Accessing these
properties in code is done through this collection, and is demonstrated by the following:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns(0).ValueItems.Values

To write code in C#

C#

this.c1TrueDBGrid1.Columns[0].ValueItems.Values;

In order to make these properties more easily modifiable, there is a ValueItem Collection Editor which enables the
user to add ValueItems, remove ValueItems, and alter their Value and DisplayValue properties. This editor is
accessible through the Properties window. Clicking the ellipsis button (...) next to the Columns item in the Properties
window will bring up the C1TrueDBGrid Designer; then expanding the ValueItems node will expose the ValueItems
collection items. Clicking on the ellipsis button next to the ValuesItems node will bring up the ValueItems Editor:

Using the C1TrueDBGrid Style Editor
The Style collection is a collection of Microsoft Word-like styles which can associate certain sections for the grid with a
style. The Styles collection is located under the C1TrueDBGrid object, and contains individual Style objects as its
members. Accessing the individual Style objects and their properties in code is done through this collection, and is
demonstrated by the following:

TrueDBGrid for WinForms 43

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Styles("Normal").WrapText = False

To write code in C#

C#

this.c1TrueDBGrid1.Styles["Normal"].WrapText = false;

In order to make these properties more easily modifiable, there is a C1TrueDBGrid Style Editor which enables the
user to add styles and modify the properties of existing styles. The C1TrueDBGrid Style Editor is available in the
Properties window. Clicking on the ellipsis button (...) next to the Styles node in the Properties window will bring up
the editor.

Using the C1TrueDBGrid Designer
The normal method of modifying the properties of DisplayColumns, DataColumns, and Splits through the property
editor may seem like a complex and probably more than a bit confusing process. Keeping track of DataColumns and
DisplayColumns is a task in and of itself. But to make this whole process much easier the C1TrueDBGrid control
contains a Designer which has been constructed for ease of use.

Accessing the C1TrueDBGrid Designer
The C1TrueDBGrid Designer can be accessed either through the C1TrueDBGrid Tasks menu, the Columns property,

TrueDBGrid for WinForms 44

Copyright © 2019 GrapeCity, Inc. All rights reserved.

or the context menu.

Through the C1TrueDBGrid Tasks Menu
To access the C1TrueDBGrid Designer through the C1TrueDBGrid Tasks menu, click the smart tag in the upper right
corner of C1TrueDBGrid to open the C1TrueDBGrid Tasks menu, and select Designer.

Through the Columns Property
To access the C1TrueDBGrid Designer through the Columns property, click the ellipsis button next to the Columns
property in the Properties window.

Through the Context Menu
To access the C1TrueDBGrid Designer through the context menu, right-click the C1TrueDBGrid control on the form
and select Design from the context menu.

C1TrueDBGrid Designer Elements
This designer allows grid columns to be set up easily at design time instead of having to write code. Just select the
grid, then right-click to bring up the context menu, and then click the Design menu item. This will bring up the
C1TrueDBGrid Designer shown below:

TrueDBGrid for WinForms 45

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The editor displays the grid columns in a window on the right and the properties for these columns on the left. The
tabs above the Properties window define which set of properties, DataColumn, DisplayColumn, or Split, are
displayed in the properties grid.

The editor performs the following actions:

Reorder Columns: Move columns to new positions by dragging them by the header cells with the mouse.
Adjust Column Widths: Adjust column widths by dragging the right edge of the header cells with the mouse.
You can also select multiple columns by SHIFT-clicking the header cells, and then set all column widths at once
using the property grid. Setting the column width to -1 restores the default width.
Set Column Properties: Whenever one or more columns are selected, their properties can be viewed and
edited in the property grid on the left of the editor.
Insert or Remove Columns: Use the toolbar to insert columns before or after the selection (useful mostly in
unbound mode), or to remove columns.
Use the Toolbar to Perform Common Tasks: The table below describes the function of the buttons on the
toolbar:

Element Description

These tabs above the property grid determine which set of properties are
available for modification in the designer. The tabs allow you to choose
between the DataColumns property set that contains data-related column
properties, the DisplayColumns property set that contains display-related
column properties, and the Split property set that contains split-related
properties.

These toggle buttons control the display of the property grid. The left
button one indicates that the properties for the selected columns are
displayed in categorized order. The right button indicates whether the
properties for the selected columns are displayed in alphabetical order.

These buttons set the column widths for the grid. The left button sets all

TrueDBGrid for WinForms 46

Copyright © 2019 GrapeCity, Inc. All rights reserved.

the columns to have the same width, the center button increases the width
of the selected column (the column with focus in the grid), and the right
button decreases the width of the selected column (the column with focus
in the grid).

These buttons add, insert, and delete columns from the grid. The first adds
columns to the grid, the second button inserts columns in the grid, and
the third button deletes columns from the grid.

The drop-down box sets which column receives focus. By choosing a
column from the drop-down list, the associated properties for this column
will appear in the property grid to the left.

These buttons set the vertical alignment of the selected column. The first
button aligns all column content to the top. The second button aligns all
column content to the center, and the third button aligns all column
content to the bottom.

Align column content to the left, center, or right. These buttons only affect
the scrollable area of the grid. To set the alignment for the header
columns, select the columns and set the TextAlignFixed property.

These buttons add or remove vertical or horizontal splits. The first button
adds a vertical split to the grid, while the second one adds a horizontal
split. The third button removes a vertical split, while the fourth one
removes a horizontal split.

These buttons set the DataView property of the table. The buttons set the
DataView property to Normal, GroupBy, Hierarchial, Inverted, Form,
MultipleLines, and MultipleLinesFixed, respectively. See Data Display for
more information.

Element Description

Splits Properties
The following SplitCollection object properties are available in the C1TrueDBGrid Designer through the Split tab:

Property Description

AllowColMove Gets or sets a value indicating the ability to move columns.

AllowColSelect Gets or sets a value indicating the ability to select columns.

AllowFocus Gets or sets a value indicating whether the split can receive focus.

AllowHorizontalSizing Gets or sets a value indicating whether a user is allowed to resize
horizontal splits.

AllowRowSelect Gets or sets a value indicating the ability to select rows.

AllowRowSizing Gets or sets how interactive row resizing is performed.

AllowVerticalSizing Gets or sets a value indicating whether a user is allowed to resize vertical
splits.

TrueDBGrid for WinForms 47

Copyright © 2019 GrapeCity, Inc. All rights reserved.

AlternatingRowStyle Gets or sets a value indicating whether the split uses the OddRowStyle for
odd-numbered rows and EvenRowStyle for even-numbered rows.

BorderStyle Gets or sets the type of border rendered for a split.

Caption Gets or sets the caption.

CaptionHeight Gets or sets the height of the caption.

CaptionStyle Gets or sets the Style object that controls the appearance of the caption
area.

ColumnCaptionHeight Gets or sets the height of the column captions.

ColumnFooterHeight Gets or sets the height of column footers.

DisplayColumns Gets a collection of C1DisplayColumn objects.

EditorStyle Gets or sets the Style object that controls the appearance of the cell editor
within a grid.

EvenRowStyle Gets or sets the Style object that controls the appearance of an even-
numbered row when using AlternatingRows.

ExtendRightColumn Gets or sets a value that determines how the last column will extend to fill
the dead area of the split.

FetchRowStyles Gets or sets a value indicating whether the FetchRowStyle event will be
raised.

FilterBar Gets or sets a value indicating the visibility of the FilterBar.

FilterBarStyle Gets or sets the Style object that controls the appearance of the FilterBar.

FilterBorderStyle Controls the appearance of the separator for the FilterBar.

FooterStyle Gets or sets the Style object that controls the appearance of column
footers.

HeadingStyle Gets or sets the Style object that controls the appearance of the grids
column headers.

Height Gets or sets the height of a split.

HighlightRowStyle Gets or sets the Style object that controls the current row/cell when the
MarqueeStyle is set to Highlight Row/Cell.

HorizontalScrollGroup Gets or sets the group which synchronizes horizontal scrolling between
splits.

HScrollBar Gets the HBar object that controls the appearance of the horizontal scroll
bar.

InactiveStyle Gets or sets the Style object that controls the grids caption when it doesn't
have focus.

Locked Gets or sets a value indicating if the cells of a split can be edited.

MarqueeStyle Gets or sets the MarqueeStyle for a Split.

MinHeight Gets or sets the minimum height that a split can be interactively resized.

MinWidth Gets or sets the minimum width that a split can be interactively resized.

TrueDBGrid for WinForms 48

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Name Gets or sets the name of a split.

OddRowStyle Gets or sets the Style object that controls the appearance of an odd-
numbered row when using AlternatingRows.

RecordSelectors Gets or sets a value indicating the visibility of row headers for Split.

RecordSelectorStyle Gets or sets the Style object that controls the appearance of the
RecordSelectors.

RecordSelectorWidth Gets or sets the width of the row headers.

SelectedStyle Gets or sets the Style object that controls the appearance of selected rows
and columns.

SplitSize Gets or sets the size of a split.

SplitSizeMode Gets or sets a value indicating how the SplitSize property is used to
determine the actual size of a split.

SpringMode Gets or sets a value that determines how columns will resize when the grid
is resized.

Style Gets or sets the root Style object for the Split.

VerticalScrollGroup Gets or sets the group which synchronizes vertical scrolling between splits.

VScrollBar Gets the VBar object that controls the appearance of the vertical scroll bar.

C1DataColumn Properties
The following C1DataColumnCollection object properties are available in the C1TrueDBGrid Designer through the
Column tab:

Property Description

Aggregate Gets or sets the type of aggregate computed for a grouped row.

ButtonPicture Gets or sets the image shown in a drop-down button in a column.

Caption Gets or sets the text in the column header.

DataField Gets or sets the database field name for a column.

DataWidth Gets or sets the maximum number of characters which may be entered for cells
in this column.

DefaultValue Gets or sets the default value for a column when a new row is added by the
grid.

DropDown Gets or sets the C1TrueDBDropDown control associated with this column.

EditMask Gets or sets the edit mask for a column.

EditMaskUpdate Gets or sets a value indicating whether literal characters in the edit mask are
stored to the underlying data source.

EnableDateTimeEditor Gets or sets the characters that should be escaped when applying the filter
criteria to the data source.

FilterButtonPicture Gets or sets the image show in the filter button for the column.

TrueDBGrid for WinForms 49

Copyright © 2019 GrapeCity, Inc. All rights reserved.

FilterDropdown Gets or sets a value indicating whether a drop-down list is displayed in the filter
cell that lists all the values of the field.

FilterEscape Gets or sets the characters that should be escaped when applying the filter
criteria to the data source.

FilterKeys Gets or sets the key used to initiate the filtering operation as the user types in
the FilterBar.

FilterOperator Gets or sets the operator that is used for a filter expression.

FilterText Gets or sets the data associated with the value of the filter for a column.

FooterText Gets or sets the text displayed in the column footer.

GroupInfo Gets or sets the GroupInfo associated with this column.

Level Gets or sets the level of this column in a hierarchical data source.

NumberFormat Gets or sets the formatting string for a column.

SortDirection Gets or sets the state of the sorting glyph in the column caption.

ValueItems Gets the ValueItems object for this column.

Property Description

DisplayColumns Properties
The following C1DisplayColumnCollection object properties are available in the C1TrueDBGrid Designer through the
Display Column tab:

Property Description

AllowFocus Gets or sets a value indicating the ability of a column to receive focus.

AllowSizing Gets or sets a value indicating whether column resizing is allowed.

AutoComplete Gets or sets a value indicating whether the drop-down auto fills the edit
portion with the matched entry.

AutoDropDown Gets or sets a value indicating whether the drop-down opens automatically
when a key is typed.

Button Gets or sets a value indicating whether a drop-down button will be
displayed in this column.

ButtonAlways Gets or sets a value indicating whether buttons will be displayed when the
cell does not contain focus.

ButtonFooter Gets or sets a value indicating whether a column footer will act like a
button.

ButtonHeader Gets or sets a value indicating whether a column header will act like a
button.

ButtonText Gets or sets a value indicating whether cells in this column look like
buttons.

ColumnDivider Gets or sets the style of the border drawn between columns.

TrueDBGrid for WinForms 50

Copyright © 2019 GrapeCity, Inc. All rights reserved.

DropDownList Gets or sets a value indicating whether the drop-down acts like a drop-
down list (text portion is not editable).

EditorStyle Gets or sets the Style used for the cell editor.

FetchStyle Gets or sets a value indicating whether the FetchCellStyle event will be
raised for a column.

FilterButton Gets or sets a value indicating whether a drop-down button will be
displayed in this column.

FooterDivider Gets or sets a value indicating whether to display the column divider in the
footer area.

FooterStyle Gets or sets the Style object that controls the appearance of column
footers.

Frozen Gets or sets a value indicating whether the column scrolls.

GroupFooterStyle Gets or sets the Style used to render the cell in the grouped footer row.

GroupHeaderStyle Gets or sets the Style used to render the cell in the grouped header row.

HeaderDivider Gets or sets a value indicating whether to display the column divider in the
header area.

HeadingStyle Gets or sets the Style that controls the appearance of the column headers.

Height Gets or sets the height of the column.

Locked Gets or sets a value indicating whether editing is permitted in a column.

Merge Gets or sets a value indicating whether contiguous like-value cells of this
column are merged into one large cell.

MinWidth Gets or sets the minimum width a column can be resized to when in
SpringMode.

Name Gets the caption of the associated C1DataColumn objects.

OwnerDraw Gets or sets a value indicating whether cells in this column are drawn by
the user in the OwnerDrawCell event.

Style Gets or sets the root Style for this column.

Visible Gets or sets a value indicating the visibility of a column.

Width Gets or sets the width of a column.

Property Description

C1TrueDBGrid Tasks Menu
In the C1TrueDBGrid Tasks menu, you can quickly and easily choose a data source, change data layout, set a visual
style, add a grid caption, customize the appearance of the grid, dock the grid on the form, and access the
C1TrueDBGrid Designer, as well as set the following properties: AllowAddNew, AllowUpdate, AllowDelete, FilterBar,
and AlternatingRows.

To access the C1TrueDBGrid Tasks menu, click the smart tag () in the upper right corner of the grid. This will open
the C1TrueDBGrid Tasks menu:

TrueDBGrid for WinForms 51

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The C1TrueDBGrid Tasks menu operates as follows:

Choose Data Source
Clicking the drop-down arrow in the Choose Data Source box opens a list of available data sources and allows you to
add a new data source. To add a new data source to the project, click Add Project Data Source to open the Data
Source Configuration Wizard.

After a data source is selected, three more options are added to the C1TrueDBGrid Tasks menu: Column Tasks, Add
Query, and Preview Data.

TrueDBGrid for WinForms 52

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Data Layout
Clicking the drop-down arrow in the Data Layout box opens a list of different DataView property options, such as
Normal, Inverted, Form, GroupBy, MultipleLines, Hierarchial, and MultipleLinesFixed. For more information on
the different data views, see Data Display.

VisualStyle

TrueDBGrid for WinForms 53

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Clicking the drop-down arrow in the VisualStyle box opens a list of different VisualStyle property options, such as
Custom, System, Office2007Blue, Office2007Silver, and Office2007Black. For more information on the different
visual styles, see Visual Styles.

Caption
Entering a caption into the Caption box sets the Caption property for the grid.

Appearance
Clicking the drop-down arrow in the Appearance box opens a list of different FlatStyle property options, such as
Standard, Flat, Popup, and System. For more information on the different control appearance options, see Three-
Dimensional vs. Flat Display.

TrueDBGrid for WinForms 54

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Enable Adding
Selecting the Enable Adding check box sets the AllowAddNew property to True, and allows adding new rows to the
grid. The default is unchecked.

Enable Editing
Selecting the Enable Editing check box sets the AllowUpdate property to True, and allows editing of the grid. The
default is checked.

Enable Deleting
Selecting the Enable Deleting check box sets the AllowDelete property to True, and allows deleting rows in the grid.
The default is unchecked.

Enable FilterBar
Selecting the Enable FilterBar check box sets the FilterBar property to True, and displays the FilterBar at the top of
the grid. The default is unchecked.

Enable Alternating Rows
Selecting the Enable Alternating Rows check box sets the
"C1.Win.C1TrueDBGrid.4~C1.Win.C1TrueDBGrid.C1TrueDBGrid~AlternatingRows.html">AlternatingRows property to
True, and displays alternating row colors. The default it unchecked.

Column Tasks (available only when bound to a data source)
Clicking Column Tasks opens the Column Tasks menu. For details on the Column Tasks menu, see Column Tasks
Menu.

TrueDBGrid for WinForms 55

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Designer
Clicking Designer opens the C1TrueDBGrid Designer. For more information on using the C1TrueDBGrid Designer,
see Using the C1TrueDBGrid Designer.

Dock in parent container/Undock in parent container
Clicking Dock in parent container sets the Dock property for C1TrueDBGrid to Fill.

If C1TrueDBGrid is docked in the parent container, the option to undock C1TrueDBGrid from the parent container will
be available. Clicking Undock in parent container sets the Dock property for C1TrueDBGrid to None.

Add Query (available only when bound to a data source)
Clicking Add Query opens the Search Criteria Builder dialog box, which allows you to create or modify a query.

Instead of entering a query in the Query Text box, you can use the Query Builder to build a query by clicking on the
Query Builder button.

TrueDBGrid for WinForms 56

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Preview Data (available only when bound to a data source)
Clicking Preview Data opens the Preview Data dialog box, where you can preview the data in the DataSet.

TrueDBGrid for WinForms 57

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Column Tasks Menu
The Column Tasks menu allows you to set the column caption, data field, input mask, aggregate, caption style,
column style, and value items for a column, as well as set the following properties: Visible, ColumnVisible, and
EnableDateTimeEditor.

The Column Tasks menu can only be accessed when the grid is bound to a data source. To access the Column Tasks
menu, either click a column in the grid or select Column Tasks from the C1TrueDBGrid Tasks menu.

TrueDBGrid for WinForms 58

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The Column Tasks menu operates as follows:

Select Column
Clicking the drop-down arrow in the Select Column box opens a list of available columns in the grid. If you clicked a
column in the grid to open the tasks menu, that column will be the selected column.

TrueDBGrid for WinForms 59

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Column Caption
Entering a caption into the Column Caption box set the Caption property for the column.

Data Field
Clicking the drop-down arrow in the Data Field box opens a list of available fields in the data source.

TrueDBGrid for WinForms 60

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Input Mask
Clicking the ellipsis button in the Input Mask box opens the Input Mask dialog box.

Aggregate

TrueDBGrid for WinForms 61

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Clicking the drop-down arrow in the Aggregate box opens a list of available aggregate functions, such as Count,
Sum, Average, Min, Max, Std, StdPop, Var, VarPop, and Custom. For details on the available aggregate functions,
see the AggregateEnum enumeration.

Visible
Selecting the Visible check box sets the Visible property to True for the selected column. The default is checked.

Visible when Grouped
Selecting the Visible when Grouped check box sets the ColumnVisible to True for the selected column. The default is
unchecked.

Edit using DateTimePicker
Selecting the Edit using DateTimePicker check box sets the EnableDateTimeEditor property to True for the selected
column. The default is checked.

Caption Style
Clicking Caption Style opens the Caption Style editor for the selected column, which allows you to specify the
properties for the caption, including style, fill effects, and images.

TrueDBGrid for WinForms 62

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Column Style
Clicking Column Style opens the Column Style editor for the selected column, which allows you to specify properties
for the column, including style, fill effects, and images.

TrueDBGrid for WinForms 63

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Value Items
Clicking Value Items opens the Value Items editor for the selected column, which allows you to specify properties for
the presentation and behavior of the ValueItems in the column.

TrueDBGrid for WinForms 64

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1TrueDBGrid Tasks
Clicking C1TrueDBGrid Tasks returns you to the C1TrueDBGrid Tasks menu. For details on the C1TrueDBGrid
Tasks menu, see C1TrueDBGrid Tasks Menu.

Dock in parent container
Clicking Dock in parent container sets the Dock property for C1TrueDBGrid to Fill.

If C1TrueDBGrid is docked in the parent container, the option to undock C1TrueDBGrid from the parent container will
be available. Clicking Undock in parent container sets the Dock property for C1TrueDBGrid to None.

Add Query
Clicking Add Query opens the Search Criteria Builder dialog box, which allows you to create or modify a query.

Preview Data
Clicking Preview Data opens the Preview Data dialog box, where you can preview the data in the DataSet.

C1TrueDBGrid Context Menu
Right-click anywhere on the grid to display the True DBGrid for WinForms context menu, which is a context menu
that Visual Basic provides for all .NET controls. Although the C1TrueDBGrid's context menu has a few extra features.

TrueDBGrid for WinForms 65

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The context menu commands operate as follows:

About ComponentOne C1TrueDBGrid
This command displays the grid's About dialog box, which is helpful in finding the build number of the grid.

Add Absent Fields
This option adds fields from the data source that are not currently in the Columns collection.

Retrieve Fields/Clear Fields
These commands initiate the RetrieveFields and ClearFields methods of the grid. RetrieveFields goes back to the
data source and retrieves all of the formatting information and base data for the column. ClearFields clears out any
existing column formatting.

Design
This command brings up the C1TrueDBGrid Designer. This designer will enable the developer to add or delete
columns, set DataColumn, DisplayColumn, and Split properties, and configure column order and many other
aspects of the grid's design. For more information see Using the C1TrueDBGrid Designer.

Save Layout/Load Layout

TrueDBGrid for WinForms 66

Copyright © 2019 GrapeCity, Inc. All rights reserved.

These commands save the current layout of the grid (style properties, column widths, and so on) to an XML file, or
retrieve the XML file, loading a new grid setup.

Cut, Copy, Paste, Delete
These commands are identical to those on the Visual Studio Editmenu. Cut (CTRL+X) moves the grid from the Visual
Basic form to the Clipboard. Copy (CTRL+C) moves a copy of the grid to the Clipboard while leaving the grid on the
form intact. Paste (CTRL+V) copies the grid from the Clipboard to the form. Delete (the DEL key) removes the grid
but does not move it to the Clipboard. You can undo the Delete command by selecting Undo (CTRL+Z) from the
Visual Basic Edit menu.

Bring To Front, Send To Back
These commands control the z-order of the grid relative to the other objects on the Visual Basic form. Bring To Front
places the grid in front of other objects; Send To Back places it behind other objects.

View Code
This command displays the grid's code window, which enables the viewing and editing of the grid's event handling
code.

Align to Grid
This command automatically aligns the outer edges of the grid control to the design-time grid lines on the form.

TrueDBGrid for WinForms 67

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Run-Time Interaction
The following topics describe how end users of your grid applications can interact with True DBGrid for WinForms at
run time. You can give users the ability to perform any or all of the following:

Navigate within the grid using the mouse or keyboard.
Select rows or columns.
Add, update, and delete records.
Configure the grid's layout.

In the following sections, the properties and events associated with a particular user action are noted where
applicable.

Navigation and Scrolling
The following sections describe the grid's default navigation and scrolling behavior. You always have complete control
over the behavior of the TAB and arrow keys as well as the position of the current cell when a row or split boundary is
reached.

Mouse Interaction
When the user clicks a non-current cell, the grid fires the BeforeRowColChange event. Unless this event is cancelled,
the clicked cell becomes current and the grid subsequently fires the RowColChange event after any pending update
operations have completed. The only exceptions to this are:

If the user clicks a cell in a column or split that has the AllowFocus property set to False, and the cell belongs to
the current row, then the current cell does not change.
If the user clicks a cell in a column or split that has the AllowFocus property set to False, and the cell does not
belong to the current row, then the current row changes, but the column with the focus retains it.
If the current cell has been modified, and the BeforeColUpdate event is canceled, then the current cell does not
change.
If the current row has been modified, and the user clicks a cell in a different row, and the BeforeUpdate event is
canceled, then the current cell does not change.

The user can also use the mouse to manipulate the grid's scroll bars, bringing cells that lie outside the grid's display
area into view. The vertical scroll bar governs rows; the horizontal scroll bar governs columns. The HScrollBar property
controls whether the horizontal scroll bars are displayed, while the VscrollBar property controls the vertical scroll bar.

Note that the scroll bars do not change the current cell. Therefore, the current cell may not always be visible.

To respond to vertical scrolling operations in code, use the FirstRowChange event. To respond to horizontal scrolling
operations in code, use the LeftColChange event.

Clicking the Rightmost Column
The grid always displays the leftmost column (the first visible column) in its entirety. The rightmost column, however,
is usually clipped. The behavior of the last partially visible column when clicked by the user is controlled by the grid's
ExposeCellMode property.

The default value for the ExposeCellMode property is ExposeCellModeEnum.ScrollOnSelect. If the user clicks the
rightmost column when it is partially visible, the grid will scroll to the left to display this column in its entirety. This
may be less desirable for users who commonly click on the grid to begin editing, as the grid will always shift to the left
when the user clicks on a partially visible rightmost column.

TrueDBGrid for WinForms 68

Copyright © 2019 GrapeCity, Inc. All rights reserved.

If ExposeCellMode is set to ExposeCellModeEnum.ScrollOnEdit, the grid will not scroll when the rightmost visible
column is clicked. However, if the user attempts to edit the cell, then the grid will scroll to the left to display the
column in its entirety. This is how Microsoft Excel works and is probably the most familiar setting to users.

If ExposeCellMode is set to ExposeCellModeEnum.ScrollNever, the grid will not scroll to make the rightmost column
visible, even if the user subsequently attempts to edit the cell. Note that editing may be difficult if only a small portion
of the column is visible. The chief reason to use this setting is to ensure enough space is available for editing (or if
editing is disallowed) and to prevent the grid from shifting accidentally.

Note that the ExposeCellMode property controls the behavior of the rightmost visible column only when the user
clicks it with the mouse. If the rightmost column becomes visible by code (setting the grid's Col property) or by
keyboard navigation, then the grid will always scroll to make it totally visible.

Keyboard Interaction
True DBGrid for WinForms includes several keyboard shortcuts that can improve users' run-time interaction
experience.

In Grid View

By default, the user can navigate the grid with the arrow keys, the ENTER key, the TAB key, the Page Up and Page
DOwn keys, and the HOME and END keys.

Key Action

Up/Down Arrows These keys move the current cell to adjacent rows.

Left/Right Arrows If the AllowArrows property is True (the default), these keys move the current cell to
adjacent columns. If the AllowArrows property is False, then these keys move focus
from control to control and cannot be used to move between cells.

ENTER By default, the ENTERkey behaves in the same manner as the RIGHT ARROW key, by
moving the current cell from left to right along the adjacent columns. The behavior
for the ENTER key can be modified by using the DirectionAfterEnter property. When
editing a cell, the ENTER key will save edits and then movie to the next cell.

TAB If the TabAction property is set to Control Navigation (the default), the TAB key
moves focus to the next control on the form as determined by the tab order. If the
TabAction property is set to ColumnNavigation or GridNavigation, the TAB key
moves the current cell to the next column, while SHIFT+TAB moves to the previous
column. The differences between column and grid navigation are discussed in the
next section.

PAGE UP, PAGE DOWN These keys scroll the grid up or down an entire page at a time. Unlike the vertical
scroll bar, thePAgE Up and PAgE DOWn keys change the current row by the number
of visible rows in the grid's display. When paging up, the current row becomes the
first row in the display area. When paging down, the current row becomes the last
row in the display area, including the AddNew row. The current column does not
change.

HOME, END These keys move the current cell to the first or last column. If necessary, the grid will
scroll horizontally so that the current cell becomes visible. The current row does not
change. If the current cell is being edited, HOME and END move the insertion point to
the beginning or end of the cell's text.

F2 Switch between Edit mode (with insertion point displayed) and Navigation mode in a
datasheet. When working in a form or report, press ESC to leave Navigation mode.

TrueDBGrid for WinForms 69

Copyright © 2019 GrapeCity, Inc. All rights reserved.

F4 This key shows or hides a combo box.

ALT+DOWN ARROW You can use this key combination to show a combo box, such as a C1TrueDBG

ALT + LEFT ARROW Collapses all open child grids.

ALT+RIGHT ARROW Expands a child grid.

DELETE The DELETE button deletes the row. In edit mode, the DELETE key deletes the selected
contents of a cell, deleting content to the right of the cursor.

SPACE BAR The SPACE BAR key initiates button clicks and check box and radio button selection
and de-selection.

CTRL+C This key combination copies the selected content to the Clipboard

CTRL+V This key combination pastes the contents of the Clipboard to the selected location.

CTRL+X This key combination cuts the selected content and copies it to the Clipboard

BACKSPACE, CTRL+H In Edit mode you can use the BACKSPACE key or the CTRL+H key combination to
delete content from a cell, deleting content to the left of the cursor.

TAB The TAB key ends cell editing mode, saving any content changes and leaving the
current cell selected.

INSERT In cell editing mode, the INSERT key changes the way text is entered in a cell. When
the INSERT key is active, inputted text overwrites existing content.

CTRL+UP/DOWN ARROW These key combinations allow you to navigate in a list box. The CTRL+UP ARROW key
combination allows you to navigate up to the previous item in a list box. The
CTRL+DOWN ARROW lets you navigate down to the next item.

Key Action

Navigation at Row Boundaries
At row boundaries, namely the first and last column, grid navigation depends on the WrapCellPointer property. The
following explanation assumes that the AllowArrows property is True, and that the TabAction property is set to either
ColumnNavigation or GridNavigation.

Key Action

Left/Right Arrows If the WrapCellPointer property is set to True, the current cell wraps across row
boundaries. If the current cell is in the last column, the RIGHT ARROW key moves it to
the first column of the next row. If the current cell is in the first column, the LEFT
ARROW key moves it to the last column of the previous row. If the WrapCellPointer
property is set to False (default), these keys cannot move the current cell at row
boundaries.

TAB If the TabAction property is ColumnNavigation, the cell pointer does not wrap to an
adjacent row, and the WrapCellPointer property is ignored. If the current cell is in
the last column, TAB moves focus to the next control in the tab order. If the current
cell is in the first column, SHIFT+TAB moves focus to the previous control in the tab
order. If the TabAction property is GridNavigation and WrapCellPointer is True, TAB
and SHIFT+TAB move the current cell to the next or previous row. The current cell will
not cross row boundaries if WrapCellPointer is False.

TrueDBGrid for WinForms 70

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Navigation at Split Boundaries
At split boundaries, grid navigation depends on the TabAcrossSplits property as follows:

Key Action

Left/Right Arrows If the TabAcrossSplits property is set to True, these keys move the current cell across
split boundaries to the next or previous split. If the TabAcrossSplits property is set to
False (default), the behavior of these keys at split boundaries will be the same as their
behavior at row boundaries. Note that a split's AllowFocus property must be True in
order for these keys to move the current cell to that split.

TAB The TAB and SHIFT+TAB keys honor TabAcrossSplits as previously described for the
arrow keys.

Restricting Cell Navigation
The BeforeRowColChange event can be used to prevent the user from moving to a different cell, regardless of
whether the current cell is modified. Set the Cancel argument to True to keep another cell from becoming current.

If the current cell has been modified, use the BeforeColUpdate event to examine its value before moving to another
grid cell. If the value entered is invalid, set the Cancel argument to True to prevent the current cell from changing,
and optionally beep or display an error message for the user. The BeforeColUpdate event provides a flexible way to
validate user input and restrict cell navigation.

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_BeforeColUpdate(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.BeforeColUpdateEventArgs) Handles C1TrueDBGrid1.BeforeColUpdate
 Dim CharCode As Integer
 If e.ColIndex = 1 Then

 ' Data in Column 1 must start with upper case.
 CharCode = Asc(Me.C1TrueDBGrid1.Columns(1).Text)
 If CharCode > 64 And CharCode < 91 Then Exit Sub

 ' Display warning message for user.
 MessageBox.Show("Last name must start with upper case")

 ' Data validation fails, prohibit user from moving to another cell.
 e.Cancel = True
 End If
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_BeforeColUpdate(object sender,
C1.Win.C1TrueDBGrid.BeforeColUpdateEventArgs e) {
 int CharCode;
 if (e.ColIndex == 1)

TrueDBGrid for WinForms 71

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 {
 // Data in Column 1 must start with upper case.
 CharCode = this.c1TrueDBGrid1.Columns[1].Text[0];
 if (CharCode > 64 && CharCode < 91) return;

 // Display warning message for user.
 MessagBox.Show("Last name must start with upper case");

 // Data validation fails, prohibit user from moving to another cell.
 e.Cancel = true;
 }
}

Selection, Sorting, and Movement
The following sections describe how users can select columns, move selected columns, and select rows. You can
restrict any or all of these operations at design time or in code.

Selecting Columns
If the AllowColSelect property is True, the user can select an individual column or a range of columns with the mouse.
Nonadjacent column selections are not supported.

When the user points to the header of an unselected column, the mouse pointer changes to a down arrow to indicate
that the column can be selected:

When the user clicks a column header, that column is selected and highlighted, and any columns or rows that were
previously selected are deselected:

There are two ways for the user to select a range of columns:

TrueDBGrid for WinForms 72

Copyright © 2019 GrapeCity, Inc. All rights reserved.

After selecting the first column in the range by clicking its header, the user can select the last column in the
range by holding down the SHIFT key and clicking another column header. If necessary, the horizontal scroll
bar can be used to bring additional columns into view.
Alternatively, the user can hold and drag the mouse pointer within the column headers to select multiple
columns.

In order to manipulate the columns that have been selected at run-time, query the SelectedColumnCollection. This is a
collection of all the C1DataColumn objects for the selected columns. For instance, if columns 5 through 10 are
selected, the SelectedColumnCollection will have six members, each a C1DataColumn object. This feature enables the
display properties of the column to be altered directly. Using the Item property to access the C1DisplayColumn
properties, the code to change the forecolor to red for the first column selected would be:

To write code in Visual Basic

Visual Basic

Dim dc as C1TrueDBGrid.C1DataColumn

dc = Me.C1TrueDBGrid1.SelectedCols(0)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(dc).Style.ForeColor =
System.Drawing.Color.Red

To write code in C#

C#

dc as C1TrueDBGrid.C1DataColumn;

dc = this.c1TrueDBGrid1.SelectedCols[0];
this.c1TrueDBGrid1.Splits[0].DisplayColumns[dc].Style.ForeColor =
System.Drawing.Color.Red;

Prevent a column selection from occurring at run time by setting the Cancelargument to True in the grid's SelChange
event.

Moving Columns
If the AllowColMove property is True, the user can move previously selected columns as a unit to a different location
by pressing the mouse button within the header area of any selected column. The pointer will change to an arrow with
a column header box on its tip, a small box at its lower right corner, and a position marker consisting of two red
triangles will appear at the left edge of the column being pointed to and highlighted.

TrueDBGrid for WinForms 73

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The user specifies the desired location of the selected columns by dragging position marker, which changes position
as the mouse pointer crosses the right edge of a column.

The user completes the operation by releasing the mouse button, which moves the selected columns immediately to
the left of the position marker. The moved columns remain selected.

If the user drags the marker to a position within the currently selected range, no movement occurs. Columns that are
not selected cannot be moved interactively.

When a move occurs, the index in the Columns Collection is adjusted for all affected columns.

Prevent interactive column movement from occurring at run time by setting the Cancel argument to True in the
ColMove event.

Moving Columns at Run Time
If the AllowColMove property is True, the user can move columns at run time also. Since there is no order property for
a C1DisplayColumn the C1DisplayColumnCollection needs to be manipulated to move a column at run time. The
C1DisplayColumnCollection holds all of the columns in a split. So to move a column, the user needs to remove the
C1DisplayColumn from the collection, and then replace the column in the new position. The commonplace collection
methods of RemoveAt and Add help accomplish this quite easily. The code which would transpose the first two
columns in the default split would look as follows:

To write code in Visual Basic

Visual Basic

Dim dc as C1TrueDBGrid.C1DisplayColumn
dc = Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns.RemoveAt(1)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns.Insert(0, dc)

To write code in C#

TrueDBGrid for WinForms 74

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

dc as C1TrueDBGrid.C1DisplayColumn;
dc = this.c1TrueDBGrid1.Splits(0).DisplayColumns[1];
this.c1TrueDBGrid1.Splits[0].DisplayColumns.RemoveAt(1);
this.c1TrueDBGrid1.Splits[0].DisplayColumns.Insert(0, dc);

Sorting Columns
If the AllowSort property is True (default), the user can sort columns by clicking on column headers. When the mouse
is over a column header, the header will appear highlighted:

If the user clicks on the column header once with the mouse, the column is sorted and a sort indicator arrow appears
in the column header to indicate the direction of the sort:

If the user clicks the header again, the sort is reversed and the direction of the sort indicator arrow is also reversed:

If the AllowColSelect property is set to False the column will not be selected when sorting.

To prevent users from sorting columns at run time set the AllowSort property to False, for more information see the

TrueDBGrid for WinForms 75

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Disabling Column Sorting topic.

Selecting Rows
Row selection is also very easy to master with True DBGrid for WinForms. When the cursor hovers over the record
selector to the left of a row, a small arrow will indicate that this row is about to be selected. Then by clicking on this
record selector, the row then becomes selected. To select a contiguous range of rows, manipulate the arrow keys
while holding down the shift button. This will select the cells in every field for the range of rows that the user has
selected. To select a non-contiguous range of rows, click on the rows to be selected while holding down the CTRL
button. This will select the cells in every field for the set of non-contiguous rows that the user has selected.

In order to find out which rows have been selected at run-time, query the SelectedRowCollection. This is a collection
of all the row indices for the selected rows. For instance, if rows 5 through 10 are selected, the SelectedRowCollection
will have six members. Each member will be an integer value and will be an integer that corresponds to the absolute
row position of the selected row.

Selecting a Range of Cells
When it comes to cell selection, True DBGrid for WinForms has multi-select capability enabled at all times, very
similar to Microsoft Excel. By clicking on a cell and dragging the mouse, or by using the arrow keys, a range of cells
can be selected. In turn, by clicking on a record selector and manipulating the mouse a set of rows can be selected.
This range is not restricted to the row or column of the initial cells origin, although non-contiguous cell selection is
not supported.

When a range of cells is selected the grid’s SelRange property becomes True. This will indicate that neither just the
SelectedRowCollection nor just the SelectedColumnCollection collections will tell which cells are selected. By
evaluating both collections, though, and taking the intersection of the two collections, the selected cell range can be
discovered at run time. For instance, if the user clicked on the second row, second column, and dragged the mouse to
the fourth row, fourth column, the SelectedRowCollection collection would contain the integers 2, 3, and 4, while the
SelectedColumnCollection collection would contain the C1DataColumn objects for columns 2, 3, and 4. From this, it
can be discerned at run-time that there is a nine-cell range selected from column 2, row 2, to column 4, row 4.

Sizing and Splitting
The following sections describe how users can resize rows, columns, and splits. Restrict any or all of these operations
at design time or in code.

Sizing Rows
If the AllowRowSizing property is set to either RowSizingEnum.AllRows or RowSizingEnum.IndividualRows, the
user can change the row height at run time. When the user points to a row divider in the record selector column, the
pointer changes to a vertical double arrow that the user can drag to adjust the height of all rows.

TrueDBGrid for WinForms 76

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Dragging the pointer upward makes the rows smaller; dragging it downward makes the rows larger. If the property is
set to AllRows, then all rows in the grid will be resized to the same height; it is not possible to resize individual rows.
If the property is set to IndividualRows, then each row can be sized independently.

In addition, if the grid does not display the record selector column (that is, the RecordSelectors property is False),
users cannot interactively change the row height.

The RowHeight property of the grid will be adjusted when the user completes the resize operation.

Prevent row resizing from occurring at run time by setting the Cancelargument to True in the RowResize event.
Change the RowHeight of the grid in code, even if AllowRowSizing is RowSizingEnum.None or the RowResize event
is cancelled.

Sizing Columns
If the AllowSizing property is True for a column, the user can adjust the width of the column individually at run time.
When the user points to the divider at the right edge of a column's header, the pointer changes to a horizontal
double arrow that the user can drag to resize the column in question.

Dragging the pointer to the left makes the column smaller; dragging it to the right makes the column larger. The
column's Width property will be adjusted when the user completes the resize operation.

If the grid does not display column headers (that is, the ColumnHeaders property is False), the horizontal double
arrow will appear when the pointer is over the column divider within the grid's data area.

If the user drags the pointer all the way to the left, the column retains its original Width property setting, but its
Visible property is set to False. To make the column visible again, the user can point to the right side of the divider of
the column that preceded it. The pointer turns into a vertical bar with a right arrow.

TrueDBGrid for WinForms 77

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Dragging the pointer to the right establishes a new column width and sets the column's Visible property back to
True.

Another way to resize columns is to use the AutoSize method to specify auto-sizing for a specific Column object in
code. When a column is auto-sized, its width is adjusted to fit the longest visible field in that column. Longer records
that are not displayed in a visible row when AutoSize is invoked do not participate in the width calculations.
Furthermore, if the specified column is either hidden or scrolled out of view, a trappable error occurs.

Prevent column resizing from occurring at run time by setting the Cancelargument to True in the ColResize event.
Change the width of a column in code, even if AllowSizing is False for that column.

Database Operations
The editing, deleting, and adding permissions granted to the user at run time are controlled by the AllowUpdate,
AllowDelete, and AllowAddNew properties. The default values of these properties are:

Property Default

AllowUpdate True

AllowDelete False

AllowAddNew False

Note that these properties only control user interaction with the grid at run time. They do not control whether
database operations can be performed by the DataSet or other bound controls, or by the application code.

Editing Data
True DBGrid for WinForms' AllowUpdate property must be True in order for the user to edit data in the grid. The
default value is True.

If the user moves to a cell and starts typing, the cell's data will be replaced by what is typed. Alternatively, clicking
within the current cell will put the grid into edit mode (its EditActive property becomes True), enabling the user to
modify the cell's data.

While editing, the LEFT ARROW and RIGHT ARROW keys move the insertion point within the cell. If the insertion point
is at the beginning or end of the cell's text, the LEFT ARROW and RIGHT ARROW keys will terminate editing by
moving to the adjacent cell. The UP ARROW and DOWN ARROW keys terminate editing by moving the current cell to
the row above or below the current one. The user can also end editing without moving the current cell by pressing the
ENTER key.

When one or more cells in a row have been modified, a pencil icon will appear in the record selector column to
indicate that data in the row has been changed. The pencil icon does not mean that the grid's EditActive property is
True; it means that the grid's DataChanged property is True. To cancel the changes made to the current cell, the user
can press the ESC key. In fact, before moving to another row, the user can revisit any column within the current row

TrueDBGrid for WinForms 78

Copyright © 2019 GrapeCity, Inc. All rights reserved.

and press the ESC key to restore the cell to its original value. If the user repeats this procedure for all modified cells in
the row, the pencil icon in the record selector will disappear.

Moving to another row by clicking it, using the UP ARROW or DOWN ARROW keys, or by clicking the navigation
buttons of the Data control will update the modified record to the database. If the update is successful, the pencil icon
will disappear. If no grid columns have been modified, no update will occur when changing rows.

Adding a New Record
True DBGrid for WinForms' AllowAddNew property must be True in order for the user to add new records to the
grid interactively. The default value is False.

If the AllowAddNew property is True, an empty AddNew row, marked by an asterisk in the record selector column, will
be displayed after the last record. The user can initiate an add operation by navigating to the AddNew row, either by
clicking it or by using the DOWN ARROW key, then typing new data. The first character typed will cause the grid to
insert a blank row before the AddNew row. The newly inserted blank row becomes the current row, and the grid fires
the OnAddNew event.

At this point, the new row exists only in the grid—it does not have a bookmark, and it does not yet represent a
physical database record. The new row is added to the underlying data source when the user navigates to another
data row or the AddNew row.

Deleting a Record
True DBGrid for WinForms' AllowDelete property must be True in order for the user to delete records through the
grid. The default value is False.

To delete a record, the user selects the row to be deleted by clicking its record selector, then pressing the DEL key.
Only one record can be deleted at a time. The user cannot select multiple records and press the DEL key to delete
them all.

In order for the record to be deleted, the grid must have focus so it can receive the DEL key. Clicking the grid's record
selector column does not set focus to the grid. However, if you always want the grid to receive focus when the user
clicks the record selector column, set focus to the grid in the grid's SelChange event:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_SelChange(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.CancelEventArgs) Handles C1TrueDBGrid1.SelChange
 Me.C1TrueDBGrid1.Focus()
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_SelChange(object sender,
C1.Win.C1TrueDBGrid.CancelEventArgs e)
{
 this.c1TrueDBGrid1.Focus();
}

TrueDBGrid for WinForms 79

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Customized Grid Editors
The following sections describe how to use and create custom grid editors.

Using Custom Editors
The built-in editors provide a lot of flexibility and power, but in some cases you may want to use external controls as
specialized editors. For example, you may want to use the C1NumericEdit control that provides a drop-down
calculator for entering numbers, or an editor for selecting from multi-column lists, or a specialized control that you
wrote to edit your business objects.

Note: The C1NumericEdit control is one of the Input for WinForms controls. For more information on the
C1NumericEdit control, please refer to the Input for WinForms documentation which is available on GrapeCity
website.

Any control that derives from the base Control class can be used as a basic grid editor. Controls that implement the
IC1EmbeddedEditor interface can provide better integration with the grid and more advanced features. For details
on the IC1EmbeddedEditor interface, see the Editor property.

To use a control as a custom editor, all you have to do is associate an instance of the control with a grid column using
the Editor property. You can do this in code using the Editor property. After that, the control will be automatically
used by the grid.

For example, to use a C1NumericEdit control as a grid editor, follow these steps:

1. Add a C1TrueDBGrid control and a C1NumericInput control to the form.
2. For the C1NumericInput control, set the BorderStyle property to None and the Visible property to False

either in the Properties window or by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Set up the custom editor.
Me.C1NumericEdit1.BorderStyle = BorderStyle.None
Me.C1NumericEdit1.Visible = False

To write code in C#

C#

// Set up the custom editor.
this.c1NumericEdit1.BorderStyle = BorderStyle.None;
this.c1NumericEdit1.Visible = false;

3. In the Form_Load event assign the custom editor to the grid column.

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 ' Assign the custom editor to the grid.
 Me.C1TrueDBGrid1.Columns(0).Editor = Me.C1NumericEdit1

TrueDBGrid for WinForms 80

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/docs/platforms/winforms
https://www.grapecity.com/en/docs/platforms/winforms

End Sub

To write code in C#

C#

private void Form_Load(object sender, EventArgs e)
{

 // Assign the custom editor to the grid.
 this.c1TrueDBGrid1.Columns[0].Editor = this.c1NumericEdit1;
}

Run the project and edit some values in the first column. Notice how the grid positions and initializes the
C1NumericEdit control so you can edit cell values. When you are done editing a cell, click a different cell or press the
TAB key to move to the next one. Notice how the new value is applied to the cell.

Creating Custom Editors
Any control that derives from the Control base class can be used as a grid editor. This is possible because the grid
knows enough about the base class to access properties such as Text and Bounds, and events such as Leave and
TextChanged. In many cases this level of support is adequate.

In some cases, however, you may want to use controls that do not follow the base class that closely. For example, a
DateTimePicker control has a Value property that should be used to retrieve the edited value instead of Text. In
these cases, you can implement one or more methods in the IC1EmbeddedEditor interface to override the default
behavior. For example, all controls in the C1Input library support IC1EmbeddedEditor and therefore integrate closely
with C1TrueDBGrid (and also C1FlexGrid).

The IC1EmbeddedEditor interface is fairly simple, and because the grid binds to it using late binding, you do not
even have to implement all its members. Only implement the ones that make sense to your editor control.

The interface does provide enough flexibility to allow virtually any control to be used as a grid editor. You can even
use UITypeEditor classes as grid editors. To do this, you need a wrapper class that:

1. Derives from Control (UITypeEditor does not).
2. Implements the IC1EmbeddedEditor interface.
3. Encapsulates the appropriate UITypeEditor.

Note: For a complete sample using this wrapper class, see the CustomEditors sample installed with Winforms
Edition.

Using the UITypeEditor wrapper class, you can use any UITypeEditors with the C1TrueDBGrid. .NET provides several
UITypeEditors for editing colors, fonts, file names, and so on. You can also write your own UITypeEditors, in some
cases that is easier than writing a control.

Additional User Interaction Features
True DBGrid for WinForms provides additional data presentation and manipulation functionality that can be
exposed to users at run time. For more information, please see the following topics:

Context-sensitive Help with CellTips
Scroll Tracking and ScrollTips
Hierarchical Data Display
Drop-down Hierarchical Data Display

TrueDBGrid for WinForms 81

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Column Grouping

TrueDBGrid for WinForms 82

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Data Binding
The following topics describe how to bind to a data source, create and use unbound columns, and display data
without binding to a data source.

Binding True DBGrid for WinForms to a Data Source
With an amazing ease of use, True DBGrid for WinForms can universally bind to any .NET data source. Requiring
little or no code at all, the C1TrueDBGrid control can create a fully-navigational database browser in mere seconds.

True DBGrid for WinForms fully supports data binding to ADO.NET objects such as DataTable, DataView and
DataSet objects. You also have an even easier option of binding to ComponentOne DataObjects Express data
sources, C1ExpressTable and C1ExpressConnection. C1TrueDBGrid also fully supports the powerful DataObjects
for WinForms framework included in the ComponentOne Studio Enterprise.

To associate a True DBGrid for WinForms control with an ADO.NET or DataObjects for WinForms data source, set
the DataSource property of the grid to a DataSet on the same form. If the DataSet contains multiple tables, you can
select a table name in the DataMember property combo box. The DataSource and DataMember properties can be set
both through code, and through Visual Studio's Properties window. This is all that is required to make True DBGrid
for WinForms fully aware of the database or DataTable in your application.

Once such a link exists, True DBGrid for WinForms and the DataSet automatically notify and respond to operations
performed by the other, simplifying your application development.

Preserving the Grid's Layout
You can use the SetDataBinding method to bind the grid at run time. For example, the following code binds the
C1TrueDBGrid control to the Customers table in the DSCustomers data source:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.SetDataBinding(Me.DsCustomers.Customers, "")

To write code in C#

C#

this.c1TrueDBGrid1.SetDataBinding(this.DsCustomers.Customers, "");

If the DataSource is reset through code, it will show all of the data in the grid and will not keep the initial layout
created with the Designer. You can ensure that the grid layout remains as designed by using the SetDataBinding
method with the HoldFields parameter set to True. For example

To write code in Visual Basic

Visual Basic

C1TrueDBGrid1.SetDataBinding(Me.DsCustomers.Customers, "", True)

To write code in C#

C#

TrueDBGrid for WinForms 83

Copyright © 2019 GrapeCity, Inc. All rights reserved.

this.c1TrueDBGrid1.SetDataBinding(this.DsCustomers.Customers, "", true);

For another example of using the SetDataBinding(Object, String, Boolean) method, see Tutorial 2: Using True
DBGrid for WinForms with SQL Query Results.

Note that you can create an unbound grid by using the SetDataBinding method without arguments. See Creating an
Unbound Grid for details.

Using Unbound Columns
Normally, True DBGrid for WinForms automatically displays data from bound database fields. However, you may
need to augment the set of fields present in your layouts with columns derived from database fields, or columns that
are unrelated (or only loosely related) to database information. For example, if your database contains a Balance field,
you may instead want to display two columns, Credit and Debit, to show positive and negative numbers separately. Or,
you may want to look up data in another database, or convert field data to some other form, such as mapping
numeric codes to textual descriptions.

To accomplish such tasks you can use unbound columns. The term unbound column refers to a column that is part of
a bound grid, but is not tied directly to a database field.

Columns that do not have the DataField property set (that is, the DataField property is equal to an empty string), but
do have the column Caption property set are considered unbound columns. The grid will request data for these
columns through the UnboundColumnFetch event.

Columns with their DataField property set will be bound, if the DataField property is the same as one of the fields of
the Data Source.

Columns with their DataField property set to a value that is not in the DataSet are ignored for the purposes of
fetching data. Similarly, columns that have no value for both the DataField and Caption properties set are also
ignored.

Creating Unbound Columns
The first step in using an unbound column is creating the column itself. This may be done in the designer by adding a column through the
C1TrueDBGrid Designer. In code, unbound columns may be added using the Insert method of the C1DataColumnCollection. The column
must be given a name by setting its Caption property. In the designer, this is done using the C1TrueDBGrid Designer. In code, the
Caption property of the appropriate C1DataColumn object is set. C1DataColumn objects that are added to the C1DataColumnCollection
cause a corresponding C1DisplayColumn to be added to the C1DisplayColumnCollection for all splits. The default visible property of the
newly added C1DisplayColumn will be False.

When attempting to insert an unbound column in code, use the Rebind method to ensure that the column appears at the desired position
within the grid:

To write code in Visual Basic

Visual Basic

Dim Col As New C1.Win.C1TrueDBGrid.C1DataColumn
Dim dc As C1.Win.C1TrueDBGrid.C1DisplayColumn

With Me.C1TrueDBGrid1
 .Columns.Insert(0, Col)
 Col.Caption = "Unbound"
 dc = .Splits(0).DisplayColumns.Item("Unbound")

 ' Move the newly added column to leftmost position in the grid.
 .Splits(0).DisplayColumns.RemoveAt(.Splits(0).DisplayColumns.IndexOf(dc))
 .Splits(0).DisplayColumns.Insert(0, dc)
 dc.Visible = True
 .Rebind(True)

TrueDBGrid for WinForms 84

Copyright © 2019 GrapeCity, Inc. All rights reserved.

End With

To write code in C#

C#

C1.Win.C1TrueDBGrid.C1DataColumn Col = new C1.Win.C1TrueDBGrid.C1DataColumn();
C1.Win.C1TrueDBGrid.C1DisplayColumn dc;
c1TrueDBGrid1.Columns.Insert(0, Col);
Col.Caption = "Unbound";
dc = c1TrueDBGrid1.Splits[0].DisplayColumns["Unbound"];

// Move the newly added column to leftmost position in the grid.
c1TrueDBGrid1.Splits[0].DisplayColumns.RemoveAt(C1TrueDBGrid1.Splits[0].DisplayColumns.IndexOf(dc));
c1TrueDBGrid1.Splits[0].DisplayColumns.Insert(0, dc);
dc.Visible = true;
c1TrueDBGrid1.Rebind(true);

When the grid needs to display the value of an unbound column, it fires the UnboundColumnFetch event. This event supplies the user
with a row and column index as the means of identifying the grid cell being requested. The Value property to the event is of type Object
that by default is Null, but can be changed to any desired value, and will be used to fill the contents of the cell specified by the given row
and column index.

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_UnboundColumnFetch(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.UnboundColumnFetchEventArgs) Handles C1TrueDBGrid1.UnboundColumnFetch

To write code in C#

C#

private void c1TrueDBGrid1_UnboundColumnFetch(object sender,
C1.Win.C1TrueDBGrid.UnboundColumnFetchEventArgs e)

Implementing Multiple Unbound Columns
So far, our examples have demonstrated the UnboundColumnFetch event using only a single unbound column but
more than one unbound column can be used. Since the UnboundColumnFetch is fired for each unbound column of
each row, only one column value may be set at a time, and each column must be identified for the value to be
properly determined. The second UnboundColumnFetch property, Column, is used to identify the column of the grid
for which the value is required.

To write code in Visual Basic

Visual Basic

' Will be used as the copy.
Dim dtCopy As Data.DataTable

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 dtCopy = Me.DataSet11.Tables(0).Copy()
End Sub

Private Sub C1TrueDBGrid1_UnboundColumnFetch(ByVal sender As System.Object, ByVal e
As C1.Win.C1TrueDBGrid.UnboundColumnFetchEventArgs) Handles

TrueDBGrid for WinForms 85

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1TrueDBGrid1.UnboundColumnFetch
 Select Case e.Column.Caption
 Case "Area"

 ' Calculate the "Area" column of the grid.
 e.Value = dtCopy.Rows(e.Row).Item("Length") *
dtCopy.Rows(e.Row).Item("Width")
 Case "Perimeter"

 ' Calculate the "Perimeter" column of the grid.
 e.Value = 2 * (dtCopy.Rows(e.Row).Item("Length") +
dtCopy.Rows(e.Row).Item("Width"))
 End Select
End Sub

To write code in C#

C#

// Will be used as the copy.
Data.DataTable dtCopy;

private void Form1_Load(System.object sender, System.EventArgs e)
{
 dtCopy = this.DataSet11.Tables[0].Copy();
}

private void C1TrueDBGrid1_UnboundColumnFetch(object sender,
C1.Win.C1TrueDBGrid.UnboundColumnFetchEventArgs e)
{
 switch (e.Column.Caption;)
 {
 case "Area";

 // Calculate the "Area" column of the grid.
 e.value = dtCopy.Rows[e.Row].Item["Length"] *
dtCopy.Rows[e.Row].Item["Width"];
 break;
 case "Perimeter";

 // Calculate the "Perimeter" column of the grid.
 e.value = 2 * (dtCopy.Rows[e.Row].Item["Length"] +
dtCopy.Rows[e.Row].Item["Width"]);
 break;
 }
}

Updating Unbound Columns
In most cases, unbound columns will be read-only, as the values are derived from other data in the grid. In these
cases, set the Locked property of the column's style to True.

TrueDBGrid for WinForms 86

Copyright © 2019 GrapeCity, Inc. All rights reserved.

If Locked is False and updates are allowed, the user can edit the values of an unbound column. If editing of an
unbound column occurs, the row will be marked as dirty (a pencil icon will be shown in the record selector column)
and the update sequence will be performed as usual. However, the grid does not know what to do with the modified
data, since there is no database field in which to store it. In this situation the UnboundColumnUpdated event will be
raised.

The BeforeUpdate event can be used to cancel the update operation. Therefore, if the unbound column is to be used
in cooperation with another database, the update of the unbound column should be performed in BeforeUpdate. If
the operation fails, then the event should be canceled. However, if the operation succeeds, then the bound update
should be allowed to proceed. The bound update may then fail; hence any database actions associated with unbound
columns would best be handled on a transactional basis.

If the bound update succeeds, the AfterUpdate event is fired, and the unbound column transaction should be
committed. If the bound update fails, the unbound column transaction should be rolled back within .NET's trappable
error handler, depending on how the update was initiated. If transactions are not available, then store the original
unbound column values prior to the update, then perform another update to restore these values should the bound
update fail.

Editing Unbound Columns
Another technique for updating an unbound column is to use the AfterColUpdate event to adjust the value of other
(bound) columns. For example, imagine a pair of columns for Debit and Credit, as shown in this portion of a grid
display:

Assume that there is no database field for these, but that they are unbound columns that derive their value from a
single Balance column, which is either positive or negative. From the user's perspective, it would be desirable to edit
these values directly. From your perspective, it would be desirable to have the grid update the dependent Balance
column automatically.

True DBGrid for WinForms makes such tasks easy. The following code would be put in the grid's AfterColUpdate
event to cause either column to change the Balance column when updated:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_AfterColUpdate(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.ColEventArgs) Handles C1TrueDBGrid1.AfterColUpdate
 Dim row as Integer = Me.C1TrueDBGrid1.Row
 Me.C1TrueDBGrid1(row, "Balance") = -e.Column.DataColumn.Value
End Sub

To write code in C#

C#

TrueDBGrid for WinForms 87

Copyright © 2019 GrapeCity, Inc. All rights reserved.

private void C1TrueDBGrid1_AfterColUpdate(object sender,
C1.Win.C1TrueDBGrid.ColEventArgs e)
{
 int row = this.c1TrueDBGrid1.Row;
 this.c1TrueDBGrid1[row, "Balance"] = -e.Column.DataColumn.Value;
}

Notice that, when updating these columns, the code actually changes the value of the Balance column, which is both
bound and invisible.

Creating an Unbound Grid
True DBGrid for WinForms can display data without being bound to a DataSource. Creating an unbound grid can be
done in a few steps.

To create an unbound grid, complete the following:

1. Begin by creating your columns. This can be done either in the designer or in code. For more information on
creating columns, see Creating Unbound Columns.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns.Add(New C1.Win.C1TrueDBGrid.C1DataColumn("FirstName",
GetType(String)))
Me.C1TrueDBGrid1.Columns.Add(New C1.Win.C1TrueDBGrid.C1DataColumn("LastName",
GetType(String)))
Me.C1TrueDBGrid1.Columns.Add(New C1.Win.C1TrueDbGrid.C1DataColumn("DateOfBirth",
GetType(DateTime)))

To write code in C#

C#

this.c1TrueDBGrid1.Columns.Add(new
C1.Win.C1TrueDBGrid.C1DataColumn("FirstName",typeof(string)));
this.c1TrueDBGrid1.Columns.Add(new
C1.Win.C1TrueDBGrid.C1DataColumn("LateName",typeof(string)));
this.c1TrueDBGrid1.Columns.Add(new
C1.Win.C1TrueDBGrid.C1DataColumn("DateOfBirth",typeof(DateTime)));

2. Call the SetDataBinding method with no arguments.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.SetDataBinding()

To write code in C#

C#

this.c1TrueDBGrid1.SetDataBinding();

TrueDBGrid for WinForms 88

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. Use the AddRow or AddRows method to populate the grid.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AddRow("John;Doe;11/29/1985")
Me.C1TrueDBGrid1.AddRow("Jane;Doe;7/12/1980")

Dim index As Integer = Me.C1TrueDBGrid1.AddRows(2)
Dim i As Integer
For i = index To 1
 Me.C1TrueDBGrid1(i, "FirstName") = "Joe"
 Me.C1TrueDBGrid1(i, "LastName") = "Doe"
 Me.C1TrueDBGrid1(i, "DateOfBirth") = New DateTime(2000, 1, 15)
Next i

To write code in C#

C#

this.c1TrueDBGrid1.AddRow("John;Doe;11/29/1985");
this.c1TrueDBGrid1.AddRow("Jane;Doe;7/12/1980");

int index = this.c1TrueDBGrid1.AddRows(2);
for(int i=index; i < 2; i++)
{
 this.c1TrueDBGrid1[i,"FirstName"] = "Joe";
 this.c1TrueDBGrid1[i, "LastName"] = "Doe";
 this.c1TrueDBGrid1[i, "DateOfBirth"] = new DateTime(2000,1, 15);
}

You have successfully created an unbound grid.

Adding New Rows to an Unbound Grid
You can now easily add new rows to an unbound grid by using the C1TrueDBGrid.NewRow method which creates a
new System.Data.DataRow with the same schema as the unbound grid. In the following steps you'll use the
C1TrueDBGrid.Rows collection, which gets the DataRowCollection for an unbound grid, and the
C1TrueDBGrid.NewRow method to insert a new row into the specified index of an unbound grid.

Complete the following steps:

1. Create a new .NET project.
2. Navigate to the Toolbox and add the C1TrueDBGrid, Label, NumericUpDown, and Button controls to the

form.
3. Set the Button1.Text property to "Add New Row" and the Label1.Text property to "New Row Index".
4. Arrange the controls on the form similar to the following image:

TrueDBGrid for WinForms 89

Copyright © 2019 GrapeCity, Inc. All rights reserved.

5. Switch to Code view and add the following imports (or using) statement to the project:

To write code in Visual Basic

Visual Basic

imports C1.Win.C1TrueDBGrid

To write code in C#

C#

using C1.Win.C1TrueDBGrid;

6. Add the following code to create the Form_Load event and add data to the grid:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 ' Add a caption to the grid.
 Me.C1TrueDBGrid1.Caption = "Unbound Grid"

 ' Add columns to the grid.
 Me.C1TrueDBGrid1.Columns.Add(New C1.Win.C1TrueDBGrid.C1DataColumn("Col 1",
GetType(String)))
 Me.C1TrueDBGrid1.Columns.Add(New C1.Win.C1TrueDBGrid.C1DataColumn("Col 2",
GetType(String)))
 Me.C1TrueDBGrid1.Columns.Add(New C1.Win.C1TrueDBGrid.C1DataColumn("Col 3",
GetType(String)))
 Me.C1TrueDBGrid1.Columns.Add(New C1.Win.C1TrueDBGrid.C1DataColumn("Col 4",
GetType(String)))

 ' Call the SetDataBinding method with no arguments.
 Me.C1TrueDBGrid1.SetDataBinding()

TrueDBGrid for WinForms 90

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 ' Populate the grid.
 Dim i As Integer
 For i = 0 To 20 - 1
 Dim s As String = String.Format("Data {0};Data {1};Data {2}; Data {3}",
New Object() {i, i, i, i})
 Me.C1TrueDBGrid1.AddRow(s)
 Next i
End Sub

To write code in C#

C#

private void Form1_Load(object sender, EventArgs e)
{
 // Add a caption to the grid.
 this.c1TrueDBGrid1.Caption = "Unbound Grid"

 // Add columns to the grid.
 this.c1TrueDBGrid1.Columns.Add(new C1.Win.C1TrueDBGrid.C1DataColumn("Col 1",
typeof(string)));
 this.c1TrueDBGrid1.Columns.Add(new C1.Win.C1TrueDBGrid.C1DataColumn("Col 2",
typeof(string)));
 this.c1TrueDBGrid1.Columns.Add(new C1.Win.C1TrueDBGrid.C1DataColumn("Col 3",
typeof(string)));
 this.c1TrueDBGrid1.Columns.Add(new C1.Win.C1TrueDBGrid.C1DataColumn("Col 4",
typeof(string)));

 // Call the SetDataBinding method with no arguments.
 this.c1TrueDBGrid1.SetDataBinding();

 // Populate the grid.
 for (int i = 0; i < 20; i++)
 {
 string s = String.Format("Data {0};Data {1};Data {2}; Data {3}", i, i,
i, i);
 this.c1TrueDBGrid1.AddRow(s);
 }
}

7. Add the following code to create the Button_Click event and create a new row at the specified index when the
button is clicked:

To write code in Visual Basic

Visual Basic

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Dim idx As Integer = CInt(Me.NumericUpDown1.Value)
 ' Create a new row.
 Dim dr As DataRow = Me.C1TrueDBGrid1.NewRow
 dr.Item(0) = "new row"
 ' Add the new row at the selected index.

TrueDBGrid for WinForms 91

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Me.C1TrueDBGrid1.Rows.InsertAt(dr, idx)
End Sub

To write code in C#

C#

private void button1_Click(object sender, EventArgs e)
{
 int idx = (int) this.numericUpDown1.Value;
 // Create a new row.
 DataRow dr = this.c1TrueDBGrid1.NewRow();
 dr[0] = "new row";
 // Add the new row at the selected index.
 this.c1TrueDBGrid1.Rows.InsertAt(dr, idx);
}

Run the application and observe:
The form will appear similar to the following:

Use the arrows to change the number in the New Row Index box and then select the Add New Row button. The new
row will appear at the index that you chose:

TrueDBGrid for WinForms 92

Copyright © 2019 GrapeCity, Inc. All rights reserved.

TrueDBGrid for WinForms 93

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Customizing the Grid's Appearance
The following topics explain how to configure the non-interactive elements of True DBGrid for WinForms' display,
such as visual styles, captions, headers, footers, record selectors, and dividing lines.

Visual Styles
True DBGrid for WinForms supports Visual Styles that mimic the styles available in Office 2007 and 2010.
Customizing Visual Styles simple, you can set the grid's VisualStyle Property from the C1TrueDBGrid Tasks menu (see
C1TrueDBGrid Tasks Menu for more information), the Properties window, or in code. By default the grid's VisualStyle
is set to VisualStyle.Custom, a standard appearance that does not use Visual Styles and renders the control using only
the set styles and properties. The following Visual Styles are available in C1TrueDBGrid:

Custom VisualStyle

The Custom Visual Style renders the control using only the set styles and properties. This is the default setting.
When VisualStyle is set to VisualStyle.Custom, the grid appears similar to the following:

System VisualStyle

The System Visual Style renders the control with an appearance based on the current system settings. When
VisualStyle is set to VisualStyle.System, the grid appears similar to the following:

Office2007Black VisualStyle

The Office2007Black Visual Style renders the control with an appearance based on the Office 2007 Black color
scheme. When VisualStyle is set to VisualStyle.Office2007Black, the grid appears similar to the following:

TrueDBGrid for WinForms 94

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Office2007Blue VisualStyle

The Office2007Blue Visual Style renders the control with an appearance based on the Office 2007 Blue color
scheme. When VisualStyle is set to VisualStyle.Office2007Blue, the grid appears similar to the following:

Office2007Silver VisualStyle

The Office2007Silver Visual Style renders the control with an appearance based on the Office 2007 Silver color
scheme. When VisualStyle is set to VisualStyle.Office2007Silver, the grid appears similar to the following:

Office2010Black VisualStyle

The Office2010Black Visual Style renders the control with an appearance based on the Office 2010 Black color
scheme. When VisualStyle is set to VisualStyle.Office2010Black, the grid appears similar to the following:

TrueDBGrid for WinForms 95

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Office2010Blue VisualStyle

The Office2010Blue Visual Style renders the control with an appearance based on the Office 2010 Blue color
scheme. When VisualStyle is set to VisualStyle.Office2010Blue, the grid appears similar to the following:

Office2010Silver VisualStyle

The Office2010Silver Visual Style renders the control with an appearance based on the Office 2010 Silver color
scheme. When VisualStyle is set to VisualStyle.Office2010Silver, the grid appears similar to the following:

Captions, Headers, and Footers
Affix a title to a grid, column, or split by setting the Caption property of the appropriate object. For example, the
following code sets captions on a grid, column, and split:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Caption = "Grid Caption"
Me.C1TrueDBGrid1.Columns(0).Caption = "Column 0 Caption"
Me.C1TrueDBGrid1.Splits(0).Caption = "Split 0 Caption"

TrueDBGrid for WinForms 96

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.c1TrueDBGrid1.Caption = "Grid Caption";
this.c1TrueDBGrid1.Columns.[0].Caption = "Column 0 Caption";
this.c1TrueDBGrid1.Splits[0].Caption = "Split 0 Caption";

Column and Grid Captions
For C1DataColumn objects, the Caption property specifies the text that appears in each column's header area.

If using True DBGrid for WinForms controls bound to a DataSet, the column captions are set automatically at run
time.

Column captions can also be set in the designer using the C1TrueDBGrid Designer, or in code by manipulating the
C1DataColumnCollection.

The Caption property also applies to the C1TrueDBGrid control itself, which provides a descriptive header for the
entire grid.

By default, C1TrueDBGrid displays headings for each column; even the Caption property of an individual column is
never set explicitly. However, all column headings can be hidden by setting the ColumnHeaders property to False.

Column Footers
Just as the ColumnHeaders property controls the display of column captions, the ColumnFooters property controls
the display of the column footer row. Column footers, which are similar in appearance to column headers, are always
displayed at the bottom of the grid, even if it is under populated.

For each C1DataColumn object, the FooterText property determines the text that is displayed within the footer row.

TrueDBGrid for WinForms 97

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Set the footer text in the designer using the C1TrueDBGrid Designer, or in code by manipulating the
C1DataColumnCollection collection, as in the following example:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns(0).FooterText = "Footer 0"
Me.C1TrueDBGrid1.Columns(1).FooterText = "Footer 1"

To write code in C#

C#

this.c1TrueDBGrid1.Columns[0].FooterText = "Footer 0";
this.c1TrueDBGrid1.Columns[1].FooterText = "Footer 1";

Unlike the Caption property, the FooterText property is not set automatically from a bound data source, so you will
have to set it yourself.

Multiple-Line Headers and Footers
The split specific property ColumnCaptionHeight property controls the height of the column headers. By default, it is
based upon the font setting of the HeadingStyle. To display more than one line of text in a column header, increase
the ColumnCaptionHeight property to accommodate additional lines, as in the following example:

To write code in Visual Basic

Visual Basic

With Me.C1TrueDBGrid1
 .Splits(0).ColumnCaptionHeight = .Splits(0).ColumnCaptionHeight * 2
 .Columns(0).Caption = "First line" + vbCrLf + "Second line"
End With

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].ColumnCaptionHeight =
this.c1TrueDBGrid1.Splits[0].ColumnCaptionHeight * 2;
this.c1TrueDBGrid1.Columns[0].Caption = "First line\nSecond line";

Note the use of the "\n" to specify a line break within the caption text. After this code executes, the first column's
caption will contain two lines of text, and the second column's caption will be centered vertically.

Similarly, set the ColumnFooterHeight property to control the height of column footers, and use the constant to
specify a line break when setting the FooterText property of a column.

TrueDBGrid for WinForms 98

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Split Captions
Split objects can also have their own captions. For a grid with one split, a split caption can serve as a second grid
caption.

However, split captions are best used in grids with at least two splits, as they are ideal for categorizing groups of
columns for end users.

Three-Dimensional vs. Flat Display
True DBGrid for WinForms supports a standard, "flat" control appearance, the more attractive three-dimensional
appearance used by many controls, and a third that combines the flat appearance with the 3D. By default, the grid's
FlatStyle property is set to FlatModeEnum.Standard so that the 3-D look is used. However, this property only controls
whether 3D effects are used to draw the grid's border, caption bars, column headings and footings, and the record
selector column. It does not affect the grid's data cells or row and column dividers. The following settings are
available:

When FlatStyle is set to FlatModeEnum.Standard, the grid looks like this:

When FlatStyle is set to FlatModeEnum.PopUp, the grid looks like this:

TrueDBGrid for WinForms 99

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note that the initial grid has the same in appearance as FlatModeEnum.Flat. As the mouse moves over any
control element, the appearance of that element takes on a 3D look.

When FlatStyle is set to FlatModeEnum.Flat, the grid looks like this:

To achieve a 3D appearance for the entire grid, including its interior, set the following properties either in the designer
or in code:

1. In the Properties window, set the RowDivider style property to Raised. Or, in code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.RowDivider.Style = C1.Win.C1TrueDBGrid.LineStyleEnum.Raised

To write code in C#

C#

this.c1TrueDBGrid1.RowDivider.Style = C1.Win.C1TrueDBGrid.LineStyleEnum.Raised;

2. In the Splits Collection editor, set the Style property toLineStyleEnum.Raised for all ColumnDivider style objects
for each split. Or, in code:

To write code in Visual Basic

Visual Basic

Dim C As C1.Win.C1TrueDBGrid.C1DisplayColumn
For Each C In Me.C1TrueDBGrid1.Splits(0).DisplayColumns
 C.ColumnDivider.Style = C1.Win.C1TrueDBGrid.LineStyleEnum.Inset
Next

To write code in C#

C#

C1.Win.C1trueDBGrid.C1DisplayColumn C ;
for each(C in this.C1trueDBGrid1.Splits[0].DisplayColumns)
{

TrueDBGrid for WinForms 100

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 C.ColumnDivider.Style = C1.Win.C1TrueDBGrid.LineStyleEnum.Raised;
}

3. In the Properties window, set the BackColor property of the Normal style to Lavender. Or, in code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Styles("Normal").BackColor = System.Drawing.Color.Lavender

To write code in C#

C#

this.c1TrueDBGrid1.Styles["Normal"].BackColor = System.Drawing.Color.Lavender;

The resulting grid will look something like this:

Note that changing the Style property of the RowDivider object to Raised consumes an extra vertical pixel in each
data row, resulting in fewer visible rows.

Try experimenting with other color combinations and divider styles to achieve different 3D effects, as explained in the
Borders and Dividing Lines section.

Borders and Dividing Lines
The RowDivider and ColumnDivider properties enable different horizontal and vertical lines to be selected and also
enable the color of the lines to be set. The properties return an underlying GridLines object that has two properties.
These two properties, Style and Color define how the grid's cell borders will look. The allowable values for the Style
property are as follows:

LineStyleEnum.Double
LineStyleEnum.Inset
LineStyleEnum.Raised
LineStyleEnum.None
LineStyleEnum.Single

For example, setting the style property of RowDivider to LineStyleEnum.None eliminates the dividing lines between
rows and enables you to cram a bit more data into the available area.

TrueDBGrid for WinForms 101

Copyright © 2019 GrapeCity, Inc. All rights reserved.

For ColumnDivider properties, you can set the Style property to LineStyleEnum.None, and the HeaderDivider property
to False. This enables you to visually group related columns, as shown in the following figure.

Unpopulated Regions
Depending upon the number of rows and columns in the data source, a portion of the grid's interior may not contain
data cells. However, these "dead zones" can be eliminated using the ExtendRightColumn and EmptyRows properties.
Change the color of the dead areas by using the BackColor property.

The Rightmost Column
As the grid scrolls horizontally until the last column is totally visible, there is usually a blank area between the last
column and the right border of the grid.

The color of this blank area depends on the setting of your system's 3D Objects color (or Button Face color). Eliminate
this blank area with the ExtendRightColumn property. The default value of this property is False, but if set it True, the
last column will extend its width to the right edge of the grid.

TrueDBGrid for WinForms 102

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Unused Data Rows
If the data source contains fewer rows than the grid can display, the area below the AddNew row (or the last data row,
if AllowAddNew is False) is left blank.

The color of this blank area depends on the setting of your system's 3D Objects color (or Button Face color). Eliminate
this blank area with the EmptyRows property. The default value of this property is False, but if set to True, the grid will
display empty rows below the last usable data row.

Note that the empty rows cannot receive focus.

Both the EmptyRows and ExtendRightColumn properties can be set to True to ensure that no blank areas appear

TrueDBGrid for WinForms 103

Copyright © 2019 GrapeCity, Inc. All rights reserved.

within the interior of the grid.

Highlighting the Current Row or Cell
The term marquee refers to the highlighted area that represents the current grid cell or row. The MarqueeStyle
property can be set to several possible presentations, all enumerations of the MarqueeEnum object, illustrated as
follows.

MarqueeEnum.DottedCellBorder

The current cell is highlighted by a dotted border.

MarqueeEnum.SolidCellBorder

This is a more distinctive form of cell highlighting, often useful when a different background color is used
(since the dotted rectangle is often difficult to spot).

MarqueeEnum.HighlightCell

This style inverts the current cell completely, making it very visible. Values of the BackColor and ForeColor

TrueDBGrid for WinForms 104

Copyright © 2019 GrapeCity, Inc. All rights reserved.

properties of the Edit Style should be chosen carefully to make a pleasing effect if the grid is editable.

MarqueeEnum.HighlightRow

The entire row will be highlighted, but it will not be possible to tell which cell is the current cell in the row. To
change highlight colors, edit the built-in HighlightRow style. See Highlighting the Row of the Selected Cell for
more information. This style is most useful when the grid is not editable and users would view the data one
record at a time.

MarqueeStyleEnum.DottedRowBorder

This setting highlights the entire row with a dotted rectangle. Use this setting instead of HighlightRow if a
more subdued highlight is preferred.

MarqueeEnum.HighlightRowRaiseCell

This value should only be used if 3D lines are used in the grid, since cell highlighting is accomplished using a
"raised" appearance for the current cell.

TrueDBGrid for WinForms 105

Copyright © 2019 GrapeCity, Inc. All rights reserved.

MarqueeEnum.NoMarquee

This setting will make the marquee disappear completely. Often this setting is useful for cases where the
current row is irrelevant, or where you do not want to draw the user's attention to the grid until necessary.

MarqueeEnum.FloatingEditor

This is the default marquee style of the grid. The cell text (the actual text only, not the entire cell) is highlighted
and there is a blinking text cursor (caret) at the end of the text.

The color of the highlight is your system's highlight color. The floating editor style simulates the look and feel of the
Microsoft Access datasheet. The blinking text cursor indicates that the cell is edit-ready, hence the name floating
editor for this marquee style. Since no other marquee style places the cell in a similar edit-ready mode, the behavior
of the grid with the floating editor is sometimes different from the other marquee styles. The following list
summarizes the differences when the MarqueeStyle property is set to MarqueeEnum.FloatingEditor:

1. The following properties are ignored by the floating editor: EditDropDown and EditorStyle.
2. When using the AddCellStyle and AddRegexCellStyle methods with the floating editor, the grid ignores the

current cell bit (CellStyleFlag.CurrentCell) and highlighted row bit (CellStyleFlag.MarqueeRow) of the
Conditionparameter. For more details, see Applying Styles to Cells.

3. The floating editor will not be displayed in a cell with radio buttons or a picture, as described in Automatic
Data Translation with ValueItems. A dotted cell marquee will be used instead. The floating editor highlight will
return when the current cell is changed to one with normal text display.

4. The CycleOnClick property (applies to ValueItemCollection) has no effect when the MarqueeStyle property is
set to MarqueeEnum.FloatingEditor.

5. The DoubleClick event of the C1TrueDBGrid control does not fire when the user double-clicks a non-current
cell within the grid. This is because the first click is used by the floating editor to begin editing, placing the cell

TrueDBGrid for WinForms 106

Copyright © 2019 GrapeCity, Inc. All rights reserved.

into edit mode at the character on which the click occurred. Double-clicking the current cell of the grid fires the
DoubleClick event normally, however.

Row Height and Word Wrap
The following topics describe how to adjust the height of all rows in the grid using the RowHeight property and
enabling word wrapping in cells using the WrapText property.

Adjusting the Height of All Grid Rows
Configure the row height interactively at design time by placing the grid in its visual editing mode or by changing the
grid's RowHeight property in the Properties window. At run time, the user can adjust the row height interactively if
AllowRowSizing is set to RowSizingEnum.AllRows or RowSizingEnum.IndividualRows. For more information, see
Run-Time Interaction.

The RowHeight property is expressed as pixels. However, a setting of 0 causes the grid to readjust its display so that
each row occupies a single line of text in the current font. Therefore, use the following code to adjust the row height
to display exactly three lines of text:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.RowHeight = 0
Me.C1TrueDBGrid1.RowHeight = 3 * Me.C1TrueDBGrid1.RowHeight

To write code in C#

C#

this.c1TrueDBGrid1.RowHeight = 0;
this.c1TrueDBGrid1.RowHeight = 3 * this.c1TrueDBGrid1.RowHeight;

This technique is particularly effective when displaying multiple-line memo fields, as in this example.

Note that the Description column's Style object must have its WrapText property set to True; otherwise, the memo
field display will be truncated after the first line.

Enabling Wordwrap in Cells

TrueDBGrid for WinForms 107

Copyright © 2019 GrapeCity, Inc. All rights reserved.

By default, a grid cell displays a single line of text, truncated at the cell's right boundary. Display multiple lines of text
in a cell by increasing the grid's RowHeight property and setting the WrapText property of the desired column's Style
object to True. If WrapText is True (the default is False), a line break occurs before words that would otherwise be
partially displayed in a cell. The cell contents will continue to display on the next line, assuming that the grid's row
height accommodates multiple lines.

Use the following loop to enable wordwrap for all grid columns:

To write code in Visual Basic

Visual Basic

Dim C As C1.Win.C1TrueDBGrid.C1DisplayColumn
For Each C In Me.C1TrueDBGrid1.Splits(0).DisplayColumns
 C.Style.WrapText = True
Next

To write code in C#

C#

C1.Win.C1trueDBGrid.C1DisplayColumn C ;
for each(C in this.C1trueDBGrid1.Splits[0].DisplayColumns)
{
 C.Style.WrapText = true ;
}

Alternating Row Colors
The readability of the display can often be improved by alternating the background colors of adjacent rows. When the
AlternatingRows property to Trueis set, the grid displays odd-numbered rows (the first displayed row is 1) using the
built-in style OddRow, and even-numbered rows using the built-in style EvenRow.

Horizontal and Vertical Alignment
Use the HorizontalAlignment property of the column's Style object to control the horizontal placement of cell text
within a column. The allowable values for this property are as follows:

AlignHorzEnum.General
AlignHorzEnum.Near
AlignHorzEnum.Center
AlignHorzEnum.Far
AlignHorzEnum.Justify

TrueDBGrid for WinForms 108

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The setting AlignHorzEnum.General, which is the default for data cells, indicates that the alignment should be based
upon the underlying data type. For example, strings are left-aligned, while numbers are right-aligned.

Use the VerticalAlignment member of the Style object to control the vertical placement of text within the cells of a
grid, split, or column. The allowable values for this property are as follows:

AlignVertEnum.Top
AlignVertEnum.Center
AlignVertEnum.Bottom

For data cells, the default value is AlignVertEnum.Top. For static grid elements such as caption bars, column headers,
and column footers, the default value is AlignVertEnum.Center. See the Named Style Defaults topic to learn how the
default values are derived.

The following grid depicts all possible combinations of the HorizontalAlignment and VerticalAlignment properties.

AlignHorzEnum.Near AlignHorzEnum.Center AlignHorzEnum.Far

AlignVertEnum.Top

AlignVertEnum.Center

AlignVertEnum.Bottom

The AlignHorzEnum.General and AlignHorzEnum.Justify settings have been omitted because the
AlignHorzEnum.General setting aligns text as AlignHorzEnum.Near and numeric values as AlignHorzEnum.Far. The
AlignHorzEnum.Justify setting aligns text with respect to the cells boundaries, but in this case appears exactly like the
AlignHorzEnum.Near setting.

The HorizontalAlignment and VerticalAlignment properties are tightly integrated with the concept of styles. For more
information, see How to Use Styles.

TrueDBGrid for WinForms 109

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Data Presentation Techniques
This chapter explains how to display cell data in a variety of textual and graphical formats. To learn how to customize
the behavior of cell editing in True DBGrid for WinForms, see Cell Editing Techniques.

Text Formatting
In many cases, the raw numeric data that True DBGrid for WinForms receives from its data source is not suitable for
end-user display. For example, date fields may need to be converted to a specific international format; currency fields
may contain too many insignificant digits after the decimal point. Therefore, True DBGrid for WinForms provides a
method with which you can alter the format of numerical fields, the NumberFormat property.

In addition, for situations where universal formatting of the database information is inadequate, True DBGrid for
WinForms provides an event, FormatText, that enables your application to override the default formatting on a per-
column basis. By writing a simple handler for this event, you can customize the display of your column data in a
myriad of ways.

Numeric Field Formatting
True DBGrid for WinForms supports a variety of data formatting options through the C1DataColumn object's
NumberFormat property. The NumberFormat property reconfigures the data format that is handed to the grid from
the database. It can alter most types of numeric values for a particular column.

For example, to display all date values within a column according to the form 26-Apr-01, use the predefined Medium
Date setting:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns("HireDate").NumberFormat = "Medium Date"

To write code in C#

C#

this.c1TrueDBGrid1.Columns["HireDate"].NumberFormat = "Medium Date";

Note that if the NumberFormat property of a column is changed at run time, the display does not need to refresh
since True DBGrid handles this automatically.

Predefined Numeric Options
The NumberFormat property has several possible predefined options for numeric and time and date values.

For numeric data, the following predefined options are available in the NumberFormat property:

Option Description

Standard Display number with thousands separator, at least one digit to the left
and two digits to the right of the decimal separator.

General Number Display number as is, with no thousand separators.

TrueDBGrid for WinForms 110

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Currency Display number with thousands separator, if appropriate; display two
digits to the right of the decimal separator. Note that output is based
on system locale settings.

Percent Display number multiplied by 100 with a percent sign (%) appended to
the right; always display two digits to the right of the decimal
separator.

Fixed Display at least one digit to the left and two digits to the right of the
decimal separator.

Scientific Use standard scientific notation.

Yes/No Display No if number is 0; otherwise, display Yes.

True/False Display False if number is 0; otherwise, display True.

On/Off Display Off if number is 0; otherwise, display On.

0% Display number multiplied by 100, rounded to the nearest integer, with
a percent sign (%) appended to the right.

0.00% Same as Percent.

For date and time data, the following predefined options are available in the NumberFormat property:

Option Description

General Date Display a date and/or time. For real numbers, display a date and time
(for example, 4/3/93 05:34 PM); if there is no fractional part, display
only a date (for example, 4/3/93); if there is no integer part, display
only a time (for example, 05:34 PM). Date display is determined by your
system settings.

Long Date Display a date using your system's long date format.

Medium Date Display a date using the medium date format appropriate for the
language version of Visual Basic.

Short Date Display a date using your system's short date format.

Long Time Display a time using your system's long time format: includes hours,
minutes, and seconds.

Medium Time Display a time in 12-hour format using hours and minutes and the
AM/PM designator.

Short Time Display a time using the 24-hour format (for example, 17:45).

Option Description

Custom Number Formatting
You can customize the display of numeric information by setting the NumberFormat property to a custom value
rather than to a predefined option.

For example to set a numeric column to specifically display with three decimal points, set the NumberFormat property
using the following code:

To write code in Visual Basic

TrueDBGrid for WinForms 111

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Me.C1TrueDBGrid1.Columns("Value").NumberFormat = "0.000"

To write code in C#

C#

this.c1TrueDBGrid1.Columns["Value"].NumberFormat = "0.000";

To set a date column to specifically display in the mm/dd/yyyy format, set the NumberFormat property using the
following code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns("BirthDate").NumberFormat = "MM/dd/yyyy"

To write code in C#

C#

this.c1TrueDBGrid1.Columns["BirthDate"].NumberFormat = "MM/dd/yyyy";

Input Validation with Built-In Formatting
It is important to note that the NumberFormat property affects only the display of data in the grid. Unless you also
specify a value for the EditMask property, True DBGrid for WinForms does not enforce an input template, and the
user is free to type anything into the formatted cell. When moving to another cell, the grid will reasonably interprets
the user's input value and redisplay the data according to the NumberFormat setting.

For example, if Medium Date formatting is in effect for a column, a date of Saturday, April 25, 1998, 12:00:00 AM will
be displayed as 25-Apr-98 with the day of the week and time ignored. If a user enters July and moves to another row,
the grid cannot reasonably interpret the input date value and a trappable error will occur. If the user enters oct 5 or
10/5, the grid will interpret the entered date as October 5, 2009 (that is, the current year is assumed). If the database
update is successful, the entered date will be redisplayed as 05-Oct-09, since Medium Date formatting is in effect.

Formatting with an Input Mask
Since it is common for the input and display formats to be the same, the NumberFormat property has an Edit Mask
option (note the space between words). If this option is selected, then the EditMask property setting will be used for
both data input and display. However, the input and display formats need not be the same, so you are free to select a
NumberFormat option that differs from the EditMask property.

For example, the following code applies a phone number template to a column for both display and editing:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns("Phone").EditMask = "(###) ###-####"
Me.C1TrueDBGrid1.Columns("Phone").NumberFormat = "Edit Mask"

To write code in C#

TrueDBGrid for WinForms 112

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

this.c1TrueDBGrid1.Columns["Phone"].EditMask = "(###) ###-####";
this.c1TrueDBGrid1.Columns["Phone"].NumberFormat = "Edit Mask";

For more information on how to specify a data input mask, see Input Masking.

Formatting with a Custom Event Handler
On occasion, you may find that your current formatting options do not suit your particular needs. Furthermore, you
may be restricted in the type of formatting that you can use or need a custom formatting option. In these cases, the
FormatText Event option can be specified for the NumberFormat property. Choosing this option for a column will
cause the FormatText event to fire each time data is about to be displayed in that column. The event allows you to
reformat, translate, indent, or do anything you want to the data just prior to display:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FormatText(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FormatTextArgs) Handles C1TrueDBGrid1.FormatText

End Sub

To write code in C#

C#

private void C1TrueDBGrid1_FormatText(object sender,
C1.Win.C1TrueDBGrid.FormatTextArgs e)
{

}

A member of the FormatTextEventArgs object, ColIndex is the column number of the grid to be reformatted. While
the Valuemember contains the current value of the data and also serves as a placeholder for the formatted display
value. For example, suppose the first column contains numeric values from 1 to 30, and you wish to display the data
as Roman numerals:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FormatText(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FormatTextEventArgs) Handles C1TrueDBGrid1.FormatText

 Dim result As String

 If e.ColIndex = 0 Then

 ' Determine how many X's.
 While e.Value >= 10
 result = result & "X"
 e.Value = e.Value - 10

TrueDBGrid for WinForms 113

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 End While

 ' Append "digits" 1-9.
 Select Case e.Value
 Case 1
 result = result & "I"
 Case 2
 result = result & "II"
 Case 3
 result = result & "III"
 Case 4
 result = result & "IV"
 Case 5
 result = result & "V"
 Case 6
 result = result & "VI"
 Case 7
 result = result & "VII"
 Case 8
 result = result & "VIII"
 Case 9
 result = result & "IX"
 End Select

 ' Change the actual format.
 e.Value = result
 End If
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_FormatText(object sender,
C1.Win.C1TrueDBGrid.FormatTextEventArgs e)

 string result;

 if (e.ColIndex = 0)
 {
 // Determine how many X's.
 while (e.Value >= 10)
 {
 result = result + "X";
 e.Value = e.Value - 10;
 }

 // Append "digits" 1-9.
 switch (e.Value)
 {
 case 1;
 result = result + "I";

TrueDBGrid for WinForms 114

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 case 2;
 result = result + "II";
 case 3;
 result = result + "III";
 case 4;
 result = result + "IV";
 case 5;
 result = result + "V";
 case 6;
 result = result + "VI";
 case 7;
 result = result + "VII";
 case 8;
 result = result + "VIII";
 case 9;
 result = result + "IX";
 }

 // Change the actual format.
 e.Value = result;
 }
}

Since the FormatText event has fewer restrictions than other formatting techniques, you can always use it to gain full
control over the textual content of any value displayed in the grid.

Automatic Data Translation with ValueItems
Although the FormatText event can be used to map data values into more descriptive display values, True DBGrid for
WinForms also provides a mechanism for performing such data translations automatically without code. Through the
use of the ValueItem object, alternate text or even pictures can be specified to be displayed in place of the underlying
data values.

This feature is ideally suited for displaying numeric codes or cryptic abbreviations in a form that makes sense to end-
users. For example, country codes can be rendered as proper names or even as pictures of their respective flags. Or,
the numbers 0, 1, and 2 may be displayed as Yes, No, and Maybe. Either the actual values (0, 1, 2) or the translated
values (Yes, No, Maybe) may be displayed as radio buttons in a cell or in a drop-down combo box.

What are ValueItems?
The ValueItems object contains a collection and properties that define the association between an underlying data
value and its visual representation within the grid. The ValueItems object contains a ValueItemCollection of zero or
more ValueItem objects. Each ValueItem supports two main properties: Value, the underlying data value, and
DisplayValue, its visual representation. Both properties are of type Object. Additionally, each C1DataColumn object
contains ValueItems object.

In code, manipulate the collection of ValueItem pairs as you would any other True DBGrid for WinForms or Visual
Studio collection. ValueItems can be added, removed, or manipulated through the ValueItemCollection object.

At design time a ValueItem Collection Editor is available through the C1TrueDBGrid Designer. For more
information see Using the ValueItemCollection Editor.

TrueDBGrid for WinForms 115

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Specifying Text-to-Text Translations
Consider the following example, in which the Country field is represented by a short character code.

To display the character codes as proper names, use the column's ValueItemCollection object to specify automatic
data translations. At design time, this is done with .NET's ValueItemCollection editor.

Altering the ValueItemCollection object through the collection editor enables you to specify data translations on a
per-column basis in a simple window. To construct a list of data translations for an individual column, complete the
following steps:

1. Open up the C1TrueDBGrid Designer by clicking on the ellipsis button (…) next to the Columns collection in
the Properties window.

2. Select the column whose contents you would like translated. In the left pane expand the ValueItems node.
Clicking on the ellipsis button next to the Values node will bring up the ValueItemCollection editor.

3. In the right pane under the ValueItems node, set the Translate property to True.
4. Clicking on the Add button in the left pane will add ValueItem objects. In the right pane specify a Value and

DisplayValue for each ValueItem. When entering the ValueItem text, disregard the drop-down button. This is
used for entering a bitmap as a DisplayValue.

5. Select OK or Apply to commit the changes.

When the program is run, Country field values that match any items in the Value column appear as the corresponding
DisplayValue entry. For example, CAN becomes Canada, UK becomes UnitedKingdom, and so on.

TrueDBGrid for WinForms 116

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note that the underlying database is not affected; only the presentation of the data value is different. The same effect
can be achieved in code as follows:

To write code in Visual Basic

Visual Basic

Dim v as C1.Win.C1TrueDBGrid.ValueItemCollection
v = Me.C1TrueDBGrid1.Columns("Country").ValueItems.Values

v.Add(new C1.Win.C1TrueDBGrid.ValueItem("CAN","Canada"))
v.Add(new C1.Win.C1TrueDBGrid.ValueItem("UK","United Kingdom"))
v.Add(new C1.Win.C1TrueDBGrid.ValueItem("USA","United States"))
v.Add(new C1.Win.C1TrueDBGrid.ValueItem("JPN","Japan"))
v.Add(new C1.Win.C1TrueDBGrid.ValueItem("AUS","Australia"))

Me.C1TrueDBGrid1.Columns("Country").ValueItems.Translate = True

To write code in C#

C#

C1.Win.C1TrueDBGrid.ValueItemCollection v =
this.c1TrueDBGrid1.Columns["Country"].ValueItems.Values;

v.Add(new C1.Win.C1TrueDBGrid.ValueItem("CAN","Canada"));
v.Add(new C1.Win.C1TrueDBGrid.ValueItem("UK","United Kingdom"));
v.Add(new C1.Win.C1TrueDBGrid.ValueItem("USA","United States"));
v.Add(new C1.Win.C1TrueDBGrid.ValueItem("JPN","Japan"));
v.Add(new C1.Win.C1TrueDBGrid.ValueItem("AUS","Australia"));

this.c1TrueDBGrid1.Columns["Country"].ValueItems.Translate = true;

Specifying Text-to-Picture Translations
The same techniques used to specify text-to-text translations can also be used for text-to-picture translations. Within
the ValueItem Collection Editor, instead of typing a string into the DisplayValue column, use the ellipsis button (...)
to select a bitmap to be used for data translations. To delete your bitmap selection, simply delete the text in the
DisplayValue property box and either select another bitmap or type in text.

TrueDBGrid for WinForms 117

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note that the Translate property for the ValueItems object must be set to True. Depending upon the height of the
bitmaps, it may be necessary to increase the value of the RowHeight property. If that is done, change the
VerticalAlignment member of the grid's Style property to Center to ensure that the bitmaps (as well as textual data in
other columns) are centered vertically within grid cells instead of being anchored at the top.

When the program is run, Country field values that match an item in the Value column appear as the corresponding
DisplayValue picture:

As with textual translations, the underlying database is not affected; only the presentation of the data value is
different. The same effect can be achieved in code as follows:

To write code in Visual Basic

Visual Basic

Dim item As C1.Win.C1TrueDBGrid.ValueItem = New C1.Win.C1TrueDBGrid.ValueItem()
With Me.C1TrueDBGrid1.Columns("Country").ValueItems.Values
 Item.Value = "CAN"
 Item.DisplayValue = System.Drawing.Image.FromFile("canada.bmp")
 .Add(Item)

 Item = New C1.Win.C1TrueDBGrid.ValueItem()
 Item.Value = "UK"
 Item.DisplayValue = System.Drawing.Image.FromFile("uk.bmp")
 .Add(Item)

TrueDBGrid for WinForms 118

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Item = New C1.Win.C1TrueDBGrid.ValueItem()
 Item.Value = "USA"
 Item.DisplayValue = System.Drawing.Image.FromFile("usa.bmp")
 .Add(Item)

 Item = New C1.Win.C1TrueDBGrid.ValueItem()
 Item.Value = "JPN"
 Item.DisplayValue = System.Drawing.Image.FromFile("japan.bmp")
 .Add(Item)

 Item = New C1.Win.C1TrueDBGrid.ValueItem()
 Item.Value = "AUS"
 Item.DisplayValue = System.Drawing.Image.FromFile("australia.bmp")
 .Add(Item)

 Me.C1TrueDBGrid1.Columns("Country").ValueItems.Translate = True
End With

To write code in C#

C#

C1.Win.C1TrueDBGrid.ValueItemCollection v =
this.c1TrueDBGrid.Columns["Country"].ValueItems.Values;
C1.Win.C1TrueDBGrid.ValueItem Item = new C1.Win.C1TrueDBGrid.ValueItem();

 Item.value = "CAN";
 Item.DisplayValue = System.Drawing.Image.FromFile["canada.bmp"];
 v.Add[Item];

 Item = new C1.Win.C1TrueDBGrid.ValueItem();
 Item.value = "UK";
 Item.DisplayValue = System.Drawing.Image.FromFile["uk.bmp"];
 v.Add[Item];

 Item = new C1.Win.C1TrueDBGrid.ValueItem();
 Item.value = "USA";
 Item.DisplayValue = System.Drawing.Image.FromFile["usa.bmp"];
 v.Add[Item];

 Item = new C1.Win.C1TrueDBGrid.ValueItem();
 Item.value = "JPN";
 Item.DisplayValue = System.Drawing.Image.FromFile["japan.bmp"];
 v.Add[Item];

 Item = new C1.Win.C1TrueDBGrid.ValueItem();
 Item.value = "AUS";
 Item.DisplayValue = System.Drawing.Image.FromFile["australia.bmp"];
 v.Add[Item];

 this.c1TrueDBGrid1.Columns["Country"].ValueItems.Translate = true;

TrueDBGrid for WinForms 119

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Displaying Both Text and Pictures in a Cell
Once the ValueItems object is configured to perform text-to-picture translations for a column, you can display both
the Value string and the DisplayValue bitmap to appear within the same cell by selecting the AnnotatePicture
property. Or, in code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns("Country").ValueItems.AnnotatePicture = True

To write code in C#

C#

this.c1TrueDBGrid1.Columns["Country"].ValueItems.AnnotatePicture = true;

The horizontal placement of the bitmap with respect to the cell text is determined by the HorizontalAlignment and
ForeGroundPicturePosition properties of the column's Style object. The enumeration objects for these two properties
are the AlignHorzEnum and ForegroundPicturePositionEnum objects respectively. In the following example,
HorizontalAlignment is set to AlignHorzEnum.General. Since the Country column represents a string field, the cell text
is left-aligned. However, since the ForeGroundPicturePosition property is set to the default value of
ForegroundPicturePosition.Near, the bitmap is placed at the left edge of the cell, and the cell text is left-aligned in the
remaining space.

However, if you change the ForeGroundPicturePosition property to ForegroundPicturePositionEnum.Far, then the cell
text is left-aligned as usual, but the bitmap is right-aligned.

To place the cell text below the bitmap while centering both items, set the HorizontalAlignment property to
AlignHorzEnum.Center and the ForeGroundPicturePosition property to ForegroundPicturePositionEnum.TopofText.

TrueDBGrid for WinForms 120

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note: For an illustration of all possible combinations of the HorizontalAlignment and
ForeGroundPicturePosition properties, see Displaying Foreground Pictures.

When editing, the editor uses all space available in the text portion of the cell. When the Presentation property of the
ValueItemCollection object is set to one of the combo box options, the bitmap will not change until editing is
completed.

Note that in the preceding examples, the text is displayed as it is stored in the database without formatting. Since the
ValueItem object can only accommodate one translation, displaying both a picture and formatted text cannot be
accomplished with ValueItems alone. Therefore, use the FormatText event to translate the text, and then use the
ValueItems to associate the translated text (not the underlying data value) with a picture:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns("Country").NumberFormat = "FormatText Event"

To write code in C#

C#

this.c1TrueDBGrid1.Columns["Country"].NumberFormat = "FormatText Event";

In this example, the NumberFormat property is set to a special value that causes the FormatText event to fire:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FormatText(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FormatTextEventArgs) Handles C1TrueDBGrid1.FormatText

 Select Case e.Value
 Case "CAN"
 e.Value = "Canada"
 Case "UK"
 e.Value = "United Kingdom"
 Case "USA"
 e.Value = "United States"
 Case "JPN"

TrueDBGrid for WinForms 121

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 e.Value = "Japan"
 Case "AUS"
 e.Value = "Australia"
 End Select
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_FormatText(object sender,
C1.Win.C1TrueDBGrid.FormatTextEventArgs e)
{
 switch (e.value)
 {
 case "CAN":
 e.value = "Canada";
 break;
 case "UK":
 e.value = "United Kingdom";
 break;
 case "USA":
 e.value = "United States";
 break;
 case "JPN":
 e.value = "Japan";
 break;
 case "AUS":
 e.value = "Australia";
 break;
 }
}

Since the FormatText event now translates the country codes stored in the database into actual names for display, the
Value property of each ValueItem in the ValueItemCollection object must be changed accordingly.

Assuming that the HorizontalAlignment and ForeGroundPicturePosition properties are set as in the previous example,
the end result is that the underlying data is displayed as both descriptive text and a picture.

TrueDBGrid for WinForms 122

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note: DisplayValue pictures are ideally suited for translating status codes or other fields where the number of
allowable values is relatively small. To get a more generalized picture display mechanism than the
ValueItemCollection object offers, use the ForeGroundPicturePosition property in conjunction with the
FetchCellStyle event to display arbitrary pictures on a per-cell basis. For more information, see Displaying
Foreground Pictures.

Displaying Boolean Values as Check Boxes
Use the ValueItems object to represent Boolean values as in-cell checkboxes. The effect of a working Boolean
checkbox can be achieved without defining any ValueItem objects—just set the Presentation property to
PresentationEnum.CheckBox.

Note that the Translate checkbox does not need to be selected to enable automatic data translation, nor does the
CycleOnClick checkbox need to be selected to enable end users to toggle the value of a cell by clicking it. The
following figure shows a typical checkbox display.

Note: To use different check box bitmaps, define a two-state collection of ValueItem objects through the Values
property of the C1DataColumn. Set the Presentation property to PresentationEnum.Normal, and set the
Translate and CycleOnClick properties to True.

Displaying Allowable Values as Radio Buttons
If the number of allowable values for a column is relatively small, consider a radio button presentation. At design time,
go to the C1TrueDBGrid Designer, then to the ValueItems node for the column and set the Presentation property to

TrueDBGrid for WinForms 123

Copyright © 2019 GrapeCity, Inc. All rights reserved.

PresentationEnum.RadioButton. Or, in code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns("Country").ValueItems.Presentation =
PresentationEnum.RadioButton

To write code in C#

C#

this.c1TrueDBGrid1.Columns["Country"].ValueItems.Presentation =
PresentationEnum.RadioButton;

If necessary, adjust the Width property of the column style and the RowHeight property of the grid to accommodate
all of the items.

For a given cell, if the underlying data does not match any of the available values, none of the radio buttons will be
selected for that cell. However, a default ValueItem object can be provided that will be selected instead.

In this example, the last ValueItem has an empty Value property, but the DisplayValue is set to Other. This means that
when Country fields that do not match any of the items are displayed their value in the grid will be displayed as Other.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns("Country").ValueItems.DefaultItem = 5

To write code in C#

C#

this.c1TrueDBGrid1.Columns["Country"].ValueItems.DefaultItem = 5;

In this example, 5 is the zero-based index of the default item.

Context-Sensitive Help with CellTips
In many Windows applications, when the user points to a toolbar button and leaves the mouse at rest for a short time,

TrueDBGrid for WinForms 124

Copyright © 2019 GrapeCity, Inc. All rights reserved.

a ToolTip window appears with the name of the associated command. Provide similar context-sensitive help for users
with the CellTips property of True DBGrid for WinForms.

The CellTips property determines whether the grid displays a pop-up text window when the cursor is idle. By default,
this property is set to CellTipEnum.NoCellTips, and cell tips are not displayed.

If the CellTips property is set to eitherCellTipEnum.Anchored or CellTipEnum.Floating, the FetchCellTips event will be
fired whenever the grid has focus and the cursor is idle over a grid cell, record selector, column header, column footer,
split header, or grid caption. The event will not fire if the cursor is over the scroll bars.

The setting CellTipEnum.Anchored aligns the cell tip window with either the left or right edge of the cell. The left edge
is favored, but the right edge will be used if necessary in order to display as much text as possible.

The setting CellTipEnum.Floating displays the cell tip window below the cursor, if possible.

If a handler is not provided for the FetchCellTips event, and the cursor is over a grid cell, the default behavior is to
display a text box containing the cell's contents (up to 256 characters). This enables the user to peruse the contents of
a cell even if it is not big enough to be displayed in its entirety. The FetchCellTips event can be programmed to
override the default cell text display in order to provide users with context-sensitive help.

A common application of the FetchCellTips event is to display the contents of an invisible column that provides
additional information about the row being pointed to, as in the following example:

To write code in Visual Basic

Visual Basic

' General Declarations.
Dim DescCol As C1.Win.C1TrueDBGrid.C1DataColumn

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 ' Set the column to be displayed as a CellTip.
 DescCol = Me.C1TrueDBGrid1.Columns("Country")
 Me.C1TrueDBGrid1.CellTips = C1.Win.C1TrueDBGrid.CellTipEnum.Floating

TrueDBGrid for WinForms 125

Copyright © 2019 GrapeCity, Inc. All rights reserved.

End Sub

Private Sub C1TrueDBGrid1_FetchCellTips(ByVal sender As System.Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchCellTipsEventArgs) Handles C1TrueDBGrid1.FetchCellTips
 ' Display the column.
 e.CellTip = DescCol.CellText(e.Row)
End Sub

To write code in C#

C#

// General Declarations.
C1.Win.C1TrueDBGrid.C1DataColumn DescCol;

private void Form1_Load(System.object sender, System.EventArgs e)
{
 // Set the column to be displayed as a CellTip.
 DescCol = this.c1TrueDBGrid1.Columns["Country"];
 this.c1TrueDBGrid1.CellTips = C1.Win.C1TrueDBGrid.CellTipEnum.Floating;
}

private void C1TrueDBGrid1_FetchCellTips(System.object sender,
C1.Win.C1TrueDBGrid.FetchCellTipsEventArgs e)
{
 // Display the column.
 e.CellTip = DescCol.CellText(e.Row);
}

Use the CellTipsDelay property to control the amount of time that must elapse before the cell tip window is displayed.

Use the CellTipsWidth property to control the width of the cell tip window.

Scroll Tracking and ScrollTips
If the ScrollTrack property is set to True, moving the scrollbar thumb causes vertical scrolling of the grid's display. By
default, this property is False, and no scrolling occurs until the thumb is released.

If the ScrollTips property is set to True, moving the scrollbar thumb causes the FetchScrollTips event to fire. Use this
event to track the position of the scroll bar on a record-by-record basis. Also use this event to present the user with
useful information relating to the current record or recordset. When used in tandem, the ScrollTrack and ScrollTips
properties provide users with visual feedback when scrolling through large DataSets.

TrueDBGrid for WinForms 126

Copyright © 2019 GrapeCity, Inc. All rights reserved.

See Tutorial 22: Borders, Scroll Tracking, and Scroll Tips for more information.

Data-Sensitive Cell Merging
If the underlying grid data is sorted, the readability of the display may be improved by grouping adjacent like-valued
cells within the sorted column(s). The Merge property of the C1DisplayColumn object controls whether its data cells
are grouped in this manner to form a single non-editable cell, using the ColumnMergeEnum. By default, this
property is set to None, and each physical row within a column displays a data value, if any.

Consider the following grid, which is sorted by the Country field.

If data-sensitive cell merging is enabled for the Country column at run time, then its cells are grouped according to
their contents. For example:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Country").Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free

To write code in C#

C#

TrueDBGrid for WinForms 127

Copyright © 2019 GrapeCity, Inc. All rights reserved.

this.c1TrueDBGrid1.Splits[0].DisplayColumns["Country"].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free;

Executing this statement produces the following display. Note that when the current cell is in the Country column, the
marquee spans all like-valued rows and takes on the appearance of a dotted rectangle, regardless of the setting of the
MarqueeStyle property. The behavior of the marquee in other columns is not affected, however.

If a design-time layout is specified, the same effect can be achieved by setting the Merge property of the desired
C1DisplayColumn object within the C1DisplayColumn Collection Editor, which can be accessed by clicking on the
ellipsis button (...) after the DisplayColumns property in the Split Collection Editor.

The Merge property can be set to Free, which combines like values in adjacent rows, or Restricted, which combines
like values in adjacent rows in the same row span as the previous column. The difference between Free and

TrueDBGrid for WinForms 128

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Restricted settings is whether cells within the same contents should always be merged (Free) or only when adjacent
cells to the left or top are also merged (Restricted). The examples below illustrate the difference.

No Merge (Regular Spreadsheet View)

No merge displays data in a regular spreadsheet view.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(2).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(3).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[1].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[2].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[3].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None

Free Merge

Free merge combines like values in adjacent rows.

TrueDBGrid for WinForms 129

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Notice how the first Region cell (East) merges across employees (Donna and John) to its left.

To write code in Visual Basic

Visual Basic

' Set free merging.
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(2).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(3).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free

' Set each column's vertical alignment to Center.
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1).Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(2).Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(3).Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center

To write code in C#

C#

// Set free merging.
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[1].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[2].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[3].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Free;

// Set each column's vertical alignment to Center.
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center;

TrueDBGrid for WinForms 130

Copyright © 2019 GrapeCity, Inc. All rights reserved.

this.c1TrueDBGrid1.Splits[0].DisplayColumns[1].Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[2].Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[3].Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center;

Restricted Merge

Restricted merge combines like values in adjacent rows in the same row span as the previous column.

Notice how the first Region cell (East) no longer merges across employees to its left.

To write code in Visual Basic

Visual Basic

' Set restricted merging.
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Restricted
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Restricted
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(2).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Restricted
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(3).Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None

' Set each column's vertical alignment to Center.
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1).Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(2).Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(3).Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center

To write code in C#

C#

// Set restricted merging.
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Merge =

TrueDBGrid for WinForms 131

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1.Win.C1TrueDBGrid.ColumnMergeEnum.Restricted;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[1].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Restricted;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[2].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.Restricted;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[3].Merge =
C1.Win.C1TrueDBGrid.ColumnMergeEnum.None;

// Set each column's vertical alignment to Center.
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[1].Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[2].Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[3].Style.VerticalAlignment =
C1.Win.C1TrueDBGrid.AlignVertEnum.Center;

If the Merge property is set to Free or Restricted for a column, then none of the data cells can be edited, even if all
rows contain unique values. The only exception to this is the AddNew row. However, once a new row is added to the
underlying database, then its data will also be uneditable within the merged column(s).

Note: Merged cells are not limited to displaying text. Display bitmaps within merged cells by populating the
ValueItems object as described earlier in Specifying Text-to-Picture Translations. The section Applying Pictures
to Grid Elements describes a more flexible method for displaying in-cell graphics using Style objects.

Formatting Merged Cells
Use the HorizontalAlignment and VerticalAlignment properties of the column's Style object to center the data within
the merged cell, as in the following figure.

In the Splits Collection Editor, access these properties by expanding the Style property node at the same level of the
tree as the Merge property. Or, in code:

To write code in Visual Basic

TrueDBGrid for WinForms 132

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

With Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Country").Style
 .HorizontalAlignment = C1.Win.C1TrueDBGrid.AlignHorzEnum.Center
 .VerticalAlignment = C1.Win.C1TrueDBGrid.AlignVertEnum.Center
End With

To write code in C#

C#

C1.Win.C1TrueDBGrid.Style s;
s = this.c1TrueDBGrid1.Splits[0].DisplayColumns["Country"].Style;
s.HorizontalAlignment = C1.Win.C1TrueDBGrid.AlignHorzEnum.Center;
s.VerticalAlignment = C1.Win.C1TrueDBGrid.AlignVertEnum.Center;

Column Grouping
The purpose of this feature is to allow users to dynamically configure a tree view type structure. When in Group mode,
a "grouping area" is added to the top of the grid, providing an intuitive interface for specifying column groups. In
code, this collection is accessed through the GroupedColumns collection and consists of C1DataColumn objects that
have been moved to the grouping area; it is similar to the C1DataColumnCollection class.

The grouping area is created when DataView is set to DataViewEnum.GroupBy. When AllowColMove is set to True,
the grid will support the ability to move one or more columns into this area. Users can do this by selecting a single
column and dragging its header into the grouping area. This action can also be performed in code by invoking the
Add method of the GroupedColumnCollection. When a column is first added to the grouping area, nodes are added
to the grid. Each node represents the unique value of the grouped column. Similarly when the last grouped column is
removed from the area, the nodes are removed and the display will be similar to a normal grid.

When the expand icon ("+") is clicked the grid expands and the next set of grouping column data appears. If there is
another grouped column, then this column has an expand icon next to it also. With the addition of each grouped
column, another level of sorted information gets added to the tree view. When the expand icon on the final column in
the GroupedColumns collection is clicked the data in the remaining columns is displayed in the grid's Normal style,
as shown below:

To manipulate the grouping area in code, use the GroupedColumn identifiers to access the collection of grouped

TrueDBGrid for WinForms 133

Copyright © 2019 GrapeCity, Inc. All rights reserved.

columns. Like the Columns property, the GroupedColumns supports Add, and RemoveAt methods. However, since
the GroupedColumns serves as a placeholder for existing grid columns, the semantics of its Add and RemoveAt
methods are different.

The Add method moves an existing column to the grouping area; it does not create a new column in the grid.
Similarly, the RemoveAt method removes a column from the grouping area and returns it to its original position
within the grid; it does not delete the column altogether.

Use the GroupByCaption property to add descriptive or directional text to the grouping area, which will be displayed
when no columns are present there.

See Tutorial 17: Creating a Grouping Display for more information.

Column Grouping with the GroupIntervalEnum
Enumeration
The GroupIntervalEnum enumeration allows you to group data rows according to date, month, year, alphabet, date
values (Outlook-style grouping), or you can customize how you would like to sort your data. The following topics
explain how to group using a few of these settings.

Note: The default setting is GroupIntervalEnum.Default, which groups rows by their values.

Group Rows by Year
This topic demonstrates how to use the GroupIntervalEnum.Year member in C1TrueDBGrid.

Complete the following steps:

1. Start a new .NET project.
2. Navigate to the Visual Studio Toolbox and add a C1TrueDBGrid control to the form.
3. Click the C1TrueDBGrid 's smart tag to open the C1TrueDBGrid Tasks menu, click the drop-down arrow in

the Choose Data Source box and choose Add Project Data Source.
4. In the Data Source Configuration Wizard, either select a connection to C1NWind.mdb or create a new

connection to this database.
5. On the Choose your database objects page of the wizard, select all fields in the Employees table and type

"Employees" into the DataSet name box, and then finish out the wizard.
6. Visual Studio adds the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.EmployeesTableAdapter.Fill(Me.Employees._Employees)

To write code in C#

C#

this.employeesTableAdapter.Fill(this.Employees._Employees);

7. Set the DataView property to DataViewEnum.GroupBy.

In the Designer

In the C1TrueDBGrid Tasks menu, select GroupBy from the Data Layout drop-down.

TrueDBGrid for WinForms 134

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy

To write code in C#

C#

this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy;

8. Open the C1TrueDBGrid Designer by selecting Designer from the C1TrueDBGrid Tasks menu.
9. Select the HireDate column by clicking on it in the right pane.

The column can also be selected by choosing HireDate from the drop-down list in the toolbar.

10. Set the Interval property to GroupIntervalEnum.Year.

In the Designer

Locate the Interval property in the left pane of the C1TrueDBGrid Designer and set it to Year.

TrueDBGrid for WinForms 135

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Set the GroupInfo.Interval of the HireDate column to Year.
Me.C1TrueDBGrid1.Columns("HireDate").GroupInfo.Interval =
C1.Win.C1TrueDBGrid.GroupIntervalEnum.Year

To write code in C#

C#

// Set the GroupInfo.Interval of the HireDate column to Year.
this.c1TrueDBGrid1.Columns["HireDate"].GroupInfo.Interval =
C1.Win.C1TrueDBGrid.GroupIntervalEnum.Year;

11. Finally, to keep the HireDate column visible after grouping by it, set the ColumnVisible property to True.

In the Designer

Locate the ColumnVisible property in the left pane of the C1TrueDBGrid Designer and set it to True.

In Code

Add the following code to the Form_Load event:

TrueDBGrid for WinForms 136

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

' Keep the HireDate column visible while grouping.
Me.C1TrueDBGrid1.Columns("HireDate").GroupInfo.ColumnVisible = True

To write code in C#

C#

// Keep the HireDate column visible while grouping.
this.c1TrueDBGrid1.Columns["HireDate"].GroupInfo.ColumnVisible = true;

In this example, the HireDate column is grouped by year.

Group Rows by the First Character of the Value
This topic demonstrates how to use the GroupIntervalEnum.Alphabetical member in C1TrueDBGrid.

Complete the following steps:

1. Start a new .NET project.
2. Open the Toolbox and add a C1TrueDBGrid control to the form.
3. Open the C1TrueDBGrid Tasks menu, click the drop-down arrow in the Choose Data Source box, and click

Add Project Data Source.
4. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or create a

new connection to this database.
5. On the Choose your database objects page of the wizard, select all fields in the Products table and type

"Products" into the DataSet name box, and then finish out the wizard.
6. Visual Studio adds the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.ProductsTableAdapter.Fill(Me.Products._Products)

TrueDBGrid for WinForms 137

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.productsTableAdapter.Fill(this.Products._Products);

7. Set the DataView property to DataViewEnum.GroupBy.

In the Designer

In the C1TrueDBGrid Tasks menu, select GroupBy from the Data Layout drop-down.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy

To write code in C#

C#

this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy;

8. Open the C1TrueDBGrid Designer by selecting Designer from the C1TrueDBGrid Tasks menu.
9. Select the ProductName column by clicking on it in the right pane.

TrueDBGrid for WinForms 138

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The column can also be selected by choosing ProductName from the drop-down list in the toolbar.

10. Set the Interval property to Alphabetical.

In the Designer

Locate the Interval property in the left pane of the C1TrueDBGrid Designer and set it to Alphabetical.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Set the GroupInfo.Interval of the ProductName column to Alphabetical.
Me.C1TrueDBGrid1.Columns("ProductName").GroupInfo.Interval =
C1.Win.C1TrueDBGrid.GroupIntervalEnum.Alphabetical

To write code in C#

C#

// Set the GroupInfo.Interval of the ProductName column to Alphabetical.
this.c1TrueDBGrid1.Columns["ProductName"].GroupInfo.Interval =
C1.Win.C1TrueDBGrid.GroupIntervalEnum.Alphabetical;

11. Finally, to keep the ProductName column visible after grouping by it, set the ColumnVisible property to True.

In the Designer

Locate the ColumnVisible property in the left pane of the C1TrueDBGrid Designer and set it to True.

TrueDBGrid for WinForms 139

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Keep the ProductName column visible while grouping.
Me.C1TrueDBGrid1.Columns("ProductName").GroupInfo.ColumnVisible = True

To write code in C#

C#

// Keep the ProductName column visible while grouping.
this.c1TrueDBGrid1.Columns["ProductName"].GroupInfo.ColumnVisible = true;

In this example, the ProductName column is grouped by the first letter of the product name.

Group Rows by Date Value (Outlook-Style)
This topic demonstrates how to use the GroupIntervalEnum.DateSpan member in C1TrueDBGrid.

Note: The C1NWind.mdb database was modified for this example. A field NextMeeting was added to the

TrueDBGrid for WinForms 140

Copyright © 2019 GrapeCity, Inc. All rights reserved.

employees table and filled in with more current dates.

Complete the following steps:

1. Start a new .NET project.
2. Open the Toolbox and add a C1TrueDBGrid control to the form.
3. Open the C1TrueDBGrid Tasks menu, click the drop-down arrow in the Choose Data Source box, and click

Add Project Data Source.
4. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or create a

new connection to this database.
5. On the Choose your database objects page of the wizard, select all fields in the Employees table and type

"Employees" into the DataSet name box, and then finish out the wizard.
6. Visual Studio adds the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.EmployeesTableAdapter.Fill(Me.Employees._Employees)

To write code in C#

C#

this.employeesTableAdapter.Fill(this.Employees._Employees);

7. Set the DataView property to DataViewEnum.GroupBy.

In the Designer

In the C1TrueDBGrid Tasks menu, select GroupBy from the Data Layout drop-down list:

TrueDBGrid for WinForms 141

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy

To write code in C#

C#

this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy;

8. Open the C1TrueDBGrid Designer by selecting Designer from the C1TrueDBGrid Tasks menu.
9. Select the NextMeeting column by clicking on it in the right pane.

The column can also be selected by choosing NextMeeting from the drop-down list in the toolbar.

10. Set the Interval property to GroupIntervalEnum.DateSpan.

In the Designer

Locate the Interval property in the left pane of the C1TrueDBGrid Designer and set it to DateSpan.

TrueDBGrid for WinForms 142

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Set the GroupInfo.Interval of the grid to DateSpan.
Me.C1TrueDBGrid1.Columns("NextMeeting").GroupInfo.Interval =
C1.Win.C1TrueDBGrid.GroupIntervalEnum.DateSpan

To write code in C#

C#

// Set the GroupInfo.Interval of the grid to DateSpan.
this.c1TrueDBGrid1.Columns["NextMeeting"].GroupInfo.Interval =
C1.Win.C1TrueDBGrid.GroupIntervalEnum.DateSpan;

11. Finally, to keep the NextMeeting column visible after grouping by it, set the ColumnVisible property to True.

In the Designer

Locate the ColumnVisible property in the left pane of the C1TrueDBGrid Designer and set it to True.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

TrueDBGrid for WinForms 143

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

' Keep the NextMeeting column visible while grouping.
Me.C1TrueDBGrid1.Columns("NextMeeting").GroupInfo.ColumnVisible = True

To write code in C#

C#

// Keep the NextMeeting column visible while grouping.
this.c1TrueDBGrid1.Columns["NextMeeting"].GroupInfo.ColumnVisible = true;

In this example, the NextMeeting column is sorted by date values.

Group Rows by Custom Setting
This topic demonstrates how to use the GroupIntervalEnum.Custom member in C1TrueDBGrid.

Complete the following steps:

1. Start a new .NET project.
2. Open the Toolbox and add a C1TrueDBGrid control to the form.
3. Open the C1TrueDBGrid Tasks menu, click the drop-down arrow in the Choose Data Source box, and click

Add Project Data Source.
4. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or create a

new connection to this database.
5. On the Choose your database objects page of the wizard, select all fields in the Products table and type

"Products" into the DataSet name box, and then finish out the wizard.
6. Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.ProductsTableAdapter.Fill(Me.Products._Products)

TrueDBGrid for WinForms 144

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.productsTableAdapter.Fill(this.Products._Products);

7. Set the DataView property to DataViewEnum.GroupBy.

In the Designer

In the C1TrueDBGrid Tasks menu, select GroupBy from the Data Layout drop-down.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy

To write code in C#

C#

this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy;

8. Open the C1TrueDBGrid Designer by selecting Designer from the C1TrueDBGrid Tasks menu.
9. Select the UnitPrice column by clicking on it in the right pane.

TrueDBGrid for WinForms 145

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The column can also be selected by choosing UnitPrice from the drop-down list in the toolbar.

10. Set the Interval property to GroupIntervalEnum.Custom.

In the Designer

Locate the Interval property in the left pane of the C1TrueDBGrid Designer and set it to custom.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Set the GroupInfo.Interval of the grid to Custom.
Me.C1TrueDBGrid1.Columns("UnitPrice").GroupInfo.Interval =
C1.Win.C1TrueDBGrid.GroupIntervalEnum.Custom

To write code in C#

C#

// Set the GroupInfo.Interval of the grid to Custom.
this.c1TrueDBGrid1.Columns["UnitPrice"].GroupInfo.Interval =
C1.Win.C1TrueDBGrid.GroupIntervalEnum.Custom;

11. Set the NumberFormat property of the UnitPrice column to Currency.

In the Designer

Locate the NumberFormat property in the left pane of the C1TrueDBGrid Designer and set it to Currency.

TrueDBGrid for WinForms 146

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Set the UnitPrice column to be displayed as currency.
Me.C1TrueDBGrid1.Columns("UnitPrice").NumberFormat = "Currency"

To write code in C#

C#

// Set the UnitPrice column to be displayed as currency.
this.c1TrueDBGrid1.Columns["UnitPrice"].NumberFormat = "Currency";

12. To keep the UnitPrice column visible after grouping by it, set the ColumnVisible property to True.

In the Designer

Locate the ColumnVisible property in the left pane of the C1TrueDBGrid Designer and set it to True.

In Code

Add the following to the Form_Load event:

To write code in Visual Basic

TrueDBGrid for WinForms 147

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

' Keep the UnitPrice column visible while grouping.
Me.C1TrueDBGrid1.Columns("UnitPrice").GroupInfo.ColumnVisible = True

To write code in C#

C#

// Keep the UnitPrice column visible while grouping.
this.c1TrueDBGrid1.Columns["UnitPrice"].GroupInfo.ColumnVisible = true;

13. Add the following code to the GroupInterval event:

To write code in Visual Basic

Visual Basic

' Get the value from the current grid cell as a Decmimal.
Dim p As Decimal = CType(Me.C1TrueDBGrid1(e.Row, e.Col.DataColumn.DataField),
Decimal)

' Assign the custom grouping values.
If p > 0 And p < 10 Then
 e.Value = "$0 - $9.99"
ElseIf p >= 10 And p < 20 Then
 e.Value = "$10.00 - $19.99"
ElseIf p >= 20 And p < 40 Then
 e.Value = "$20.00 - $39.99"
ElseIf p >= 40 And p < 60 Then
 e.Value = "$40.00 - $59.99"
ElseIf p >= 60 Then
 e.Value = "$60 And Greater"
End If

To write code in C#

C#

// Get the value from the current grid cell as a Decimal.
decimal p = ((decimal)this.c1TrueDBGrid1(e.Row,e.Col.DataColumn.DataField));

// Assign the custom grouping values.
If (p > 0 && p < 10)
{
 e.Value = "$0 - $9.99";
}
else if (p >= 10 && p < 20)
{
 e.Value = "$10.00 - $19.99";
}
else if (p >= 20 && p < 40)
{
 e.Value = "$20.00 – $39.99";
}

TrueDBGrid for WinForms 148

Copyright © 2019 GrapeCity, Inc. All rights reserved.

else if (p >= 40 && p < 60)
{
 e.Value = "$40.00 - $59.99";
}
else if (p >= 60)
{
 e.Value – "$60 and Greater";
}

In this example, the UnitPrice column is grouped according to a customized range of values.

Expanding and Collapsing Grouped Rows
To expand or collapse all grouped rows at once, you can use the ExpandGroupRow and CollapseGroupRow methods.
In this topic you'll add buttons to your form that will expand and collapse your grouped grid using the
ExpandGroupRow and CollapseGroupRow methods.

Complete the following steps:

1. Start a new .NET project.
2. Open the Toolbox and add a SplitContainer to the form.
3. Select the SplitComntainer1's smart tag to open the SplitContainer Tasks menu and select Horizontal splitter

orientation.
4. Select SplitContainer1.Panel2, the bottom panel in the SplitContainer and navigate to the Toolbox to add 2

Button controls, Button1 and Button2, to the panel.
5. Resize the buttons on the form, and set the Text properties for the buttons in the designer or in code:

In the Designer

In the Properties window set the following properties:

Select Button1 and in the Properties window set its Text property to "Expand".
Select Button2 and in the Properties window set its Text property to "Collapse".

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

TrueDBGrid for WinForms 149

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Me.Button1.Text = "Expand"
Me.Button2.Text = "Collapse"

To write code in C#

C#

this.button1.Text = "Expand";
this.button2.Text = "Collapse";

6. Select SplitContainer1.Panel1, the top panel in the SplitContainer, and navigate to the Toolbox to add a
C1TrueDBGrid control to the panel.

7. Open the C1TrueDBGrid Tasks menu and select Dock in parent container.
8. In the C1TrueDBGrid Tasks menu, click the drop-down arrow in the Choose Data Source box, and click Add

Project Data Source.
9. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or create a

new connection to this database.
10. On the Choose your database objects page of the wizard, select all fields in the Products table and type

"Products" into the DataSet name box, and then finish out the wizard.

Visual Studio adds the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.ProductsTableAdapter.Fill(Me.Products._Products)

To write code in C#

C#

this.productsTableAdapter.Fill(this.products._Products);

11. Set the DataView property to DataViewEnum.GroupBy in the designer or in code:

In the Designer

In the C1TrueDBGrid Tasks menu, select GroupBy from the Data Layout drop-down.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy

To write code in C#

C#

this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy;

12. Add the following Button_Click events to the Code Editor to add the ExpandGroupRow and
CollapseGroupRow methods:

TrueDBGrid for WinForms 150

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Me.C1TrueDBGrid1.ExpandGroupRow(-1, True)
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
 Me.C1TrueDBGrid1.CollapseGroupRow(-1)
End Sub

To write code in C#

C#

private void button1_Click(object sender, EventArgs e)
{
 this.c1TrueDBGrid1.ExpandGroupRow(-1, true);
}

private void button2_Click(object sender, EventArgs e)
{
 this.c1TrueDBGrid1.CollapseGroupRow(-1);
}

Run the application and observe:
1. Group the grid by dragging column headers into the GroupBy area.
2. Select the Expand button, notice that all grouped rows and subgroups expand:

3. Select the Collapse button, notice that all grouped rows are now collapsed:

TrueDBGrid for WinForms 151

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Data Display
True DBGrid for WinForms allows you to view data in different ways through the DataView property, such as
hierarchical, drop-down hierarchical, form, inverted, and multiple line. You can easily change the DataView property in
the Properties window, in code, or by selecting a Data Layout option in the C1TrueDBGrid Tasks menu:

The following topics describe the different data views available in the C1TrueDBGrid control.

Hierarchical Data Display
True DBGrid for WinForms supports the ability to display hierarchical data. Hierarchical data generally refers to data
that is stored in multiple relational tables, where a master (or "parent") table is linked by keyed fields to detail (or
"child") tables. The hierarchical display provides the ability to present the master data to users, such that the related
detail data can be viewed in the same grid with a single mouse click.

When the grid is bound to a master-detail data source, display related groups of hierarchical data by using bands. A
band is a virtual representation of a hierarchical DataSet, not the data itself. A band is created for each level in a
hierarchical recordset, and may consist of entire tables or a just a few selected fields. At run time, users can expand
and collapse bands using a TreeView-like interface.

TrueDBGrid for WinForms 152

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To use this feature, the DataView property must be set to DataViewEnum.Hierarchical. The grid control must be bound
to a hierarchical DataSet. One way to do this is to use the DataSource property.

In this example there is a relation between the Composer and Opus tables. Both tables have a Last field, which
happens to be the primary key for the table. The Last field of both Composer and Opus are identical. Thus when
joined together on this field these two tables create a hierarchical DataSet.

This hierarchical DataSet can be displayed in the grid through the use of bands and the grid's hierarchical display. By
completing just three steps, the above DataSet can be displayed in the C1TrueDBGrid control. These step are:

1. First the DataSource property of the grid needs to be set to the hierarchical DataSet.
2. Secondly, the DataMember property of the grid needs to be set to the parent table in the DataSet. This will tell

the grid which table must be displayed initially. In this example, the parent table is Composer.
3. Finally, the grid needs to know to switch to the hierarchical display. By setting the DataView property to

DataViewEnum.Hierarchical, the grid will display the above dataset with its bands structure.

At run time, the grid displays read-only data. The next figure illustrates the initial display of the grid. The data from the
master recordset (Composer) is displayed first, and the fields from the detail recordset bands appear to the right. The
detail recordset fields initially contain no data, however. An expand icon ("+") at the left edge of a record indicates the
presence of hierarchical data.

When the user clicks an expand icon, it changes to a collapse icon ("–") and the next band (Opus) expands to show
the detail records for the clicked row.

Note: If the DataView property is set to its default value ofDataViewEnum.Normal, the grid will only display flat
files; it will not support a hierarchical view. Even if the data source is a hierarchical DataSet, the grid will only
display data from the master table.

The DataView property must be set at design time; it cannot be changed at run time.

The following methods are provided for manipulating hierarchical grid displays:

TrueDBGrid for WinForms 153

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Method Description

GetBand Returns the band for a specified column index.

CollapseBand Collapses all rows for the specified band.

ExpandBand Expands all rows for the specified band.

RowExpanded Returns True if the current row is expanded within the
specified band.

If the number of recordset levels in a master-detail data source is not known in advance, examine the Bands property
in code. Allowable band numbers range from 0 to Bands - 1.

The following events enable the application to respond to hierarchical view operation initiated by the user:

Event Description

Collapse Fired when a band is collapsed by a user.

Expand Fired when a band is expanded by a user.

Drop-Down Hierarchical Data Display
True DBGrid for WinForms allows you to display a master/child relationship between data sources in such a way that the child data
records are available from within the master table in a completely new True DBGrid. By simply setting the ChildGrid property to connect
two grid controls and a few lines of code, you can create a fully editable drop-down child that appears within the master table with a simple
click.

Assuming that your hierarchical dataset is already configured, you can create the master/child relationship by selecting C1TrueDBGrid2 in
the ChildGrid property of C1TrueDBGrid1.

Notice that C1TrueDBGrid2 is rendered invisible and there is an expand icon ("+") beside the left most cell in each row. The master table
contains a list of composers including vital statistics. Note, that as you scroll right, the expand icon remains in the left most cell at all times.

By left clicking on any of the expand icons, our child table appears in a drop-down window. In this case, the drop-down window lists the
written works of the specific composer that you expanded.

TrueDBGrid for WinForms 154

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The following code demonstrates how simple it is to attach a child grid to its master grid and display hierarchical data in a convenient
display. In this example, we have added two TrueDBGrid controls to display hierarchical data.

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs)
 Me.composerTableAdapter.Fill(Me.c1NWindDataSet.Composer)

 'Create the DataSet and DataTable
 Dim connectionString As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source="
 &
System.IO.Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments),

 "ComponentOne Samples\Common\C1NWind.mdb") & ";"
 Dim conn As OleDbConnection = New OleDbConnection(connectionString)
 Dim adp_Composer As OleDbDataAdapter = New OleDbDataAdapter("Select Last, * from
Composer", conn)
 Dim adp_Opus As OleDbDataAdapter = New OleDbDataAdapter("Select * from Opus",
conn)
 Dim data As DataSet = New DataSet()
 Dim table_Composer As DataTable = New DataTable()
 Dim table_Opus As DataTable = New DataTable()
 data.Tables.Add(table_Composer)
 data.Tables.Add(table_Opus)
 adp_Composer.Fill(table_Composer)
 adp_Opus.Fill(table_Opus)

 'Create relation between tables
 data.Relations.Add("Composer_Sale",
data.Tables(table_Composer.TableName).Columns("Last"),
 data.Tables(table_Opus.TableName).Columns("Last"))

 'Bind with the dataset
 c1TrueDBGrid1.DataSource = data 'MasterGrid
 c1TrueDBGrid2.DataSource = data 'ChildGrid
 c1TrueDBGrid1.DataMember = table_Composer.TableName
 'Provide master grid data member and data relation name to the child grid data
member
 c1TrueDBGrid2.DataMember = c1TrueDBGrid1.DataMember & ".Composer_Sale"

 'Set the Child grid
 c1TrueDBGrid1.ChildGrid = c1TrueDBGrid2
End Sub

VB

C#

TrueDBGrid for WinForms 155

Copyright © 2019 GrapeCity, Inc. All rights reserved.

private void Form1_Load(object sender, EventArgs e)
{

 this.composerTableAdapter.Fill(this.c1NWindDataSet.Composer);

 // Create the DataSet and DataTable
 string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +

System.IO.Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments),

 @"ComponentOne Samples\Common\C1NWind.mdb") + ";";
 OleDbConnection conn = new OleDbConnection(connectionString);

 OleDbDataAdapter adp_Composer = new OleDbDataAdapter("Select Last, * from
Composer", conn);
 OleDbDataAdapter adp_Opus = new OleDbDataAdapter("Select * from Opus", conn);

 DataSet data = new DataSet();

 DataTable table_Composer = new DataTable();
 DataTable table_Opus = new DataTable();

 data.Tables.Add(table_Composer);
 data.Tables.Add(table_Opus);

 adp_Composer.Fill(table_Composer);
 adp_Opus.Fill(table_Opus);

 //Create relation between tables
 data.Relations.Add("Composer_Sale",
data.Tables[table_Composer.TableName].Columns["Last"],
 data.Tables[table_Opus.TableName].Columns["Last"]);

 //Bind with the dataset
 c1TrueDBGrid1.DataSource = data;//MasterGrid
 c1TrueDBGrid2.DataSource = data;// ChildGrid
 c1TrueDBGrid1.DataMember = table_Composer.TableName;
 //Provide master grid data member and data relation name to the child grid data
member
 c1TrueDBGrid2.DataMember = c1TrueDBGrid1.DataMember + ".Composer_Sale";

 //Set the Child grid
 c1TrueDBGrid1.ChildGrid = c1TrueDBGrid2;
}

C#

Form Data Display
In situations where you would like to display data one record at a time, you can set the DataView property to
DataViewEnum.Form. You can set this property either in the designer or in code to display data in an editable form
similar to the one in the following illustration.

TrueDBGrid for WinForms 156

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To adjust the width of the data column area or the caption column area, change the ViewColumnWidth and
ViewCaptionWidth properties to create the appropriate column spacing.

Inverted Data Display
The inverted option of the DataView property inverts each row in your data into columns. In effect, the leftmost
column becomes the top row, the second column becomes the second row, and so forth. Use this display to maximize
screen real estate for tables that have many columns. Set the DataView property to DataViewEnum.Inverted to display
an inverted grid as depicted in the following illustration.

To adjust the width of the data column area or the caption column area, you can change the ViewColumnWidth and
ViewCaptionWidth properties to create the appropriate column spacing.

Multiple Line Data Display
Normally, a record is displayed in a single row in the grid. If the grid is not wide enough to display all of the columns
in the record, a horizontal scroll bar automatically appears to enable users to scroll columns in and out of view. For
discussion purposes, the following will be distinguished:

A line in a grid is a single physical row of cells displayed in the grid. Do not confuse this with a line of text
inside a grid cell; depending upon the settings of the RowHeight and WrapText properties, data in a grid cell
may be displayed in multiple lines of text.
A row in a grid is used to display a single record. A row may contain multiple lines or multiple physical rows.

Setting the DataView property to DataViewEnum.MultipleLines will display every field of data in the dataset in the
available grid area. If the dataset contains more fields than can fit in the grid area, then a single record will span
multiple lines. This enables the end user to simultaneously view all of the columns (fields) of a record within the width
of the grid without scrolling horizontally:

TrueDBGrid for WinForms 157

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You can adjust resulting column layout at either design time or run time by changing the widths and orders of the
columns. When changing the width of a column, the grid will only increase the size of the column at the expense of
the other columns in the line. Unlike previous versions of the grid, the columns will not wrap to another line if a
column is resized.

To change the order of the columns while in MultipleLine view, click and drag the column header to the new position.
A red arrow should indicate where the column is to be placed. After the column has been dropped, the grid will
reposition the columns accordingly.

Note that you can specify a multiple line mode in which the grid does scroll horizontally by setting the DataView
property to DataViewEnum.MultipleLinesFixed, see Multiple Line Fixed Data Display for more information.

Note: At design time, if the HScrollBar and VScrollBar style property is set to ScrollBarStyleEnum.Automatic, and
the DataView property is set to DataViewEnum.MultipleLines, a vertical scroll bar appears even though no data
is displayed. This is done so the width of the scroll bar can be taken into account when adjusting columns at
design time.

Implications of Multiple-Line Mode
Existing row-related properties, methods, and events fit well with the earlier definitions of records, rows, and lines
(with two exceptions to be described later). For example:

The VisibleRows property returns the number of visible rows or records displayed on the grid—not the number
of visible lines. If a row spans 2 lines, and the VisibleRows property is 5, then there are 10 visible lines displayed
on the grid.
The RowTop method accepts a row number argument ranging from 0 to VisibleRows - 1. If a row spans 2 lines,
then RowTop returns the position of the top of the third displayed row (that is, the fifth displayed line).
The RowResize event will be fired whenever a row is resized by the user at run time. In fact, at the record
selector column, only row divider boundaries are displayed; thus, the user can only resize rows, not lines.

Other row-related properties, methods, and events can be interpreted similarly. There are two exceptions:

1. The first is the RowHeight property. The RowHeight property returns the height of a cell or a line, not the
height of a row. Changing this property would break users' existing code.

2. The second is more of a limitation than an exception. Currently the dividers between rows and lines are the
same. When the RowDivider object's style property is changed, all dividers between rows and lines change to
the same style. That is, different dividers cannot exist for rows and for lines.

Multiple Line Fixed Data Display
Setting the DataView property to DataViewEnum.MultipleLines enables the end user to simultaneously view all of the
columns (fields) of a record within the width of the grid without scrolling horizontally. But if you want to have more
control over the multiple line data view, including visible horizontal scroll bars, you can set the DataView property to

TrueDBGrid for WinForms 158

Copyright © 2019 GrapeCity, Inc. All rights reserved.

DataViewEnum.MultipleLinesFixed instead.

The DataViewEnum.MultipleLinesFixed data view is very similar to the DataViewEnum.MultipleLines data view but the
number of subrows does not change once set. The number of subrows can be set using the LinesPerRow property
which can be set at code or in the C1TrueDBGrid Tasks menu:

Row widths in this DataView are not constrained by the width of the grid; if the sub of the column width is greater
than the client width of the grid you will now get a horizontal scrollbar:

Note that you can also merge the left-most column. Setting the Merge property allows the left-most column to span
the height of the row. For example in the image below, the ProductID column spans the row:

Note: The merge property is only applicable for the left-most columns in the grid.

Owner-Drawn Cells
For cases where complex per-cell customizations need to be performed you can render the contents of the cell by
writing a handler for the OwnerDrawCell event. This event is raised as needed to display the contents of cells that have
their OwnerDraw property set to True.

To create the owner-drawn cells in the above illustration, complete the following:

1. Set the OwnerDraw property to True for the First column either in the designer or in code:

In the Designer

Open the C1TrueDBGrid Designer by selecting Designer from the C1TrueDBGrid Tasks menu.
Select the First column in the grid by clicking on it in the right pane.

The column can also be selected by choosing First from the drop-down list in the toolbar.

Click the Display Column tab in the left pane.
Set the OwnerDraw property to True.

TrueDBGrid for WinForms 159

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Click OK to close the editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("First").OwnerDraw = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns["First"].OwnerDraw = true;

2. Declare the structure RECT in the general declarations of the form:

To write code in Visual Basic

Visual Basic

Public Structure RECT
 Dim Left As Long
 Dim Top As Long
 Dim Right As Long
 Dim Bottom As Long
End Structure

To write code in C#

C#

public struct RECT{
 long Left;
 long Top;
 long Right;
 long Bottom;
}

3. Implement the OwnerDrawCell event as follows:

To write code in Visual Basic

TrueDBGrid for WinForms 160

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Private Sub C1TrueDBGrid1_OwnerDrawCell(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.OwnerDrawCellEventArgs) Handles C1TrueDBGrid1.OwnerDrawCell
 If e.Col = 0 Then

 ' Create a gradient brush, blue to red.
 Dim pt1, pt2 As Point
 pt1 = New Point(e.CellRect.X, e.CellRect.Y)
 pt2 = New Point(e.CellRect.Right, e.CellRect.Y)
 Dim linGrBrush As System.Drawing.Drawing2D.LinearGradientBrush
 linGrBrush = New System.Drawing.Drawing2D.LinearGradientBrush(pt1, pt2,
Color.Blue, Color.Red)

 Dim rt As RectangleF
 rt = New RectangleF(e.CellRect.X, e.CellRect.Y, e.CellRect.Width,
e.CellRect.Height)

 ' Fill the cell rectangle with the gradient.
 e.Graphics.FillRectangle(linGrBrush, e.CellRect)

 Dim whiteBR As Brush
 whiteBR = New SolidBrush(Color.White)
 Dim dispCol As C1.Win.C1TrueDBGrid.C1DisplayColumn
 dispCol = Me.C1TrueDBGrid1.Splits(0).DisplayColumns(e.Col)

 ' Center the text horizontally.
 Dim sfmt As New StringFormat()
 sfmt.Alignment = StringAlignment.Center

 ' Draw the text.
 e.Graphics.DrawString(dispCol.DataColumn.CellText(e.Row),
dispCol.Style.Font, whiteBR, rt, sfmt)
 whiteBR.Dispose()

 ' Let the grid know the event was handled.
 e.Handled = True
 End If
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_OwnerDrawCell(object sender,
C1.Win.C1TrueDBGrid.OwnerDrawCellEventArgs e)
{
 if (e.Col = 0)
 {
 // Create a gradient brush, blue to red.
 Point pt1, pt2;
 pt1 = new Point[e.CellRect.X, e.CellRect.Y];

TrueDBGrid for WinForms 161

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 pt2 = new Point[e.CellRect.Right, e.CellRect.Y];
 System.Drawing.Drawing2D.LinearGradientBrush linGrBrush;
 linGrBrush = new System.Drawing.Drawing2D.LinearGradientBrush(pt1, pt2,
Color.Blue, Color.Red);

 RectangleF rt;
 rt = new RectangleF(e.CellRect.X, e.CellRect.Y, e.CellRect.Width,
e.CellRect.Height);

 // Fill the cell rectangle with the gradient.
 e.Graphics.FillRectangle(linGrBrush, e.CellRect);

 Brush whiteBR;
 whiteBR = new SolidBrush(Color.White);
 C1.Win.C1TrueDBGrid.C1DisplayColumn dispCol;
 dispCol = this.c1TrueDBGrid1.Splits[0].DisplayColumns[e.Col];

 // Center the text horizontally.
 StringFormat sfmt = new StringFormat();
 sfmt.Alignment = StringAlignment.Center;

 // Draw the text.
 e.Graphics.DrawString(dispCol.DataColumn.CellText[e.Row],
dispCol.Style.Font, whiteBR, rt, sfmt);
 whiteBR.Dispose();

 // Let the grid know the event was handled.
 e.Handled = true;
 }

}

There are a couple key points worth noting in this example:

If the Handled property is set to True, the grid will not fill in the cell's background, nor will it display cell text or
graphics. Therefore, you are responsible for filling in the entire cell, even if there is no data to display.
Even a relatively simple example such as the one illustrated here requires a fair amount of coding, so consider
using background bitmaps instead of owner-drawn cells if possible.

Filtering Data in DataSets
In some cases, you might want to allow users to filter the underlying recordset at run time by limiting the number of
items in a given field or fields. By using the FilterBar and AllowFilter properties at design time, and entering the filter
text appropriately at run time, the number of field entries can be reduced almost effortlessly.

When the FilterBar property of a C1TrueDBGrid control is set to True, a blank row with a gray separator line appears
directly above the uppermost data row in the grid:

TrueDBGrid for WinForms 162

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In order to implement the filter in the grid, the AllowFilter property must be set to True (default), which will tell the
grid to implement the filtering process.

If the FilterBar and AllowFilter properties are both set to True, the filter bar will appear in the grid and the grid will
also handle automatically the handling of the DataSet.

Manually Filtering Data
In the event that you would prefer to handle the filtering process yourself, leaving the AllowFilter property as False
will not implement the grid's automatic filter. In order to create a filter, the FilterChange event, must be used to
manually sort the data. This event fires whenever there the user changes the state of the filter bar.

In this event, a handler would have to be created which filters the dataset for each character the user enters. For
example, if the user types "B" in a filter bar cell, the underlying dataset would have to be limited to just those column
items whose values start with the letter B. If the user then extended the filter to "BR", then the list would have to be
reduced to only those whose values that start with BR.

TrueDBGrid for WinForms 163

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Adding a Watermark to the Filter Bar
You can now easily add a text watermark to the filter bar so that it appears with default text. You can use this
watermark to add instructions for filtering text, or adding default values to give users a better understanding of what
values can be entered in particular filter bar cells. All you need to do to have text appear in the filter bar is set the
FilterWatermark property to a string.

For example in the following code, the FilterWatermark in the first filter bar cell is set to "Filter Me":

To write code in Visual Basic

Visual Basic

' Set the C1DataColumn.FilterWatermark property of the first column.
Me.C1TrueDBGrid1.Columns(0).FilterWatermark = "Filter Me"

To write code in C#

C#

// Set the C1DataColumn.FilterWatermark property of the first column.
this.c1TrueDBGrid1.Columns[0].FilterWatermark = "Filter Me";

Notice that the background color of the filter bar cell with a watermark has changed:

TrueDBGrid for WinForms 164

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In the following code, the FilterWatermark is set to the value of each column's caption text:

To write code in Visual Basic

Visual Basic

Dim colcount As Integer
colcount = 0
While C1TrueDBGrid1.Columns.Count > colcount
' Set the C1DataColumn.FilterWatermark property of each column to its caption.
C1TrueDBGrid1.Columns(colcount).FilterWatermark =
C1TrueDBGrid1.Columns(colcount).Caption
colcount = colcount + 1
End While

To write code in C#

C#

int colcount;
colcount = 0;
while (c1TrueDBGrid1.Columns.Count > colcount)
{
 // Set the C1DataColumn.FilterWatermark property of each column to its caption.
 this.c1TrueDBGrid1.Columns[colcount].FilterWatermark =
c1TrueDBGrid1.Columns[colcount].Caption;
 colcount = colcount + 1;
}

The grid appears like the following:

TrueDBGrid for WinForms 165

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Notice that when text is filtered, the watermark is no longer visible:

You can change the appearance of the style of the FilterWatermark using the FilterWatermarkStyle property. See How
to Use Styles for more information about styles.

Filtering the Grid with Multiple Criteria
You can now easily filter the grid with multiple filter criteria at run time. For example, you can filter the grid so that
only items starting with the letter A or the letter B appear in the grid (instead of limiting the filter to one or the other).
All you need to do to have text appear in the filter bar is set the FilterMultiSelect property to True.

For example in the following code, the FilterMultiSelect property in the first filter bar cell is set to True:

To write code in Visual Basic

Visual Basic

' Display the filter bar.
Me.C1TrueDBGrid1.FilterBar = True
' Allow the first column to be filtered by multiple items.
Me.C1TrueDBGrid1.Columns(0).FilterMultiSelect = True

To write code in C#

C#

// Display the filter bar.
this.c1TrueDBGrid1.FilterBar = true;

TrueDBGrid for WinForms 166

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Allow the first column to be filtered by multiple items.
this.c1TrueDBGrid1.Columns[0].FilterMultiSelect = true;

If you run the application, you'll notice that you can filter the first cell with multiple criteria. For example type "a,b" in
the filter bar and notice that items starting with the letter A and the letter B are displayed. You can customize the
character used for separating filter items by setting the FilterSeparator property.

Adding a Filter Drop-Down List
In addition to the filter bar, you can also include a drop-down filter list in the filter bar. The drop-down list lists every
item in that column and provides a simple way that users can choose what items to filter the column by without
entering their own value.

For example in the following code, the FilterDropDown property in the second filter bar cell is set to True:

To write code in Visual Basic

Visual Basic

' Display the filter bar.
Me.C1TrueDBGrid1.FilterBar = True
' Allow the first column to be filtered by multiple items.
Me.C1TrueDBGrid1.Columns(1).FilterDropDown = True
' Allow the first column to be filtered by multiple items.
Me.C1TrueDBGrid1.Columns(1).FilterMultiSelect = True

To write code in C#

C#

// Display the filter bar.
this.c1TrueDBGrid1.FilterBar = true;
// Allow the first column to be filtered by multiple items.
this.c1TrueDBGrid1.Columns[1].FilterDropDown = true;
// Allow the first column to be filtered by multiple items.
this.c1TrueDBGrid1.Columns[1].FilterMultiSelect = true;

If you run the application, you'll notice that you can select the filter drop-down list to choose what to fiter the column
by:

TrueDBGrid for WinForms 167

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Click check boxes to choose items that will be displayed. Checked items will be displayed and items with cleared check
boxes will not be displayed. Click the Apply button in the filter bar to apply the filter criteria. Click the Clear button to
clear the filter. Click the Close button to close the drop-down list.

Condition Filtering
True DBGrid for WinForms now includes flexible conditional filtering similar to the FlexGrid for WinForms style of
filtering.

If you set the FilterBar property to False, and the FilterDropdown property to True, the C1TrueDBGrid control will
allow using the new filters in the column.

To write code in Visual Basic

Visual Basic

' Do not display the filter bar.
Me.C1TrueDBGrid1.FilterBar = False
' Allow the first column to be filtered by multiple items.
Me.C1TrueDBGrid1.Columns(1).FilterDropDown = True

To write code in C#

C#

// Do not display the filter bar.
this.c1TrueDBGrid1.FilterBar = false;
// Allow the first column to be filtered by multiple items.
this.c1TrueDBGrid1.Columns[1].FilterDropDown = true;

The data filtering feature follows the pattern used by C1FlexGrid. When users move the mouse over column headers,
the grid displays a filter icon on the header. Clicking the icon invokes the filter editor which selects the data that
should be displayed. Every column has a filter, and rows must pass all filters in order to be displayed.

TrueDBGrid for WinForms 168

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The built-in filters include the value filter, which allows users to select specific values for display, as well as a condition
filter, which allows them to specify up to two conditions using operators such as "greater than", "starts with", or
"contains". This type of filter is recommended for filtering columns that contain "continuous" values such as numeric
or date/time values.

Columns that have filters applied display the filter icon on their headers even when the mouse is not over them.

Custom Filtering
You can create your own filtering method using the FilterDefinition property to save/load custom filters in code.

You can apply one of a few pre-defined filters by reading the FilterDefinition property from a xml file like the
following:

To write code in Visual Basic

Visual Basic

Private Sub ReadFilter(name As String)
 c1TrueDBGrid1.Splits(0).FilterDefinition = System.IO.File.ReadAllText(name &

TrueDBGrid for WinForms 169

Copyright © 2019 GrapeCity, Inc. All rights reserved.

".xml")
End Sub

To write code in C#

C#

void ReadFilter(string name)
{
 c1TrueDBGrid1.Splits[0].FilterDefinition = System.IO.File.ReadAllText(name +
".xml");
}

The custom filter can then be applied to the grid and saved as custom like the following:

To write code in Visual Basic

Visual Basic

Private Sub SaveCustomFilter()
 System.IO.File.WriteAllText("custom.xml",
Me.c1TrueDBGrid1.Splits(0).FilterDefinition)
End Sub

To write code in C#

C#

void SaveCustomFilter()
{
 System.IO.File.WriteAllText("custom.xml",
this.c1TrueDBGrid1.Splits[0].FilterDefinition);
}

Note: For a complete sample using this FilterDefinition property, see the FilterDefinitionTdbg sample installed
with Winforms Edition.

TrueDBGrid for WinForms 170

Copyright © 2019 GrapeCity, Inc. All rights reserved.

How to Use Splits
In True DBGrid for WinForms, a split is similar to the split window features of products such as Microsoft Excel and
Word. Use splits to present data in multiple horizontal or vertical panes. These panes, or splits, can display data in
different colors and fonts. The splits can scroll as a unit or individually and can display different sets of columns or the
same set. Also use splits to prevent one or more columns or a set of rows from scrolling. Unlike other grid products,
fixed (nonscrolling) columns or rows in True DBGrid for WinForms do not have to be at the left edge of the grid, but
can be at the right edge or anywhere in the middle. Multiple groups of fixed columns or rows can exist within a grid.
Splits open up an endless variety of possibilities for presenting data to users of your applications.

Whenever you use True DBGrid for WinForms, you are always using a split. A grid always contains at least one
horizontal split, and the default values for the split properties are set so splits can be ignored until needed. Therefore,
skip this chapter if you do not need to create and manipulate more than one split within a grid.

Create and manipulate splits by working with Split objects and the SplitCollection object. Since an individual column
can be visible in one split but hidden in another, each Split object maintains its own collection of columns, known as
C1DisplayColumnCollection. This collection provides complete control over the appearance of each split and the
columns it contains.

Referencing Splits and their Properties
A C1TrueDBGrid object initially contains a single horizontal split. If additional splits are created, you can determine or
set the current split (that is, the split that has received focus) using the grid's SplitIndex property:

To write code in Visual Basic

Visual Basic

' Read the zero-based index of the current split.
Dim idx as Integer = Me.C1TrueDBGrid1.SplitIndex

' Set focus to the split with an index equal to Variable%.
Me.C1TrueDBGrid1.SplitIndex = idx

To write code in C#

C#

// Read the zero-based index of the current split.
int idx = this.c1TrueDBGrid1.SplitIndex;

// Set focus to the split with an index equal to Variable%.
this.c1TrueDBGrid1.SplitIndex = idx;

Each split in a grid is a different view of the same data source, and behaves just like an independent grid. If additional
splits are created without customizing any of the split properties, all splits will be identical and each will behave very
much like the original grid with one split.

Note that some properties, such as RecordSelectors and MarqueeStyle, are supported by both the C1TrueDBGrid and
Split objects. Three rules of thumb apply to properties that are common to a grid and its splits:

1. When you set or get the property of a Split object, you are accessing a specific split, and other splits in the
same grid are not affected.

2. When you get the property of a C1TrueDBGrid object, you are accessing the same property within the current
split.

TrueDBGrid for WinForms 171

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. When you set the property of a C1TrueDBGrid object, you are setting the same property within all splits.

To understand how these rules work in code, consider a grid with two horizontal splits, and assume that the current
split index is 1. To determine which marquee style is in use, the following statements are equivalent:

To write code in Visual Basic

Visual Basic

marquee = Me.C1TrueDBGrid1.MarqueeStyle
marquee = Me.C1TrueDBGrid1.Splits(1).MarqueeStyle
marquee = Me.C1TrueDBGrid1.Splits(Me.C1TrueDBGrid1.SplitIndex).MarqueeStyle

To write code in C#

C#

marquee = this.c1TrueDBGrid1.MarqueeStyle;
marquee = this.c1TrueDBGrid1.Splits[1].MarqueeStyle;
marquee = this.c1TrueDBGrid1.Splits[this.csss1TrueDBGrid1.SplitIndex].MarqueeStyle;

To change the marquee style to a solid cell border for all of the splits in the grid, use:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.MarqueeStyle = MarqueeEnum.SolidCellBorder

To write code in C#

C#

this.c1TrueDBGrid1.MarqueeStyle = MarqueeEnum.SolidCellBorder;

Note that this statement is equivalent to:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).MarqueeStyle = MarqueeEnum.SolidCellBorder
Me.C1TrueDBGrid1.Splits(1).MarqueeStyle = MarqueeEnum.SolidCellBorder

To write code in C#

C#

this.c1TrueDBGrid1.Splits(0).MarqueeStyle = MarqueeEnum.SolidCellBorder;
this.c1TrueDBGrid1.Splits(1).MarqueeStyle = MarqueeEnum.SolidCellBorder;

Likewise, to set the marquee style of each split to a different value:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).MarqueeStyle = MarqueeEnum.NoMarquee
Me.C1TrueDBGrid1.Splits(1).MarqueeStyle = MarqueeEnum.FloatingEditor

TrueDBGrid for WinForms 172

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.c1TrueDBGrid1.Splits(0).MarqueeStyle = MarqueeEnum.NoMarquee;
this.c1TrueDBGrid1.Splits(1).MarqueeStyle = MarqueeEnum.FloatingEditor;

These rules apply only to a C1TrueDBGrid object and its associated Split objects. No other object pairs possess similar
relationships.

Split Properties Common to C1TrueDBGrid
The following properties, which are supported by both Split and C1TrueDBGrid objects, adhere to the rules described
in the preceding section:

Property Description

AllowColMove Enables interactive column movement.

AllowColSelect Enables interactive column selection.

AllowRowSelect Enables interactive row selection.

AllowRowSizing Enables interactive row resizing.

AlternatingRowStyle Controls whether even/odd row styles are applied to a split.

CaptionStyle Controls the caption style for a split.

CurrentCellVisible Sets/returns modification status of the current cell.

ExtendRightColumn Sets/returns extended right column for a split.

FetchRowStyles Controls whether the FetchRowStyle event will be fired.

FirstRow Bookmark of row occupying first display line.

LeftCol Returns the leftmost visible column.

MarqueeStyle Sets/returns marquee style for a split.

RecordSelectors Shows/hides selection panel at left border.

Note: The Caption property is not included in this list, even though it is supported by both objects. Since grids
and splits maintain separate caption bars, setting the Caption property of the grid does not apply the same
string to each split caption.

Split-Only Properties Not Supported by C1TrueDBGrid
The following properties are supported by Split objects but not by C1TrueDBGrid. Therefore, to apply a value to the
entire grid, set the value for each split individually.

Property Description

AllowFocus Allows cells within a split to receive focus.

HorizontalScrollGroup Controls the horizontal scroll bar.

TrueDBGrid for WinForms 173

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Locked True if data entry is prohibited for a split.

SplitSize Sets/returns split width according to SizeMode.

SplitSizeMode Controls whether a split is scalable or fixed size.

VerticalScrollGroup Controls the vertical scroll bar.

Split Matrix Notation
When the grid contains both horizontal and vertical splits, it is said to be organized in a two-dimensional split matrix.
Reference and access to the properties of the split objects in the matrix is accomplished with a two-dimensional
matrix notation. The index for a particular split in a split matrix is the split row, then the column delimited by a comma.
For instance, accessing the second vertical split (column) in the third horizontal split (row) would look like the
following:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits.Item(2,1).Style.ForeColor = System.Drawing.Color.Blue

To write code in C#

C#

this.c1TrueDBGrid1.Splits[2,1].Style.ForeColor = System.Drawing.Color.Blue;

Note: Notice that the Item property is used in the previous example. When accessing a split through split
matrix notation, the Item property must be explicitly specified. When accessing a split in a grid with a one-
dimensional structure, the Item property is taken as implicit and can be omitted.

For instance, accessing the second split in a grid with only horizontal splits would look like the following:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(1).Style.ForeColor = System.Drawing.Color.Blue

To write code in C#

C#

this.c1TrueDBGrid1.Splits(1).Style.ForeColor = System.Drawing.Color.Blue;

Creating and Removing Splits
In code, you must create and remove splits using the RemoveHorizontalSplit, InsertHorizontalSplit,
RemoveVerticalSplit, and RemoveHorizontalSplit methods. Each method takes a zero-based split index:

To write code in Visual Basic

Visual Basic

Dim S As C1TrueDBGrid.Split

TrueDBGrid for WinForms 174

Copyright © 2019 GrapeCity, Inc. All rights reserved.

' Create a split with index 7.
Me.C1TrueDBGrid1.InsertVerticalSplit(7)

' Remove the split with index 5.
Me.C1TrueDBGrid1.RemoveVerticalSplit(5)

To write code in C#

C#

C1TrueDBGrid.Split S;

// Create a split with index 7.
this.c1TrueDBGrid1.InsertVerticalSplit(7);

// Remove the split with index 5.
this.c1TrueDBGrid1.RemoveVerticalSplit(5);

You can determine the number of splits in a grid using the SplitCollection Count property:

To write code in Visual Basic

Visual Basic

' Set variable equal to the number of splits in C1TrueDBGrid1.
variable = Me.C1TrueDBGrid1.Splits.Count

To write code in C#

C#

// Set variable equal to the number of splits in C1TrueDBGrid1.
variable = this.c1TrueDBGrid1.Splits.Count;

You can iterate through all splits using the Count property, for example:

To write code in Visual Basic

Visual Basic

For n = 0 To Me.C1TrueDBGrid1.Splits.Count - 1
 Debug.WriteLine (Me.C1TrueDBGrid1.Splits(n).Caption)
Next n

To write code in C#

C#

for (n = 0 ; n < this.c1TrueDBGrid1.Splits.Count; n++)
{
 Console.WriteLine (this.c1TrueDBGrid1.Splits[n].Caption);
}

Of course, a more efficient way to code this would be to use a For Each...Next loop:

TrueDBGrid for WinForms 175

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Dim S As C1TrueDBGrid.Split
For Each S In Me.C1TrueDBGrid1.Splits
 Debug.WriteLine (S.Caption)
Next

To write code in C#

C#

C1TrueDBGrid.Split S;
foreach (S In this.c1TrueDBGrid1.Splits)
{
 Console.WriteLine (S);
}

The new Split object will inherit all of its properties from the last object in the collection.

Working with Columns in Splits
Each split in a True DBGrid for WinForms control maintains its own collection of columns. The
C1DisplayColumnCollection object provides access to both split-specific display properties for columns inside a split.
The split-specific properties of the C1DisplayColumnCollection allow for tremendous flexibility in controlling the look
and behavior of individual splits. The grid is connected to a single data source, so the splits just present different views
of the same data. Therefore, the C1DisplayColumnCollection in each split contains the same number of columns and
the columns are bound to the same data fields.

However, the values of other C1DisplayColumn object properties, such as Visible, may vary from split to split. These
properties are said to be split-specific. For example, a column created in code is not visible by default. Thus, the
LastName column created in the preceding example is invisible in all splits. The following code makes it visible in the
second split:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(1).DisplayColumns("LastName").Visible = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits(1).DisplayColumns("LastName").Visible = true;

Since Visible is a split-specific property, the LastName column remains invisible in other splits.

Sizing and Scaling Splits
True DBGrid for WinForms provides full control over the size and scaling of individual splits. Configure a split to
occupy an exact width or height, hold a fixed number of columns or rows, or adjust its size proportionally in relation
to other splits. When initially starting out with True DBGrid for WinForms controls, splits can still be used in a variety

TrueDBGrid for WinForms 176

Copyright © 2019 GrapeCity, Inc. All rights reserved.

of ways without having to master all of the details.

At run time, the actual size of a Split object depends upon its SplitSize and SplitSizeMode properties. The
SplitSizeMode property specifies the unit of measurement; the SplitSize property specifies the number of units. True
DBGrid for WinForms supports three different sizing modes for splits, as determined by the setting of the
SplitSizeMode property:

Mode Description

SizeModeEnum.Scalable Denotes relative width in relation to other
splits.

SizeModeEnum.Exact Specifies a fixed width in container
coordinates.

SizeModeEnum.NumberofColumns Specifies a fixed number of columns.

A scalable split uses the value of its SplitSize property to determine the percentage of space the split will occupy. For
any scalable split, the percentage is determined by dividing its SplitSize value by the sum of the SplitSize values of all
other scalable splits. Thus, consider the SplitSize property of a scalable split to be the numerator of a fraction, the
denominator of which is the sum of the scalable split sizes. Scalable splits compete for the space remaining after
nonscalable splits have been allocated. By default, all splits are scalable, so they compete for the entire grid display
region. SplitSizeMode is always Scalable when a grid contains only one split.

An exact split uses the value of its SplitSize property as its fixed width in container coordinates. Exact splits will be
truncated if they will not fit within the horizontal grid boundaries. This mode is not applicable when a grid contains
only one split.

A fixed-column split uses the SplitSize property to indicate the exact number of columns that should always be
displayed within the split. These splits automatically reconfigure the entire grid if the size of the displayed columns
changes (either by code or user interaction), or if columns in the split are scrolled horizontally so that the widths of
the displayed columns are different. This mode is primarily used to create fixed columns that do not scroll horizontally.
However, it can be used for a variety of other purposes as well. This mode is not applicable when a grid contains only
one split.

Note that when there is only one split (the grid's default behavior), the split spans the entire width of the grid, the
SplitSizeMode property is always Scalable, and the SplitSize property is always 1. Setting either of these properties
has no effect when there is only one split. If there are multiple splits, and then remove all but one so the
SplitSizeMode and SplitSize properties of the remaining split automatically revert to 0 and 1, respectively.

By default, the SplitSizeMode property for a newly created split is SizeModeEnum.Scalable, and the SplitSize property
is set to 1. For example, two additional splits can be created with the following code:

To write code in Visual Basic

Visual Basic

' Create a Split on the left.
Me.C1TrueDBGrid1.InsertHorizontalSplit(0)

' Create another.
Me.C1TrueDBGrid1.InsertHorizontalSplit(0)

To write code in C#

C#

// Create a Split on the left.
this.c1TrueDBGrid1.InsertHorizontalSplit(0);

TrueDBGrid for WinForms 177

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Create another.
this.c1TrueDBGrid1.InsertHorizontalSplit(0);
The resulting grid display will appear as follows:

The resulting grid display will appear as follows:

Notice that each split occupies 1/3 of the total grid space. This is because there are three scalable splits, and each split
has a SplitSize of 1. If the sizes of the splits are changed to 1, 2, and 3, respectively:

To write code in Visual Basic

Visual Basic

' Change relative size to 1.
Me.C1TrueDBGrid1.Splits(0).SplitSize = 1

' Change relative size to 2.
Me.C1TrueDBGrid1.Splits(1).SplitSize = 2

' Change relative size to 3.
Me.C1TrueDBGrid1.Splits(2).SplitSize = 3

To write code in C#

C#

// Change relative size to 1.
this.c1TrueDBGrid1.Splits[0].SplitSize = 1;

// Change relative size to 2.
this.c1TrueDBGrid1.Splits[1].SplitSize = 2;

// Change relative size to 3.
this.c1TrueDBGrid1.Splits[2].SplitSize = 3;

TrueDBGrid for WinForms 178

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The resulting grid display will appear as follows:

Notice the sum of the split sizes (1+2+3) is 6, so the size of each split is a fraction with the numerator being the value
of its SplitSize property and a denominator of 6.

When a split's SplitSizeMode is set to SizeModeEnum.Exact, that split receives space before the other splits. This
behavior is somewhat more complex, but understanding how scalable splits work is helpful. For example, assume that
splits are set in the following way:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).SplitSizeMode = C1.Win.C1TrueDBGrid.SizeModeEnum.Scalable
Me.C1TrueDBGrid1.Splits(0).SplitSize = 1

Me.C1TrueDBGrid1.Splits(1).SplitSizeMode = C1.Win.C1TrueDBGrid.SizeModeEnum.Exact
Me.C1TrueDBGrid1.Splits(1).SplitSize = 250

Me.C1TrueDBGrid1.Splits(2).SplitSizeMode = C1.Win.C1TrueDBGrid.SizeModeEnum.Scalable
Me.C1TrueDBGrid1.Splits(2).SplitSize = 2

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].SplitSizeMode =
C1.Win.C1TrueDBGrid.SizeModeEnum.Scalable;
this.c1TrueDBGrid1.Splits[0].SplitSize = 1;

this.c1TrueDBGrid1.Splits[1].SplitSizeMode = C1.Win.C1TrueDBGrid.SizeModeEnum.Exact;
this.c1TrueDBGrid1.Splits[1].SplitSize = 250;

this.c1TrueDBGrid1.Splits[2].SplitSizeMode =
C1.Win.C1TrueDBGrid.SizeModeEnum.Scalable;
this.c1TrueDBGrid1.Splits[2].SplitSize = 2;

TrueDBGrid for WinForms 179

Copyright © 2019 GrapeCity, Inc. All rights reserved.

After configuring the splits in this way, the resulting grid display will look like this.

The fixed-size split in the middle (Split1) is configured to exactly 250 pixels, and the remaining splits compete for the
space remaining in the grid. Since the remaining splits are both scalable splits, they divide the remaining space among
themselves according to the percentages calculated using their SplitSize property values. So, the leftmost split
occupies 1/3 of the remaining space, and the rightmost split occupies 2/3.

Splits with SplitSizeMode set toSizeModeEnum.NumberOfColumns behave almost identically to exact splits, except
their size is determined by the width of an integral number of columns. The width, however, is dynamic, so resizing
the columns or scrolling so that different columns are in view will cause the entire grid to reconfigure itself.

Avoid creating a grid with no scalable splits. Although True DBGrid for WinForms handles this situation, it is difficult
to work with a grid configured in this way. For example, if no splits are scalable, all splits will have an exact size, which
may not fill the entire horizontal width of the grid. If the total width of the splits is too short, True DBGrid for
WinForms displays a "null-zone" where there are no splits. If the total width of the splits is wider than the grid, then
True DBGrid for WinForms will show only the separator lines for the splits that cannot be shown.

Creating and Resizing Splits through User Interaction
Splits can be created and resized in code. However, users can also create and resize splits interactively by setting the
AllowHorizontalSplit or AllowVerticalSplit property of a grid to True. By default, both properties are set to False,
preventing users from creating and resizing splits.

A typical grid with these properties set to False is shown in the following figure. Notice that there is no split box at the
left edge of the horizontal scroll bar or at the top of the vertical scroll bar.

TrueDBGrid for WinForms 180

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The new split will inherit its properties from the original split. The SplitSizeMode properties of both splits will be
automatically set to SizeModeEnum.Scalable, regardless of the SplitSizeMode of the original split. The SplitSize
properties of both splits will be set to the correct ratio of the splits' sizes. The values of the SplitSize properties may
end up being rather large. This is because True DBGrid for WinForms needs to choose the least common
denominator for the total split size, and the user may drag the pointer to an arbitrary position.

Vertical Splits
If the split's AllowVerticalSplit property is set to True:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AllowVerticalSplit = True

To write code in C#

C#

this.c1TrueDBGrid1.AllowVerticalSplit = true;

A split box will appear at the top edge of the vertical scroll bar, and when the cursor is over the split box, it will turn
into a double horizontal bar with vertical arrows. Dragging the cursor down from the split box creates a new split.

Once a split has been created, dragging the cursor up or down adjusts the relative size of the splits.

Horizontal Splits
If the split's AllowHorizontalSplit property is set to True:

TrueDBGrid for WinForms 181

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AllowHorizontalSplit = True

To write code in C#

C#

this.c1TrueDBGrid1.AllowHorizontalSplit = true;

A split box will appear at the left edge of the horizontal scroll bar, and when the cursor is over the split box, it will turn
into a double vertical bar with horizontal arrows. Dragging the cursor to the left from the split box creates a new split.

Once a split has been created, dragging the cursor to the left or right adjusts the relative size of the splits.

Summary
Splits can always be created or resized in code, but the AllowHorizontalSplit and AllowVerticalSplit property control
whether users can create or resize splits interactively at run time.

The user can resize the relative sizes of two splits only if both splits' AllowSizing properties are True. When the user
completes a resize operation, the total size of the two splits remains unchanged, but the SplitSizeMode properties of
both splits will automatically be set to SizeModeEnum.Scalable regardless of their previous settings. The SplitSize
properties of the two splits will be set to reflect the ratio of their new sizes.

Vertical Scrolling and Split Groups
By default, the grid has only one horizontal split, with split index 0, and its HScrollBar and VScrollBar style property is
set to ScrollBarStyleEnum.Automatic. That is, the horizontal or vertical scroll bar will appear as necessary depending

TrueDBGrid for WinForms 182

Copyright © 2019 GrapeCity, Inc. All rights reserved.

upon the column widths and the number of data rows available. The default split's HorizontalScrollGroup and
VerticalScrollGroup properties are set to 1. Splits having the same scrollgroup property setting will scroll vertically or
horizontally together. When a new split is created, it will inherit both the state of the scroll bars and the Scroll Group
properties from the parent split. If all of the splits belonging to the same HorizontalScrollGroup or VerticalScrollGroup
have their HScrollBar and VScrollBar style property is set to ScrollBarStyleEnum.Automatic, then True DBGrid for
WinForms will display the vertical scroll bar or horizontal scroll bar only at the rightmost or bottommost split of the
scroll group. Manipulating this single scroll bar will cause all splits in the same scroll group to scroll simultaneously.

For example, two additional splits can be created with the following code:

To write code in Visual Basic

Visual Basic

' Create a Split at the left.
Me.C1TrueDBGrid1.InsertHorizontalSplit(0)

' Create another.
Me.C1TrueDBGrid1.InsertHorizontalSplit(0)

To write code in C#

C#

// Create a Split at the left.
this.c1TrueDBGrid1.InsertHorizontalSplit(0);

// Create another.
this.c1TrueDBGrid1.InsertHorizontalSplit(0);

The resulting grid display will display as follows:

All three splits will have the same HScrollBar and VScrollBar settings and VerticalScrollGroup setting of 1. However,
only one vertical scroll bar will be displayed, within the rightmost split. When the user operates this scroll bar, all three
splits will scroll simultaneously.

Vertical splits react in the same manner. After adding two vertical splits to the grid, all of the splits have the same
HorizontalScrollGroup value of 1. Thus there is only one horizontal scroll bar at the bottom of the grid, and if this
scroll bar is scrolled all three splits will scroll simultaneously.

TrueDBGrid for WinForms 183

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Change one of the scroll group properties of the splits to create split groups that scroll independently. In the
preceding example, setting the HorizontalScrollGroup property of the middle split to 2 creates a new scroll group:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits.Item(0,1).HorizontalScrollGroup = 2

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0,1].HorizontalScrollGroup = 2;

After this statement executes, scrolling the middle split will not disturb the others, as shown in the following figure.

Note that the middle split now contains a horizontal scroll bar. This scroll bar operates only on the middle split, since
it is the only one with its HorizontalScrollGroup property equal to 2. The horizontal scroll bar in the bottommost split
now controls the bottom and top splits only. It no longer affects the middle split.

A common application of this feature is to create two independent split groups so that users can compare field values
from different records by scrolling each split to view a different set of rows.

TrueDBGrid for WinForms 184

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Horizontal Scrolling and Fixed Columns
Scrolling is independent for each split. Often, one or more columns need to be prevented from scrolling horizontally
or vertically so that the columns will always be in view. True DBGrid for WinForms provides an easy way to keep any
number of columns from scrolling at any location within the grid (even in the middle!) by setting a few split
properties.

As an example, with a grid with three horizontal splits, the following code will "fix" columns 0 and 1 in the middle split:

To write code in Visual Basic

Visual Basic

' Hide all columns in Splits(1) except for columns 0 and 1.
Dim Cols As C1TrueDBGrid.C1DisplayColumnCollection
Dim C As C1TrueDBGrid.C1DisplayColumn

Cols = Me.C1TrueDBGrid1.Splits(1).DisplayColumns
For Each C In Cols
 C.Visible = False
Next C
Cols(0).Visible = True
Cols(1).Visible = True

' Configure Splits(1) to display exactly two columns, and disableresizing.
With Me.C1TrueDBGrid1.Splits(1)
 .SplitSizeMode = SizeModeEnum.NumberOfColumns
 .SplitSize = 2
 .AllowHorizontalSizing = False
End With

To write code in C#

C#

// Hide all columns in Splits[1] except for columns 0 and 1.
C1TrueDBGrid.C1DisplayColumnCollection Cols;
C1TrueDBGrid.C1DisplayColumn C;

Cols = this.c1TrueDBGrid1.Splits[1].DisplayColumns
foreach (C In Cols)
{
 C.Visible = false;
}
Cols(0).Visible = true;
Cols(1).Visible = true;

// Configure Splits[1] to display exactly two columns, and disable resizing.
this.c1TrueDBGrid1.Splits[1].SplitSizeMode = SizeModeEnum.NumberOfColumns;
this.c1TrueDBGrid1.Splits[1].SplitSize = 2;
this.c1TrueDBGrid1.Splits[1].AllowHorizontalSizing = false;

Usually, if columns 0 and 1 are kept from scrolling in one split, it will be desirable to have them invisible in the other

TrueDBGrid for WinForms 185

Copyright © 2019 GrapeCity, Inc. All rights reserved.

splits:

To write code in Visual Basic

Visual Basic

' Make columns 0 and 1 invisible in splits 0 and 2.
Dim Cols As C1TrueDBGrid.C1DisplayColumnCollection
Cols = Me.C1TrueDBGrid1.Splits(0).DisplayColumns
Cols(0).Visible = False
Cols(1).Visible = False
Cols = Me.C1TrueDBGrid1.Splits(2).DisplayColumns
Cols(0)Visible = False
Cols(1)Visible = False

To write code in C#

C#

// Make columns 0 and 1 invisible in splits 0 and 2.
C1TrueDBGrid.C1DisplayColumnCollection Cols;
Cols = this.c1TrueDBGrid1.Splits[0].DisplayColumns;
Cols[0].Visible = false;
Cols[1].Visible = false;
Cols = this.c1TrueDBGrid1.Splits[2].DisplayColumns;
Cols[0]Visible = false;
Cols[1]Visible = false;

Navigation Across Splits
Navigation across splits is controlled by the grid's TabAcrossSplits property and each split's AllowFocus property.
Navigation across splits is best discussed with grid navigation as a whole. For more information, please refer to Run-
Time Interaction.

TrueDBGrid for WinForms 186

Copyright © 2019 GrapeCity, Inc. All rights reserved.

How to Use Styles
True DBGrid for WinForms uses a style model similar to that of Microsoft Word and Excel to simplify the task of
customizing a grid's appearance. A Style object is a combination of font, color, picture, and formatting information
comprising the following properties:

Property Description

Alpha Gets or sets the alpha component when the style is rendered.

BackColor Gets or sets the background color associated with a Style.

BackColor2 Gets or sets the background color associated with a Style.

BackgroundImage Gets or sets the background image associated with a Style.

BackgroundPictureDrawMode Gets or sets the rendering method for a BackgroundImage.

Borders Gets the GridBorders associated with this Style.

Font Gets or sets the Font associated with a Style.

ForeColor Gets or sets the foreground color associated with a Style.

ForegroundImage Gets or sets the foreground image associated with a style.

ForeGroundPicturePosition Gets or sets the position that the ForegroundImage is rendered.

GammaCorrection Gets or sets a value indicating whether gamma correction is
enabled when a linear gradient style is rendered.

GradientMode Specifies the direction of a linear gradient.

HorizontalAlignment Gets or sets the horizontal text alignment.

Locked Gets or sets a value indicating whether data entry is permitted for
the associated object.

Name Gets or sets the name of the Style.

Padding Gets or sets the spacing between cell content and its edges.

Trimming Gets or sets the trim characters for a string that does not
completely fit into a layout shape.

VerticalAlignment Gets or sets the vertical text alignment.

WrapText Gets or sets a value indicating whether text is word-wrapped when
it does not fit into a layout shape.

Built-In Named Styles
When a grid is first created, it has a collection of built-in named styles that control various aspects of its display. For
example, the Heading style determines the attributes used to display column headers. At design time, change the
appearance of the grid as a whole by modifying the built-in named styles in the C1TrueDBGrid Styles Editor. At run
time, the GridStyleCollection provides access to the same set of named styles. Initially, all grids contain ten built-in
styles, which control the display of the following grid elements:

Element Description

TrueDBGrid for WinForms 187

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Caption Grid and split caption bars.

Editor Cell editor within grid.

EvenRow Data cells in even numbered rows.

Filter Bar Data in the filter bar columns.

Footer Column footers.

Group Group columns in grid grouping area.

Heading Column headers.

HighlightRow Data cells in highlighted rows.

Inactive Column headings when another column has focus.

Normal Data cells in unselected, unhighlighted rows.

OddRow Data cells in odd numbered rows.

Record Selector Data in the record selector column.

Selected Data cells in selected rows.

A selected row is one whose bookmark has been added to the SelectedRowCollection, either in code or through user
interaction. The term highlighted row refers to the current row when the MarqueeStyle property is set to
MarqueeEnum.HighlightRow or MarqueeEnum.HighlightRowRaiseCell.

The EvenRow and OddRow styles are used only when the AlternatingRows property is set to True.

Named Style Defaults
As in Microsoft Word, a Style object in True DBGrid can inherit its characteristics from another style, referred to as the
parent style. For a newly created grid, the Normal style is the parent (or grandparent) of all named styles. Its default
properties are as follows:

Property Setting

Alpha 255

BackColor System.Drawing.Color.White

BackColor2 System.Drawing.Color.White

BackgroundImage None

BackgroundPictureDrawMode BackgroundPictureDrawModeEnum.Stretch

Font Microsoft Sans Serif, 8.25pt

ForeColor System.Drawing.Color.Black

ForegroundImage None

ForeGroundPicturePosition ForegroundPicturePositionEnum.LeftOfText

GammaCorrection False

GradientMode None

HorizontalAlignment AlignHorzEnum.General

TrueDBGrid for WinForms 188

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Locked False

Padding 0, 0, 0, 0

Trimming Character

VerticalAlignment AlignVertEnum.Top

WrapText False

The Heading and Footing styles are defined similarly. Each inherits from the Normal style, and each overrides the
following properties:

Property Setting

BackColor System.Drawing.SystemColors.Control

ForeColor System.Drawing.Color.Black

VerticalAlignment AlignVertEnum.Center

The Heading style overrides one additional property that the Footing style does not:

Property Setting

WrapText True

The Selected style also inherits from Normal and overrides two color properties:

Property Setting

BackColor System.Drawing.SystemColors.Highlight

ForeColor System.Drawing.SystemColors.HighlightText

The same is True of the HighlightRow style, which uses the inverse of the color settings for the default Normal style:

Property Setting

BackColor System.Drawing.SystemColors.Text

ForeColor System.Drawing.SystemColors.HighlightText

The EvenRow, OddRow, and FilterBar styles inherit from Normal, but only the EvenRow style overrides any properties:

Property Setting

BackColor System.Drawing.Color.Aqua

The only styles that do not inherit directly from Normal are the Caption and RecordSelector styles, which inherit from
the Heading style. The reason that grid and split captions are centered by default is that the Caption style specifies the
following property:

Property Setting

HorizontalAlignment AlignHorzEnum.Center

Named Style Inheritance

TrueDBGrid for WinForms 189

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To see how named style inheritance works, place a grid on a form and set the Caption property of the grid and its
default columns. Set the FooterText property of the default columns and set the ColumnFooters property of the grid
to True. The grid should look something like this.

In the C1TrueDBGrid Style Editor, select Normal from the left pane and expand the Font node. Set the Bold
property to True. Note that the column headers, column footers, and grid caption are all bold, since all built-in styles
inherit from the Normal style or one of its children.

Next, select Heading from the left pane, and in the right pane select the ForeColor property. Click the Web tab, and
then select Navy. Note that the text color of both the column headers and the grid's caption bar is now white, since
the Caption style inherits its color properties from the Heading style. The column footers remain the same because
the Footer style inherits from the Normal style, not the Heading style.

Finally, select Caption from the left pane and in the right pane select its BackColor property. Click the Web tab, and
then select AliceBlue. Note that the background color of the column headers is not changed, and that the Caption
style continues to inherit its text color from its parent style, Heading.

Modifying Named Styles
Change the appearance of the overall grid at design time by using .NET’s collection editors to modify the

TrueDBGrid for WinForms 190

Copyright © 2019 GrapeCity, Inc. All rights reserved.

GridStyleCollection. For example, to force all column headers to center their caption text, change the
HorizontalAlignment property of the built-in Heading style to AlignHorzEnum.Center.

The following statement accomplishes the same result in code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Styles("Heading").HorizontalAlignment = AlignHorzEnum.Center

To write code in C#

C#

this.c1TrueDBGrid1.Styles["Heading"].HorizontalAlignment = AlignHorzEnum.Center;

However, it is not necessary to use the C1TrueDBGrid Style Editor or manipulate named members of the
GridStyleCollection in code, as the grid and its component objects expose several properties that return Style objects.
As the next section describes, the appearance of the grid can be fine-tuned by manipulating these objects directly. For
more information see Using the C1TrueDBGrid Style Editor.

Working with Style Properties
Just as a document template in Microsoft Word specifies the overall appearance of individual paragraphs in a
document, the named members of the GridStyleCollection object provide an overall display template for a
C1TrueDBGrid or C1TrueDBDropDown control. However, to customize the appearance of individual Split or
C1DisplayColumn objects, modify the appropriate Style object property:

Property Description

CaptionStyle Controls the caption style for an object.

EditorStyle Controls the editor style for an object.

EvenRowStyle Controls the row style for even-numbered rows.

FilterBarStyle Controls the style of the columns in the filter bar.

FooterStyle Controls the footing style for an object.

HeadingStyle Controls the heading style for an object.

HighlightRowStyle Controls the marquee style when set to Highlight Row.

InactiveStyle Controls the inactive heading style for an object.

OddRowStyle Controls the row style for odd-numbered rows.

RecordSelectorStyle Controls the record selector style for an object.

SelectedStyle Controls the selected row/column style for an object.

Style Controls the normal style for an object.

Modifying a Style Property Directly
Customize the appearance of a grid component by modifying one or more members of an appropriate style property.
For example, to make the grid's caption text bold, change the Font object associated with the CaptionStyle property.

TrueDBGrid for WinForms 191

Copyright © 2019 GrapeCity, Inc. All rights reserved.

At design time, this is done by expanding the CaptionStyle tree node on the Properties window, expanding the Font
node, and setting the Boldproperty to True. The change is committed to the grid when you click out of this particular
property.

Note when switching to the C1TrueDBGrid Style Editor, it will be seen that the built-in Caption style has not
changed.

This means that the following statements are not equivalent:

To write code in Visual Basic

Visual Basic

Dim myfont As New Font(Me.C1TrueDBGrid1.Font, FontStyle.Bold)
Me.C1TrueDBGrid1.CaptionStyle.Font = myfont

Me.C1TrueDBGrid1.Styles("Caption").Font = myfont

To write code in C#

C#

Font myfont = new Font(this.c1TrueDBGrid1.Font, FontStyle.Bold);
this.c1TrueDBGrid1.CaptionStyle.Font = myfont;

this.c1TrueDBGrid1.Styles["Caption"].Font = myfont;

The first statement specifies the font of the grid's caption bar; because this is a root style, the named Caption style
also changes.

Named Styles vs. Anonymous Styles
When setting style properties at design time, it is important to understand the distinction between named styles and
the anonymous styles exposed by grid properties.

Named styles provide templates that govern the appearance of the grid, its splits, and its columns. At design time,
create, modify, and delete named styles using the GridStyleCollection Editor. At run time, the GridStyleCollection is
used to represent the same set of named Style objects.

Anonymous styles are not members of the GridStyleCollection. However, anonymous styles are provided so that the
appearance of an individual split or column can be easily and directly customized without having to define a separate
named style.

The following analogy should help to clarify the distinction between named and anonymous styles. Consider a
Microsoft Word document that consists of several paragraphs based on the default normal style. Suppose that one of
the paragraphs is a quotation that needs to be indented and displayed in italics. If the document is part of a larger
work that contains several quotations, it makes sense to define a special style for that purpose and apply it to all
paragraphs that contain quotations. If the document is an early draft or is not likely to be updated, defining a style for
one paragraph is overkill, and it would be more convenient to apply indentation and italics to the quotation itself.

In this analogy, specifying paragraph attributes directly is akin to setting the members of a property that returns an
anonymous style. For example, to vertically center cell data within a particular grid column, modify the
VerticalAlignment member of the column's Style property in the C1DisplayColumnCollection Editor.

TrueDBGrid for WinForms 192

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note that modifying an anonymous style is just like modifying a named style. Expand the desired Style object node in
a property tree, and then select and edit one or more of its member properties.

Anonymous Style Inheritance
Just as one named style can inherit font, color, and formatting characteristics from another, an anonymous style in a
Split object can inherit from its counterpart in the containing C1TrueDBGrid control. Similarly, an anonymous style in a
C1DisplayColumn object can inherit from its counterpart in the containing Split object. Since the C1TrueDBDropDown
control does not have a Splits collection, the anonymous styles of its C1DisplayColumn objects can inherit values from
the control itself.

When a grid is first created, its Style property inherits all of its attributes from the built-in Normal style, which controls
the appearance of all data cells. Any changes to the Normal style are propagated to all splits, and in turn to the
columns within each split. However, change the appearance of all data cells within a Split or C1DisplayColumn object
by modifying the members of its anonymous Style property.

Consider the following grid layout, which uses the default values of all built-in styles and contains two identical splits.

All of the subsequent examples use this layout as a starting point. For clarity, the examples use code to illustrate the
relationships between style properties and the grid's display; however, you can perform the same operations at design
time using the grid's collection editors.

Example 1 of 10: Inheriting from Containing Splits
Since the default values of all built-in styles are in effect, columns inherit from their containing splits, which in turn

TrueDBGrid for WinForms 193

Copyright © 2019 GrapeCity, Inc. All rights reserved.

inherit from the grid as a whole. Therefore, this statement affects not only data cells, but also all headers, footers, and
caption bars. This statement has the same visual effect as changing the Normal style directly using the C1TrueDBGrid
Style Editor; however, the built-in Normal style itself is not changed.

The following code inherits values from the containing splits:

To write code in Visual Basic

Visual Basic

Dim myfont As Font
myfont = New Font (Me.C1TrueDBGrid1.Styles("Normal").Font, FontStyle.Bold)
Me.C1TrueDBGrid1.Styles("Normal").Font = myfont

To write code in C#

C#

Font myfont;
myfont = new Font (this.c1TrueDBGrid1.Styles["Normal"].Font, FontStyle.Bold);
this.c1TrueDBGrid1.Styles["Normal"].Font = myfont;

Example 2 of 10: Affecting Only Data Cells in the First Split
In this example, only the data cells of the first split are affected. This is because the split caption, column headers, and
column footers inherit their fonts from the built-in styles Caption, Heading, and Footing, respectively.

The following code affects data cells only in the first split:

To write code in Visual Basic

Visual Basic

Dim myfont As Font
myfont = New Font (Me.C1TrueDBGrid1.Splits(0).Style.Font, FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).Style.Font = myfont

To write code in C#

C#

TrueDBGrid for WinForms 194

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Font myfont;
myfont = new Font (this.c1TrueDBGrid1.Splits[0].Style.Font, FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].Style.Font = myfont;

Example 3 of 10: Affecting All Elements Only in the First
Split
This example extends the previous one to render all elements of the first split in bold. In addition to the Style
property, it is necessary to set the CaptionStyle, HeadingStyle, and FooterStyle properties.

The following code affects all elements only in the first split:

To write code in Visual Basic

Visual Basic

Dim myfont As Font
Dim myfont1 As Font
Dim myfont2 As Font
Dim myfont3 As Font

myfont = New Font (Me.C1TrueDBGrid1.Splits(0).Style.Font, FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).Style.Font = myfont

myfont1 = New Font (Me.C1TrueDBGrid1.Splits(0).CaptionStyle.Font, FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).CaptionStyle.Font = myfont1

myfont2 = New Font (Me.C1TrueDBGrid1.Splits(0).HeadingStyle.Font, FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).HeadingStyle.Font = myfont2

myfont3 = New Font (Me.C1TrueDBGrid1.Splits(0).FooterStyle.Font, FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).FooterStyle.Font = myfont3

To write code in C#

C#

Font myfont;
Font myfont1;
Font myfont2;
Font myfont3;

myfont = new Font (this.c1TrueDBGrid1.Splits[0].Style.Font, FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].Style.Font = myfont;

TrueDBGrid for WinForms 195

Copyright © 2019 GrapeCity, Inc. All rights reserved.

myfont1 = new Font (this.c1TrueDBGrid1.Splits[0].CaptionStyle.Font, FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].CaptionStyle.Font = myfont1;

myfont2 = new Font (this.c1TrueDBGrid1.Splits[0].HeadingStyle.Font, FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].HeadingStyle.Font = myfont2;

myfont3 = new Font (this.c1TrueDBGrid1.Splits[0].FooterStyle.Font, FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].FooterStyle.Font = myfont3;

Example 4 of 10: Affecting Only Data Cells in the First
Column of the First Split
In this example, only the data cells of the first column of the first split are affected. This is because the column headers
and column footers inherit their fonts from the built-in styles Heading and Footing, respectively.

The following code affects data cells only in the first column of the first split:

To write code in Visual Basic

Visual Basic

Dim myfont As Font
myfont = New Font (Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Style.Font,
FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Style.Font = myfont

To write code in C#

C#

Font myfont;
myfont = new Font (this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Style.Font,
FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Style.Font = myfont;

Example 5 of 10: Affecting All Elements Only in the First
Column of the First Split
This example extends the previous one to render all elements of the first column of the first split in bold. In addition
to the Style property, it is necessary to set the HeadingStyle and FooterStyle properties.

TrueDBGrid for WinForms 196

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The following code affects all elements only in the first column of the first split:

To write code in Visual Basic

Visual Basic

Dim myfont As Font
Dim myfont1 As Font
Dim myfont2 As Font

myfont = New Font (Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Style.Font,
FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Style.Font = myfont

myfont1 = New Font (Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).HeadingStyle.Font,
FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).HeadingStyle.Font = myfont1

myfont2 = New Font (Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).FooterStyle.Font,
FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).FooterStyle.Font = myfont2

To write code in C#

C#

Font myfont;
Font myfont1;
Font myfont2;

myfont = new Font (this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Style.Font,
FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Style.Font = myfont;

myfont1 = new Font (this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].HeadingStyle.Font,
FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].HeadingStyle.Font = myfont1;

myfont2 = new Font (this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].FooterStyle.Font,
FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].FooterStyle.Font = myfont2;

Example 6 of 10: Changing the BackColor of the Style
Property

TrueDBGrid for WinForms 197

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In the first example, setting the Font member of the grid's Style property affected the entire grid, including each
caption bar, column header, and column footer. However, the same is not true of the BackColor and ForeColor
properties. Since the built-in Caption, Heading, and Footing styles override both of these properties, only the data
cells of the grid are displayed with a lavender background.

The following code changes the font member of the Style property:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Style.BackColor = System.Drawing.Color.Lavender

To write code in C#

C#

this.c1TrueDBGrid1.Style.BackColor = System.Drawing.Color.Lavender;

Example 7 of 10: Changing Only the Data Cells in the First
Split
In this example, only the data cells of the first split are affected. This is because the split caption, column headers, and
column footers inherit their background colors from the built-in styles Caption, Heading, and Footing, respectively.

The following code changes the data cells in only the first split:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).Style.BackColor = System.Drawing.Color.Lavender

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].Style.BackColor = System.Drawing.Color.Lavender;

TrueDBGrid for WinForms 198

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Example 8 of 10: Changing Only the Data Cells in the First
Column of the First Split
In this example, only the data cells of the first column of the first split are affected. This is because the column headers
and column footers inherit their background colors from the built-in styles Heading and Footing, respectively.

The following code changes the data cells in only the first column of the first split:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Style.BackColor =
System.Drawing.Color.Lavender

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumnsp[0].Style.BackColor =
System.Drawing.Color.Lavender;

Example 9 of 10: Setting the Alignment of
C1DisplayColumn Objects
Setting the HorizontalAlignment property of a C1DisplayColumn object affects not only its data cells, but also its
header and footer. The reason for this is that the default setting of the HorizontalAlignment property for the built-in
Heading and Footing styles, which is inherited from the Normal style, is set to AlignHorzEnum.General. For data cells,
the general setting means that the underlying data type determines whether the cell text is left, center, or right
aligned; for column headers and footers, the general setting means that the column's data cell alignment should be
followed.

The following code sets the alignment of C1DisplayColumn objects:

To write code in Visual Basic

Visual Basic

TrueDBGrid for WinForms 199

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Style.HorizontalAlignment =
C1.Win.C1TrueDBGrid.AlignHorzEnum.Center

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Style.HorizontalAlignment =
C1.Win.C1TrueDBGrid.AlignHorzEnum.Center;

Example 10 of 10: Setting the Alignment for Column
Headers
This example illustrates the distinction between general and specific alignment for column headers and footers. If the
HorizontalAlignment member of the HeadingStyle (or FooterStyle) property is not set to AlignHorzEnum.General,
then the header (or footer) is aligned independently of the data cells.

The following code sets the alignment for column headers:

To write code in Visual Basic

Visual Basic

With Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0)
 .HeadingStyle.HorizontalAlignment = C1.Win.C1TrueDBGrid.AlignHorzEnum.Near
 .FooterStyle.HorizontalAlignment = C1.Win.C1TrueDBGrid.AlignHorzEnum.Far
 .Style.HorizontalAlignment = C1.Win.C1TrueDBGrid.AlignHorzEnum.Center
End With

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].HeadingStyle.HorizontalAlignment =
C1.Win.C1TrueDBGrid.AlignHorzEnum.Near;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].FooterStyle.HorizontalAlignment =
C1.Win.C1TrueDBGrid.AlignHorzEnum.Far;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Style.HorizontalAlignment =
C1.Win.C1TrueDBGrid.AlignHorzEnum.Center;

Applying Styles to Cells
True DBGrid for WinForms provides three ways to control the display characteristics of individual cells:

TrueDBGrid for WinForms 200

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Control Description

By Status Each grid cell has a cell status that identifies its disposition (any
combination of current, modified, part of a selected row, or part of
a highlighted row). Using the AddCellStyle method, set style
attributes that apply to any possible combination of cell status
values.

By Contents Specify a pattern (called a regular expression) that is used to
perform pattern matching on cell contents. When the contents
match the pattern supplied in the AddRegexCellStyle method, True
DBGrid for WinForms will automatically apply pre-selected style
attributes to the cell.

By Custom Criteria Using the FetchCellStyle (or FetchRowStyle) event, make decisions
about cell colors and fonts each time a cell (or row) is displayed.

Use Style objects defined at design time as arguments to the AddCellStyle and AddRegexCellStyle methods. Or, create
a temporary style in code and use it to specify one or more attributes.

The FetchCellStyle and FetchRowStyle events pass a temporary Style object as the final parameter. By setting its
properties, control the appearance of the cell specified by the other event parameters.

In True DBGrid for WinForms, per-cell font and color control can only be achieved by writing code. However, by
creating styles at design time, this code is kept to a minimum. To learn how to create named styles at design time, see
Using the C1TrueDBGrid Style Editor.

Specifying Cell Status Values
C1TrueDBGrid recognizes 16 distinct cell status values that are used in code to indicate the disposition of a cell. A cell
status value is a combination of four separate conditions. These conditions are enumerations which have the flag
attribute, which means that they can be combined with the Or operator:

Condition Description

Current Cell The cell is the current cell as specified by the Bookmark, Col, and
SplitIndex properties. At any given time, only one cell can have this
status. When the floating editor MarqueeStyle property setting is in
effect, this condition is ignored.

Marquee Row The cell is part of a highlighted row marquee. When the MarqueeStyle
property indicates that the entire current row is to be highlighted, all
visible cells in the current row have this additional condition set.

Updated Cell The cell contents have been modified by the user but not yet written to
the database. This condition is also set when cell contents have been
modified in code with the Text or Value properties.

Selected Row The cell is part of a row selected by the user or in code. The
SelectedRowCollection contains a bookmark for each selected row.

True DBGrid for WinForms defines the following constants corresponding to these cell conditions:

Constant Description

CellStyleFlag.CurrentCell Applies to the current cell.

TrueDBGrid for WinForms 201

Copyright © 2019 GrapeCity, Inc. All rights reserved.

CellStyleFlag.MarqueeRow Applies to cells in a highlighted row marquee.

CellStyleFlag.UpdatedCell Applies to cells that have been modified.

CellStyleFlag.SelectedRow Applies to cells in a selected row.

True DBGrid for WinForms also defines the following constants, which are not meant to be combined with those
listed earlier:

Constant Description

CellStyleFlag.AllCells Applies to all cells.

CellStyleFlag.NormalCell Applies to cells without status conditions.

Use CellStyleFlag.AllCells to refer to all cells regardless of status. Use CellStyleFlag.NormalCell to refer to only those
cells without any of the four basic cell conditions described earlier.

Applying Cell Styles by Status
Each cell in the True DBGrid for WinForms display has a status value which identifies its disposition (any
combination of current, modified, part of a selected row, or part of a highlighted row). Using the AddCellStyle
method, set style attributes that apply to any possible combination of cell status values. The AddCellStyle method is
supported by the C1TrueDBGrid, C1TrueDBDropDown, Split, and C1DisplayColumn objects, enabling the range of cells
for which certain conditions apply to be controlled.

For each unique status combination, you can set the color, font, and picture attributes to be used for cells of that
status. When a cell's status changes, True DBGrid for WinForms checks to see if any style property overrides are
defined for that cell, and applies those attributes to the cell when it is displayed. Style objects are used to specify the
color and font for a cell, as in the following example:

To write code in Visual Basic

Visual Basic

Dim S As New C1.Win.C1TrueDBGrid.Style()
Dim myfont As Font

myfont = New Font(S.Font, FontStyle.Bold)
S.Font = myfont
S.ForeColor = System.Drawing.Color.Red
Me.C1TrueDBGrid1.AddCellStyle (C1.Win.C1TrueDBGrid.CellStyleFlag.CurrentCell, S)

To write code in C#

C#

C1TrueDBGrid.Style S = new C1.Win.C1TrueDBGrid.Style();
Font myfont;

myfont = new Font(S.Font, FontStyle.Bold);
S.Font = myfont;
S.ForeColor = System.Drawing.Color.Red;
this.c1TrueDBGrid1.AddCellStyle(C1.Win.C1TrueDBGrid.CellStyleFlag.CurrentCell, S);

Here, a new temporary style object is created to specify the color and font overrides (red text, bold) to be applied to

TrueDBGrid for WinForms 202

Copyright © 2019 GrapeCity, Inc. All rights reserved.

the current cell throughout the entire grid. Since the style object's BackColor property is not set explicitly, the
background color of the current cell is not changed.

Also use styles defined at design time as arguments to the AddCellStyle method:

To write code in Visual Basic

Visual Basic

Dim S As C1.Win.C1TrueDBGrid.Style
S = Me.C1TrueDBGrid1.Styles("RedBold")
Me.C1TrueDBGrid1.AddCellStyle(C1.Win.C1TrueDBGrid.CellStyleFlag.CurrentCell, S)

To write code in C#

C#

C1.Win.C1TrueDBGrid.Style S;
S = this.c1TrueDBGrid1.Styles("RedBold")
this.c1TrueDBGrid1.AddCellStyle(C1.Win.C1TrueDBGrid.CellStyleFlag.CurrentCell, S);

The preceding example can be simplified since the AddCellStyle method accepts a style name as well as an actual
style object:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AddCellStyle(C1.Win.C1TrueDBGrid.CellStyleFlag.CurrentCell,
"RedBold")

To write code in C#

C#

this.c1TrueDBGrid1.AddCellStyle(C1.Win.C1TrueDBGrid.CellStyleFlag.CurrentCell,
"RedBold");

All of the preceding examples cause the text of the current cell to appear in red and bold. However, it is important to
note that the status CellStyleFlag.CurrentCell applies only to cells that have only this status. Thus, cells that are current
but also updated (CellStyleFlag.CurrentCell+CellStyleFlag.UpdatedCell) will not be displayed in red and bold unless
the following statement is executed:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AddCellStyle(C1.Win.C1TrueDBGrid.CellStyleFlag.CurrentCell +

TrueDBGrid for WinForms 203

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1.Win.C1TrueDBGrid.CellStyleFlag.UpdatedCell, Me.C1TrueDBGrid1.Styles("RedBold"))

To write code in C#

C#

this.c1TrueDBGrid1.AddCellStyle(C1.Win.C1TrueDBGrid.CellStyleFlag.CurrentCell |
C1.Win.C1TrueDBGrid.CellStyleFlag.UpdatedCell, this.c1TrueDBGrid1.Styles["RedBold"]);

Note: The current cell status is only honored when the MarqueeStyle property is not set to
MarqueeEnum.FloatingEditor. The floating editor marquee always uses the system highlight colors as
determined by Control Panel settings.

Although this method of specifying cell conditions offers more control and flexibility, it also requires that additional
code be written for some common cases.

Calls to AddCellStyle take effect immediately, and can be used for interactive effects as well as overall grid
characteristics.

Applying Cell Styles by Contents
True DBGrid for WinForms can automatically apply colors and fonts to particular cells, based upon their displayed
contents. To do so, provide a pattern, called a regular expression that the grid tests against the displayed value of each
cell. Using the AddRegexCellStyle method, associate a regular expression with a set of style attributes, and then apply
them to any possible combination of cell status values. The AddRegexCellStyle method is supported by the
C1TrueDBGrid, C1TrueDBDropDown, Split, and C1DisplayColumn objects, allowing the range of cells for which certain
conditions apply to be controlled.

The AddRegexCellStyle method is similar to the AddCellStyle method, but it requires an additional argument for the
regular expression string. As with AddCellStyle, use either temporary or named styles. The following example uses a
temporary style to display all cells in the first column that contain the string "Windows" in bold:

To write code in Visual Basic

Visual Basic

Dim S As New C1.Win.C1TrueDBGrid.Style()
Dim myfont As Font

myfont = New Font(S.Font, FontStyle.Bold)
S.Font = myfont
Me.C1TrueDBGrid1.AddRegexCellStyle (C1.Win.C1TrueDBGrid.CellStyleFlag.AllCells, S,
"Computer")

To write code in C#

C#

C1TrueDBGrid.Style S = new C1.Win.C1TrueDBGrid.Style();
Font myfont;

myfont = new Font(S.Font, FontStyle.Bold);
S.Font = myfont;
this.c1TrueDBGrid1.AddRegexCellStyle (C1.Win.C1TrueDBGrid.CellStyleFlag.AllCells, S,
"Computer");

TrueDBGrid for WinForms 204

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This feature allows the implementation of "visual queries" that attach distinctive font or color attributes to cells that
match a certain pattern.

Applying Cell Styles by Custom Criteria
For cases where regular expressions are insufficient to express formatting requirements, use the FetchCellStyle event
to customize fonts and colors on a per-cell basis. This event will only be fired for columns that have the FetchStyle
property set to True.

For example, provide color coding for values that fall within a certain range. The following code assumes that the
FetchStyle property is True for a single column of numeric data, and handles the FetchCellStyle event to display values
greater than 1000 in blue:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FetchCellStyle(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchCellStyleEventArgs) Handles C1TrueDBGrid1.FetchCellSTyle
 Dim N As Integer
 N = Val(Me.C1TrueDBGrid1(e.Row, e.Col)
 If N > 1000 Then
 e.CellStyle.ForeColor = System.Drawing.Color.Blue
 End If
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_FetchCellStyle(object sender,
C1.Win.C1TrueDBGrid.FetchCellStyleEventArgs e)
{
 int N;
 N = (int) this.c1TrueDBGrid1[e.Row, e.Col];
 if (N > 1000)
 {
 e.CellStyle.ForeColor = System.Drawing.Color.Blue;
 }
}

The Split, Row, and Colproperties identify which cell the grid is displaying. The CellStyleproperty conveys formatting

TrueDBGrid for WinForms 205

Copyright © 2019 GrapeCity, Inc. All rights reserved.

information from the application to the grid. Since the CellStyleproperty is a Style object, a cell's font characteristics
can also be changed in the FetchCellStyle event:

To write code in Visual Basic

Visual Basic

If N > 1000 Then
 e.CellStyle.Font.Italic = True
Dim myfont As Font
myfont = New Font (e.CellStyle.Font, FontStyle.Italic)
If N > 1000 Then
 e.CellStyle.Font = myfont

To write code in C#

C#

if (N > 1000)
{
 e.CellStyle.Font.Italic = true
}
Font myfont;
myfont = new Font (e.CellStyle.Font, FontStyle.Italic);
if (N > 1000)
{
 e.CellStyle.Font = myfont;
}

The FetchCellStyle event can also be used to apply formatting to one cell based upon the values of other cells, or even
other controls. For example, suppose that you want to:

Make the cell text red in column 4 if column 1 minus column 2 is negative.
Make the cell text bold in column 7 if it matches the contents of a text box.

In this case, set the FetchStyle property to True for columns 4 and 7, and handle the FetchCellStyle event as follows:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FetchCellStyle(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchCellStyleEventArgs) Handles C1TrueDBGrid1.FetchCellStyle
 Select Case e.Col
 Case 4
 Dim Col1 As Long, Col2 As Long
 Col1 = CLng(Me.C1TrueDBGrid1(e.Row, 1))
 Col2 = CLng(Me.C1TrueDBGrid1(e.Row, 2))
 If Col1 - Col2 < 0 Then
 CellStyle.ForeColor = System.Drawing.Color.Red
 Case 7
 Dim S As String
 S = Me.C1TrueDBGrid1(e.Row, 7).ToString()
 If S = TextBox1.Text Then
 Dim myfont = New Font(CellStyle.Font, FontStyle.Bold)

TrueDBGrid for WinForms 206

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 CellStyle.Font = myfont
 End If
 Case Else
 Debug.WriteLine ("FetchCellStyle not handled: " & e.Col)
 End Select
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_FetchCellStyle(object sender,
C1.Win.C1TrueDBGrid.FetchCellStyleEventArgs e)
{
 switch (e.Col)
 {
 case 4:
 long Col1, long Col2;
 Col1 = (long)this.c1TrueDBGrid1[e.Row, 1];
 Col2 = (long)this.c1TrueDBGrid1[e.Row, 2];
 if (Col1 - Col2 < 0)
 CellStyle.ForeColor = System.Drawing.Color.Red
 break;
 case 7:
 string S;
 S = this.c1TrueDBGrid1[e.Row, 7].ToString();
 if (S == TextBox1.Text)
 {
 Font myfont = new Font(CellStyle.Font, FontStyle.Bold);
 CellStyle.Font = myfont;
 }
 break;
 default:
 Console.WriteLine ("FetchCellStyle not handled: " + e.Col);
 }
}

For efficiency reasons, only set FetchStyle to True for columns that you plan to handle in the FetchCellStyle event.

Note: The preceding examples use the CellText method for simplicity. However, the CellText and CellValue
methods always create and destroy an internal clone of the dataset each time they are called, which may make
them too inefficient to use in the FetchCellStyle event. To improve the performance of the grid's display cycle,
try an unbound application. Unbound applications can access the underlying data source directly, which is
generally faster than calling CellText or CellValue.

To customize fonts and colors on a per-row instead of a per-cell basis, use the FetchRowStyle event, which will only be
fired once per row for grids that have the FetchRowStyles property set to True. The syntax for this event is as follows:

To write code in Visual Basic

Visual Basic

Private Sub TDBGrid1_FetchRowStyle(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchRowStyleEventArgs) Handles C1TrueDBGrid1.FetchRowStyle

TrueDBGrid for WinForms 207

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

private void TDBGrid1_FetchRowStyle(object sender,
C1.Win.C1TrueDBGrid.FetchRowStyleEventArgs e)

Although the FetchRowStyle event can be used to implement an alternating row color scheme, an easier and more
efficient way to accomplish the same task would be to use the AlternatingRows property, together with the built-in
EvenRow and OddRow styles.

Cell Style Evaluation Order
The following list defines the order in which cell styles are applied relative to the anonymous styles of a grid, split, or
column:

1. Style property, C1TrueDBGrid control. The default named parent of this anonymous style is Normal.
2. Style property, Split object. By default, this anonymous style inherits from its C1TrueDBGrid control

counterpart.
3. EvenRowStyle and OddRowStyle properties, Split object. By default, these anonymous styles inherit from their

C1TrueDBGrid control counterparts, which in turn have default named parents of EvenRow and OddRow. These
properties apply only if the AlternatingRows property is True.

4. Style property, C1DisplayColumn object. By default, this anonymous style inherits from its Split object
counterpart.

5. FetchRowStyle event. This event fires only if the FetchRowStyles property is True for a grid or split.
6. SelectedStyle property, Split object. By default, this anonymous style inherits from its C1TrueDBGrid control

counterpart, which in turn has a default named parent of Selected. This property applies only to selected rows;
that is, rows whose bookmarks have been added to the SelectedRowCollection through code or user
interaction.

7. HighlightRowStyle property, Split object. By default, this anonymous style inherits from its C1TrueDBGrid
control counterpart, which in turn has a default named parent of HighlightRow. This property applies only to
highlighted rows, the current row in a grid or split whose MarqueeStyle property is set to
MarqueeEnum.HighlightRow or MarqueeEnum.HighlightRowRaiseCell.

8. AddCellStyle and AddRegexCellStyle methods, if called. Cell styles specified at the C1DisplayColumn object
level have the highest priority, followed by those specified at the Split object and C1TrueDBGrid control levels.
Within an object level, cell styles are tested in the order in which they were added in code. Cell styles do not
inherit from one another; as soon as a match is found, testing stops.

9. FetchCellStyle event. This event fires only if the FetchStyle property is True for a C1DisplayColumn object.

Thus, you always have final control over the rendering of a cell via the FetchCellStyle event.

Applying Pictures to Grid Elements
In earlier versions of True DBGrid for WinForms, styles were used to specify font, color, and alignment attributes.
This version extends the concept of styles to include background and foreground pictures, enabling adornments to be
added to headers, footers, and caption bars, specify a background pattern for data cells, and render picture data in
cells without having to populate a ValueItems object. The following properties of the Style object determine how
pictures are displayed:

Property Description

BackgroundImage Sets/returns a style's background picture.

TrueDBGrid for WinForms 208

Copyright © 2019 GrapeCity, Inc. All rights reserved.

BackgroundPictureDrawMode Controls how a style's background picture is displayed.

ForegroundImage Sets/returns a style's foreground picture.

ForeGroundPicturePosition Controls how a style's foreground picture is positioned.

Since picture properties follow the same inheritance rules as other style attributes, any technique described earlier in
this chapter also works with pictures. This means that pictures can be attached to a grid element using any of the
following methods:

Setting the BackgroundImage or ForegroundImage property of a built-in named style in the designer or in
code.
Setting the BackgroundImage or ForegroundImage property of an anonymous style in the designer or in code.
Calling the AddCellStyle or AddRegexCellStyle method.
Writing a handler for the FetchCellStyle or FetchRowStyle event.

Displaying Background Pictures
Use background pictures to customize static grid elements such as caption bars, column headers, and column footers.
For example, the following code applies a colored gradient bitmap to the BackgroundImage member of the Style
object returned by the grid's CaptionStyle property:

To write code in Visual Basic

Visual Basic

With Me.C1TrueDBGrid1.CaptionStyle
 .BackgroundImage = System.Drawing.Image.FromFile("c:\bubbles.bmp")
 .BackgroundPictureDrawMode =
C1.Win.C1TrueDBGrid.BackgroundPictureDrawModeEnum.Tile
 .ForeColor = System.Drawing.Color.White
 .Font = New Font(.Font, FontStyle.Bold)
End With

To write code in C#

C#

this.c1TrueDBGrid1.CaptionStyle.BackgroundImage =
System.Drawing.Image.FromFile(@"c:\bubbles.bmp");
this.c1TrueDBGrid.BackgroundPictureDrawMode =
C1.Win.C1TrueDBGrid.BackgroundPictureDrawModeEnum.Tile;
this.c1TrueDBGrid1.CaptionStyle.ForeColor = System.Drawing.Color.White;
this.c1TrueDBGrid1.CaptionStyle.Font = new Font(this.c1TrueDBGrid1.CaptionStyle.Font,
FontStyle.Bold);

This code also adjusts the color of the caption text and makes it bold, producing the following display.

TrueDBGrid for WinForms 209

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Achieve the same effect at design time by editing either the built-in Caption style in the C1TrueDBGrid Style Editor,
or the members of the CaptionStyle property in the Properties window.

By default, background pictures are centered within the associated grid element. Depending upon the height of the
background bitmap, adjust the value of the BackgroundPictureDrawMode property to ensure that the entire area is
filled. This property determines whether the picture is centered, tiled, or stretched to fit the entire area, as shown in
the following table.

Center Tile Stretch

Also use background pictures within data cells to produce interesting visual effects. For example, the following
patterns were designed to be replicated in adjacent rows.

By eliminating the record selector column, the dividing lines between data rows, and the column header dividers,
these patterns can be used to produce the following display.

TrueDBGrid for WinForms 210

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The trick is to insert an empty unbound column on the left to display the binder rings, as the following code sample
demonstrates:

To write code in Visual Basic

Visual Basic

' Give the grid a flat appearance and remove its record selectors, row dividers, and
scroll bars.
With Me.C1TrueDBGrid1
 .InactiveStyle.ForeColor = System.Drawing.Color.White
 .RecordSelectors = False
 .RowDivider.Style = LineStyleEnum.None
 .RowHeight = 16
 .HScrollBar.Style = ScrollBarStyleEnum.None
 .VScrolBar.Style = ScrollBarStyleEnum.None
 .MarqueeStyle = MarqueeEnum.NoMarquee
End With

' Set the background pattern to be used by data cells in the default split (so as not
to disturb the Normal style).
With Me.C1TrueDBGrid1.Splits(0).Style
 .BackgroundImage = System.Drawing.Image.FromFile("paper.bmp")
 .BackgroundPictureDrawMode = BackgroundPictureDrawModeEnum.Tile
End With

' Create an empty unbound column on the left to hold the binder rings. Remove its
dividing lines and set the BackroundBitmap property of its Style object.
Dim col as New C1TrueDBGrid.C1DataColumn()
Me.C1TrueDBGrid.Columns.InsertAt(0, col) Dim C As C1TrueDBGrid.C1DisplayColumn
C = Me.C1TrueDBGrid1.Splits(0).DisplayColumns(col)
With C
 .Width = 48
 .Visible = True
 .Style.BackgroundImage = System.Drawing.Image.FromFile("rings.bmp")
 .HeaderDivider = False
 .ColumnDivider.Style = LineStyleEnum.None

TrueDBGrid for WinForms 211

Copyright © 2019 GrapeCity, Inc. All rights reserved.

End With

' Scroll the unbound column into view.
Me.C1TrueDBGrid1.Col = 0

' Resize the Title column and remove its header dividers.
Set C = Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Title")
With C
 .Width = 380
 .HeaderDivider = False
End With

' Use a small corner of the binder ring bitmap as the background of the column
headers, and adjust the font and text color accordingly.
Dim myfont As Font
With Me.C1TrueDBGrid1.HeadingStyle
 .BackgroundImage = System.Drawing.Image.FromFile("corner.bmp")
 .BackgroundPictureDrawMode = BackgroundPictureDrawModeEnum.Tile
 myfont = New Font(.Font, 10, FontStyle.Bold)
 .Font = myfont
 .ForeColor = System.Drawing.Color.White
End With

To write code in C#

C#

// Give the grid a flat appearance and remove its record selectors, row dividers, and
scroll bars. Assume that the ScaleMode of the containing form is in pixels.
this.c1TrueDBGrid1.InactiveStyle.ForeColor = System.Drawing.Color.White;
this.c1TrueDBGrid1.RecordSelectors = false;
this.c1TrueDBGrid1.RowDivider.Style = LineStyleEnum.None;
this.c1TrueDBGrid1.RowHeight = 16;
this.c1TrueDBGrid1.HScrollBar.Style = ScrollBarStyleEnum.None;
this.c1TrueDBGrid1.VScrolBar.Style = ScrollBarStyleEnum.None;
this.c1TrueDBGrid1.MarqueeStyle = MarqueeEnum.NoMarquee;

// Set the background pattern to be used by data cells in the default split (so as
not to disturb the Normal style).
this.c1TrueDBGrid1.Splits[0].Style.BackgroundImage =
System.Drawing.Image.FromFile("paper.bmp");
this.c1TrueDBGrid1.Splits[0].Style.BackgroundPictureDrawMode =
BackgroundPictureDrawModeEnum.Tile;

// Create an empty unbound column on the left to hold the binder rings. Remove its
dividing lines and set the BackroundBitmap property of its Style object.
C1TrueDBGrid.C1DataColumn col = new C1TrueDBGrid.C1DataColumn();
this.C1TrueDBGrid.Columns.InsertAt(0, col);
C1TrueDBGrid.C1DisplayColumn C = this.c1TrueDBGrid1.Splits[0].DisplayColumns[col];
 C.Width = 48;
C.Visible = true;
C.Style.BackgroundImage = System.Drawing.Image.FromFile["rings.bmp"];

TrueDBGrid for WinForms 212

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C.HeaderDivider = false;
 C.ColumnDivider.Style = LineStyleEnum.None;

// Scroll the unbound column into view.
this.c1TrueDBGrid1.Col = 0;

// Resize the Title column and remove its header dividers.
C = this.c1TrueDBGrid1.Splits[0].DisplayColumns["Title"];
C.Width = 380;
C.HeaderDivider = false;

// Use a small corner of the binder ring bitmap as the background of the column
headers, and adjust the font and text color accordingly.
Font myfont;
this.c1TrueDBGrid1.HeadingStyle.BackgroundImage =
System.Drawing.Image.FromFile("corner.bmp");
this.c1TrueDBGrid1.HeadingStyle.BackgroundPictureDrawMode =
BackgroundPictureDrawModeEnum.Tile;
myfont = new Font(.Font, 10, FontStyle.Bold);
this.c1TrueDBGrid1.HeadingStyle.Font = myfont;
this.c1TrueDBGrid1.HeadingStyle.ForeColor = System.Drawing.Color.White;

Displaying Foreground Pictures
Use foreground pictures to add visual cues to static grid elements such as caption bars, column headers, and column
footers. Foreground Pictures are specified by the ForegroundImage property of the Style. Foreground pictures can be
displayed beside some text or in place of it, but cannot be displayed over text.

Foreground pictures have the ForeGroundPicturePosition property, which specifies where a foreground picture is
situated in comparison to the cell text. The values and their representations are displayed as follows:

Position Display

Near

Far

LeftOfText

RightOfText

TopOfText

TrueDBGrid for WinForms 213

Copyright © 2019 GrapeCity, Inc. All rights reserved.

BottomOfText

PictureOnly

TextOnly

TrueDBGrid for WinForms 214

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Cell Editing Techniques
This section explains how to customize the behavior of cell editing in True DBGrid for WinForms. For text entry
fields, write code in the grid's editing events, specify an input mask template, or display a drop-down text editor for
long strings. To provide a list of choices for the user, use the ValueItemCollection object, the C1TrueDBDropDown
control, or even an arbitrary intrinsic or third-party control.

How Cell Editing Works
True DBGrid for WinForms provides many features for customizing and controlling in-cell editing. The grid's default
editing behavior depends on the setting of the MarqueeStyle property. If the floating editor marquee style is used, the
editing behavior differs from that of other marquee styles. The following sections summarize True DBGrid for
WinForms' editing behavior and state any exceptions that arise when using the floating editor.

For more information on the MarqueeStyle property, see Highlighting the Current Row or Cell.

Initiating Cell Editing
A cell is either in display or edit mode. The EditActive property sets and returns the desired mode. Place the current
cell in edit mode by setting EditActive to True, or end editing by setting it to False. The user may enter edit mode by
clicking once on the current cell or by pressing the F2 key. A blinking text cursor (caret) will appear in the cell—at the
beginning of the text when the cell is clicked and at the end when the F2 key is used. The BeforeColEdit event will be
triggered when the cell enters edit mode. The EditActive property is True when the cell is in edit mode.

Floating Editor Differences: A blinking caret already exists at the beginning of the cell highlight even when in display
mode. To enter edit mode, the user can click on any character location within the cell text to specify the text insertion
point. The BeforeColEdit event is not triggered and the EditActive property is False until the user has made changes to
the cell text.

Color and Wordwrap
In edit mode, the cell color is determined by the ForeColor and BackColor properties of the EditorStyle style object.
The text being edited will wordwrap, regardless of the setting of the column style's WrapText property. If the text is
too big to fit into the cell, a built-in drop-down edit control will automatically appear. For more information, see
Working with Text.

Floating Editor Differences: In edit mode, the text highlight disappears, and the cell color is the same as the normal cell
color. The text being edited is wrapped only if the column style's WrapText property is True. The built-in drop-down
edit control is not available.

Determining Modification Status
While editing is in progress, inspect the DataChanged property of the grid to determine whether the user has made
any changes to the current row.

Set the grid's DataChanged property to False to exit editing, discard all changes to the current row, and refresh the
current row display from the data source.

The icon in the record selector column of the current row reflects the status of the grid's DataChanged property. If
DataChanged is False, a triangle-shaped arrow will be shown in the record selector column. If DataChanged is True, a
pencil icon will appear instead.

TrueDBGrid for WinForms 215

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Determining Cell Contents
While editing is in progress, the column's Text and Value properties contain the text the user currently sees in the
modified row. Whenever the user presses a key, the Change event fires to notify the application that the user has just
modified the current cell. However, the Change event does not mean the user is finished with the process, only that a
single change has been made and the grid is still in edit mode.

The Change event does not fire when the grid is not in edit mode, such as when the contents of a cell are changed
through code or when the user clicks a cell to cycle through ValueItem objects.

Terminating Cell Editing
The user completes the editing process by performing any of the following:

Pressing the ENTER key.
Pressing the ESC key.
Moving to another cell with the arrow keys, the TAB key, or the mouse.
Setting focus to another control on the form.

Handling Editing Events
The following sections describe the default editing behavior of True DBGrid for WinForms can be altered by
responding to its events.

Standard Keystroke Events
True DBGrid for WinForms supports the standard keystroke events contained in the .NET environment:

Event Description

KeyDown Fired when the user presses a key.

KeyPress Fired when the user presses an ANSI key.

KeyUp Fired when the user releases a key.

The KeyDown and KeyUp events trap all keys, including function keys, ALT and SHIFT keys, and numeric keypad keys.
The KeyPress event only traps letters and numbers, punctuation marks and symbols, and editing keys such as TAB,
ENTER, and BACKSPACE.

Use these events to restrict and modify user input as you would be done for any other intrinsic .NET control. For
example, the following KeyDown event handler prevents the user from entering non-alphanumeric characters:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_KeyPress(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyPressEventArgs) Handles C1TrueDBGrid1.KeyPress

 ' Cancel user key input if it is not a letter or a digit.
 If Not e.KeyChar.IsLetterOrDigit(e.KeyChar) Then
 e.Handled = True
 End If

TrueDBGrid for WinForms 216

Copyright © 2019 GrapeCity, Inc. All rights reserved.

End Sub

To write code in C#

C#

private void C1trueDBGrid1_KeyPress(object sender,
System.Windows.Forms.KeyPressEventArgs e)
{
 // Cancel user key input if it is not a letter or a digit.
 if (! e.Keychar.IsLetterOrDigit(e.KeyChar])
 {
 e.Handled = true ;
 }
}

For more information on these or any other native .NET events see MSDN or .NET help.

Column Editing Events
True DBGrid for WinForms provides full control over the cell editing process with the following events, listed in the
order in which they occur during a successful editing attempt:

Event Description

BeforeColEdit Fired upon an attempt to edit column data.

ColEdit Fired when the current cell enters edit mode.

AfterColEdit Fired after column data is edited.

Use the BeforeColEdit event to control the editability of cells on a per-cell basis, or to translate the initial keystroke into
a default value.

The ColEdit event signals that the current cell has entered edit mode; the AfterColEdit event signals that edit mode was
terminated. Use these two events to provide additional feedback while editing is in progress:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_ColEdit(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.ColEventArgs) Handles C1TrueDBGrid1.ColEdit
 Select Case e.Columns.DataColumn.Caption
 Case "Code"
 Me.Label1.Text = "Enter 4-digit company code"
 Case "Description"
 Me.Label1.Text = "Enter full company name"
 End Select
End Sub

Private Sub C1TrueDBGrid1_AfterColEdit (ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.ColEventArgs) Handles C1TrueDBGrid1.AfterColEdit

 ' Clear editing instructions.

TrueDBGrid for WinForms 217

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Me.Label1.Text = ""
End Sub

To write code in C#

C#

private void C1trueDBGrid1_ColEdit(object sender, C1.Win.C1TrueDBGrid.ColEventArgs e)
{
 switch(e.Columns.DataColumn.Caption)
 {
 Case "Code":
 this.Label1.Text = "Enter 4-digit company code";
 break;
 Case "Description";
 this.Label1.Text = "Enter full company name";
 break;
 }
}

private void C1TrueDBGrid1_AfterColEdit(object sender,
C1.Win.C1TrueDBGrid.ColEventArgs e)
}
 // Clear editing instructions.
 this.Label1.Text = "";
}

Changing Cell Contents with a Single Keystroke
You can use the BeforeColEdit event to customize the editing behavior of True DBGrid for WinForms controls.
BeforeColEdit is fired before any other editing events occur, which provides the opportunity to do virtually anything
desired before editing begins. For example, cancel the edit request and override the built-in text editor with your own
drop-down list box.

A True DBGrid for WinForms control enters edit mode in one of four ways:

If the user clicks on the current cell with the mouse, editing begins with the current cell contents.
If the user presses the F2 key, editing also begins using the current cell contents.
If the user begins typing, the typed character replaces the contents of the cell and editing begins.
You can set the EditActive property in your code to force editing to begin.

The BeforeColEdit event fires in the first three cases, but not in the last case, since True DBGrid for Winforms
assumes you will never want to cancel a request made from code.

To differentiate a user's edit request based upon whether he or she used the mouse or the keyboard to start editing,
set BeforeColEdit to KeyChar, which will be zero if the user clicked on the cell with the mouse, and will be an ASCII
character if the user typed a character to begin editing.

When BeforeColEdit is fired, the ASCII character has not yet been placed into the current cell, so if editing in
BeforeColEdit is cancelled, the ASCII key is discarded. This leads to an interesting technique.

Assume a Boolean field called Done exists, and its NumberFormat property is set to specify Yes/No as the display
format. Further assume that, when the user presses Y or N, the cell contents change immediately instead of entering
edit mode. This process is accomplished in BeforeColEdit as follows:

To write code in Visual Basic

TrueDBGrid for WinForms 218

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Private Sub C1TrueDBGrid1_BeforeColEdit(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.BeforeColEditEventArgs) Handles C1TrueDBGrid1.BeforeColEdit
 With Me.C1TrueDBGrid1.Columns(e.ColIndex)

 ' If this isn't the "Done" column, or if the user clicked with the mouse,
then simply continue.
 If .DataField <> "Done" Or e.KeyChar = Chr(0) Then Exit Sub

 ' Cancel normal editing and set the field to the proper result based upon
KeyChar. Beep if an invalid character was typed.
 e.Cancel = True
 Select Case UCase(e.KeyChar)
 Case "Y"
 .Value = -1
 Case "N"
 .Value = 0
 Case Else
 Beep()
 End Select
 End With
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_BeforeColEdit(object sender,
C1.Win.C1TrueDBGrid.BeforeColEditEventArgs e)
{
 C1.Win.C1DataColumn col = e.Column.DataColumn;

 // If this isn't the "Done" column, or if the user clicked with the mouse, then
simply continue.
 if (col.DataField != "Done" || e.KeyChar == 0) return;

 // Cancel normal editing and set the field to the proper result based upon
KeyChar. Beep if an invalid character was typed.
 e.Cancel = true;
 switch (e.KeyChar. .ToUpper())
 {
 case "Y";
 Col.Value = -1;
 break;
 case "N";
 Col.Value = 0;
 default:;
 Beep();
 }
}

TrueDBGrid for WinForms 219

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note that the event handler terminates when KeyChar is zero, so mouse editing is still permitted.

Working with Text
This section briefly describes the properties related to text editing.

Limiting the Size of Data Entry Fields
Use the DataWidth property of a C1DataColumn object to restrict the number of characters the user can enter. Setting
this property to zero imposes no limits.

Providing a Drop-Down Edit Control for Long Fields
Whenever the user attempts to edit cell text that is too big to fit within the cell, the grid will automatically activate a
multiple-line drop-down text editor. While editing, text in the drop-down edit control will be wrapped regardless of
the setting of the column style's WrapText property. The drop-down text editor can be turned off and editing can be
forced to occur within cell boundaries by setting the grid's EditDropDown property to False (the default is True). The
drop-down text editor is not available if the grid's MarqueeStyle property is set to MarqueeEnum.FloatingEditor. The
following code uses the grid's built-in column button feature to activate the drop-down edit control to modify the cell
data in the Comments column:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 With Me.C1TrueDBGrid1
 .MarqueeStyle = MarqueeEnum.SolidCellBorder
 .Splits(0).DisplayColumns("Comments").Button = True

 ' Redundant since default = True.
 .EditDropDown = True
 End With
End Sub

Private Sub C1TrueDBGrid1_ButtonClick(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.ColEventArgs) Handles C1TrueDBGrid1.ButtonClick
 ' Place the cell into edit mode.
 Me.C1TrueDBGrid1.EditActive = True
End Sub

To write code in C#

C#

private void Form1_Load(System.object sender, System.EventArgs e)
{
 C1TrueDBGrid1.MarqueeStyle = MarqueeEnum.SolidCellBorder;
 C1TrueDBGrid1.Splits[0].DisplayColumns["Comments"].Button = true;

TrueDBGrid for WinForms 220

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // Redundant since default = true.
 C1TrueDBGrid1.EditDropDown = true;
}

private void C1TrueDBGrid1_ButtonClick(object sender,
C1.Win.C1TrueDBGrid.ColEventArgs e)
{
 // Place the cell into edit mode.
 this.c1TrueDBGrid1.EditActive = true;
}

If the current cell is in the Comments column, initiate editing either by clicking on the current cell or by clicking the
built-in button.

Selecting and Replacing Text
True DBGrid for WinForms supports the standard text selection properties found in many TextBox type controls:

Property Description

SelectionLength Sets/returns the length of the selected text.

SelectionStart Sets/returns the start position of the selected text.

SelectedText Sets/returns the selected text.

Note: These properties are only effective when the grid is in edit mode, that is, when its EditActive property is
True.

Input Masking
Use the NumberFormat property to control the display format of column data. If users need to edit a formatted
column, it is desirable to maintain a consistent format during the editing process. True DBGrid for WinForms
provides an EditMask property that optionally works in concert with the NumberFormat property to ensure consistent
data entry.

Specifying an Input Mask for a Column
The EditMask property of the C1DataColumn object is used to specify an input mask template for end-user data entry.
The input mask string is composed of special characters that represent either an input character that the user must
enter or a literal character that will be skipped over on input. Valid template characters are as follows:

The EditMask must be a string composed of the following symbols:

1. Wildcards

0 digit

9 digit or space

digit or sign

L letter

? letter or space

TrueDBGrid for WinForms 221

Copyright © 2019 GrapeCity, Inc. All rights reserved.

A letter or digit

a letter, digit, or space

& any character

2. Localized characters

. localized decimal separator

, localized thousand separator

: localized time separator

/ localized date separator

3. Command characters

\ next character is taken as a literal

> translate letters to uppercase

< translate letters to lowercase

For example:

To write code in Visual Basic

Visual Basic

' Set the mask so the user can enter a phone number, with optional area code, and a
state in capitals.
Me.C1TrueDBGrid1.Columns(0).EditMask = "(###) 000-0000 St\ate\: >LL"

To write code in C#

C#

// Set the mask so the user can enter a phone number, with optional area code, and a
state in capitals.
this.c1TrueDBGrid1.Columns[0].EditMask = "(###) 000-0000 St\\ate\\: >LL";

Using an Input Mask for Formatting
Whereas the EditMask property is used to specify an input mask for data entry, the NumberFormat property is used to
specify the display format of data in a grid cell. If the NumberFormat property of the column is not specified, the grid
simply displays the cached text (stripped of literals) as is; if the NumberFormat property is specified, the grid sends the
cached text to the display formatter.

Since it is common for the input and display formats to be the same, the NumberFormat property has an Edit Mask
option. If this option is selected, then the EditMask property setting will be used for both data input and display.
However, the input and display formats need not be the same, so a NumberFormat option that differs from the
EditMask property can be selected.

Controlling How Masked Input is Updated
Normally, after the user finishes editing a cell in a column which has its EditMask property set, True DBGrid for
Winforms caches the modified cell text, but any literal characters in the input mask template will be stripped from the
modified cell text beforehand. However, this behavior can be overridden with the EditMaskUpdate property.

TrueDBGrid for WinForms 222

Copyright © 2019 GrapeCity, Inc. All rights reserved.

By default, the EditMaskUpdate property is False. This means that when the modified cell text is updated to the
database, the grid sends the cached text (stripped of literals), not the formatted text displayed in the cell. Override this
default behavior by setting the EditMaskUpdate property to True, which causes the cached text to be formatted
according to the EditMask property before being updated to the database.

Therefore, it is important to set EditMaskUpdate properly to ensure that the correct data is sent to the database for
update.

In-Cell Buttons
True DBGrid for WinForms supports a variety of in-cell button options for the current cell or for all cells within
specified columns. Use in-cell buttons to indicate that a list of choices is available, to perform a command associated
with the contents of the cell, or to display an arbitrary control or form for editing.

Enabling the In-Cell Button
To enable the in-cell button for a C1DisplayColumn object, set its Button property to True in code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Button = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Button = true;

The Button property is also enabled when the column's DropDown property is set to the name of a
C1TrueDBDropDown control, or when the Presentation property of the associated ValueItemCollection object is set to
one of the combo box options.

By default, the in-cell button displays only for the current cell, as shown in the following image:

However, by setting the column's ButtonAlways property to True, you can force the in-cell button to be displayed in
every row:

TrueDBGrid for WinForms 223

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Rendering Cells as Command Buttons
To render the current cell as a non-editable command button within a C1DisplayColumn object, set its ButtonText
property to True in code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).ButtonText = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].ButtonText = true;

When a cell within the column receives focus, it is rendered as a standard Windows command button using the cell
text as the caption. The cell text is not centered automatically, but respects the column's horizontal and vertical
alignment settings:

If both the Button and ButtonText properties are True, the ButtonText property takes precedence.

As with the default in-cell button, set the column's ButtonAlways property to True to force all of its cells to be
displayed as command buttons. Only the current cell is drawn with a focus rectangle, however:

TrueDBGrid for WinForms 224

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Detecting In-Cell Button Clicks
The ButtonClick event is provided so that code can respond when the user clicks the in-cell button. Its syntax is as
follows:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_ButtonClick(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.ColEventArgs) Handles C1TrueDBGrid1.ButtonClick

To write code in C#

C#

private void C1TrueDBGrid1_ButtonClick(object sender,
C1.Win.C1TrueDBGrid.ColEventArgs e)

In-cell buttons always fire this event when clicked, regardless of whether they were enabled by the Button or
ButtonText properties. An example of the ButtonClick event was presented earlier in the section Working with Text.

Customizing the In-Cell Button Bitmap
By default, True DBGrid for WinForms uses a down arrow for the in-cell button.

However, the button bitmap can be changed for a C1DisplayColumn object at design time by setting the
ButtonPicture property in code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns(0).ButtonPicture =
System.Drawing.Image.FromFile("dollar.bmp")

To write code in C#

C#

this.c1TrueDBGrid1.Columns[0].ButtonPicture =
System.Drawing.Image.FromFile("dollar.bmp");

The grid automatically draws the edges corresponding to the button's up/down states as appropriate, so only the

TrueDBGrid for WinForms 225

Copyright © 2019 GrapeCity, Inc. All rights reserved.

interior image of the button needs to be provided.

Drop-Down Controls
True DBGrid for WinForms offers a wide variety of built-in controls and programming constructs that enable you to
implement virtually any kind of drop-down cell editing interface. Use the ValueItems object and its collection of
ValueItem objects to provide a simple pick list, or the C1TrueDBDropDown control to implement a data-aware
multicolumn combo box. Arbitrary Visual Basic or third-party controls can be used to perform specialized editing
functions.

Using the Built-In Combo Box
The C1DataColumn object's ValueItems object optionally provides a built-in combo box interface that works in
concert with its automatic data translation features. By default, the Presentation property is set to
PresentationEnum.Normal, and the usual cell editing behavior is in effect for textual data. However, if the Presentation
property is set to either PresentationEnum.ComboBox or PresentationEnum.SortedComboBox, then cells in the
affected column display the in-cell button upon receiving focus. When the user clicks the in-cell button, a drop-down
combo box appears.

The drop-down combo box contains one item for each member of the ValueItemCollection object. If the collection's
Translate property is True, then the DisplayValue text is used for the combo box items; if it is False, then the Value
text is used.

True DBGrid for WinForms automatically sizes the drop-down combo box to fit the width of the column in which it
is displayed. The height of the combo box is determined by the number of items in the collection and the
MaxComboItems property. If the number of items is less than or equal to MaxComboItems, which has a default value
of 5, and then all value items will be shown. If the number of items exceeds MaxComboItems, only MaxComboItems
will be shown, but a scroll bar will appear at the right edge of the combo box to allow users to bring the other items
into view.

Detecting Built-In Combo Box Selections

TrueDBGrid for WinForms 226

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The ComboSelect event is fired when the user selects an item from the built-in combo box. This event is useful for
determining the contents of the cell before the user exits edit mode.

Since the items displayed in the built-in combo box are often the only allowable values for the underlying data source,
you may need to prevent your users from typing in the cell after making a selection. By setting the C1DisplayColumn
property DropDownList equal to True, the attached C1TrueDBDropDown control will now be limited to use only as a
list box. No new values or changes will be allowed in the drop-down and so the underlying database cannot be
updated with false information.

Using the C1TrueDBDropDown Control
The built-in drop-down combo box described in the preceding example is most useful when the allowable values are
both known in advance and relatively few in number. A large collection of ValueItem objects can be unwieldy to
maintain in the designer, and requires substantial coding to set up. Moreover, the built-in combo box cannot be
bound to a data control and be populated automatically.

Using the techniques outlined later in this chapter, set up a secondary C1TrueDBGrid control to be used as a drop-
down. However, to display a list of values from another data source, the C1TrueDBDropDown control offers a more
elegant solution, as it was designed explicitly for that purpose and can be set up entirely at design time.

To use the drop-down control, set the DropDown property of a grid column to the C1TrueDBDropDown control either
in the designer or in code. At run time, when the user clicks the in-cell button for that column, the
C1TrueDBDropDown control will appear below the grid's current cell. If the user selects an item from the drop-down
control, the grid's current cell is updated.

Since the C1TrueDBDropDown control is a subset of C1TrueDBGrid, it shares many of the same properties, methods,
and events. However, the following two properties are specific to the C1TrueDBDropDown control:

Property Description

ValueMember This property specifies the drop-down column used to update the
associated grid column when a selection is made.

DisplayMember This property specifies the name of the drop-down column to be used
for incremental search.

AllowSizing This property specifies a value indicating whether dropdown resizing is
allowed or not.

When a C1TrueDBDropDown control becomes visible, its DropDownOpen event fires. Similarly, when the user makes a
selection or the control loses focus, its DropDownClose event fires.

Automatic Data Translation with C1TrueDBDropDown

TrueDBGrid for WinForms 227

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Suppose a grid drop-down box is needed using data that contains a value and a corresponding text representation, as
in the following image:

In this situation, you may not want the user to see the somewhat ambiguous TypeId, but instead want the more
understandable TypeDesc to show in the drop-down. The ValueTranslate property automatically maps the TypeId
value to the TypeDesc representation. In this way, when the user accesses the drop-down, it will display the TypeDesc
text.

Using an Arbitrary Drop-Down Control
Normally, True DBGrid for WinForms' default editing behavior is sufficient for most applications. In some cases,
however, you may want to customize this behavior. One valuable technique is to use a drop-down list or combo box,
or even another True DBGrid for WinForms control, to allow selection from a list of possible values. This is easy to
do with True DBGrid for WinForms using virtually any Visual Studio or third-party control. The general approach
follows, and a working example is given in Tutorial 9: Attaching an Arbitrary Drop-Down Control to a Grid Cell.

In general, displaying a drop-down list or combo instead of the standard True DBGrid editor involves the following
steps:

1. True DBGrid for WinForms fires the BeforeColEdit event each time the user wants to edit a cell. To override
the default editing process, cancel C1TrueDBGrid's default editor by setting the Cancel parameter to True. Put
code in BeforeColEdit to display the editing control you wish to show instead. Typically, you place the
substitute editing control or drop-down on the same form as the grid, but make it invisible until you need it.

2. When BeforeColEdit is triggered, there are five properties and one method that can be used to determine the
exact coordinates of the cell that is to be edited. The properties are Left (applies to grid and column), Top (grid
and column), CellTop (column only, used with multiple line displays), Width (column only), and RowHeight(grid
only). The method is RowTop (grid only). Use these properties and method to position the custom editing
control or drop-down relative to a grid cell. For example, place a ListBox control at the right edge of a cell and
align its top border with that of the cell using the following code:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_BeforeColEdit(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.BeforeColEditEventArgs) Handles C1TrueDBGrid1.BeforeColEdit
 Dim r As Rectangle =
Me.C1TrueDBGrid1.Splits(0).GetCellBounds(Me.C1TrueDBGrid1.Row, e.ColIndex)
 r = Me.C1TrueDBGrid1.RectangleToScreen(r)
 r = Me.RectangleToClient(r)
 Me.ListBox1.Left = r.Left
 Me.ListBox1.Top = r.Bottom
End Sub

To write code in C#

C#

TrueDBGrid for WinForms 228

Copyright © 2019 GrapeCity, Inc. All rights reserved.

private void c1TrueDBGrid1_BeforeColEdit(object sender,
C1.Win.C1TrueDBGrid.BeforeColEditEventArgs e)
{
 Rectangle r =
this.c1TrueDBGrid1.Splits[0].GetCellBounds(this.c1TrueDBGrid1.Row, e.ColIndex);
 r = this.c1TrueDBGrid1.RectangleToScreen(r);
 r = this.RectangleToClient(r);
 this.ListBox1.Left = r.Left;
 this.ListBox1.Top = r.Bottom;
}

3. Put code in the drop-down or combo box which completes the editing process by assigning the selected value
to the Text or Value property of the column being edited.

This method does not work, however, when the grid's MarqueeStyle property is set to the value of
MarqueeEnum.FloatingEditor. When the floating editor marquee is used, the BeforeColEdit event does not fire until
the cell has been changed by the user. However, use the built-in column button feature to activate the drop-down
box as described in the next section.

For illustrations of other MarqueeStyle settings, see Highlighting the Current Row or Cell. An example of dropping
down a Visual Basic ListBox control from a grid cell is given in Tutorial 9: Attaching an Arbitrary Drop-Down Control to
a Grid Cell.

Using the Built-In Column Button
An alternative way to drop-down a control from a cell is to use True DBGrid for WinForms' built-in column button
feature. If a column's Button property is set to True, a button will be displayed at the right edge of the current cell
when it is in that column. Clicking the button fires the grid's ButtonClick event. Drop-down a control from the cell
using code inside the ButtonClick event. Also use this event to trigger any action or calculation inside the cell.

For more information, see In-Cell Buttons.

TrueDBGrid for WinForms 229

Copyright © 2019 GrapeCity, Inc. All rights reserved.

True DBGrid for WinForms Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or demos
which may make use of other development tools included with the ComponentOne Studio Enterprise.

Please refer to the pre-installed product samples through the following path:

Documents\ComponentOne Samples\WinForms

Click one of the following links to view a list of True DBGrid for WinForms samples:

Visual Basic Samples

Sample Description

AggreGateFooter Using notifications to customize the grids footer. This sample uses the
C1TrueDBGrid control.

AutoFilter Using C1TrueDBDropDown in the filter bar. This sample uses the C1TrueDBGrid and
C1TrueDBDropDown controls.

CustomFiltering Roll your own filtering for the grid. This sample uses the C1TrueDBGrid control.

CustomSorting Roll your own sorting. This sample uses the C1TrueDBGrid control.

DataTimePicker How to use a DateTimePicker control in the grid for date columns. This sample
uses the C1TrueDBGrid control.

FindRow How to find a row in the underlying datasource. This sample uses the C1TrueDBGrid
control.

HyperLink Add hyperlinks to cells. This sample uses the C1TrueDBGrid control.

IncrementalSearch Add incremental search to the grid. This sample uses the C1TrueDBGrid control.

MultipleLayouts How to store multiple layout files. This sample uses the C1TrueDBGrid control.

MultipleSelection Select or deselect rows when you click a row.

SettingCellToNull How to set the underlying datasource value to null. This sample uses the
C1TrueDBGrid control.

ToggleGroupRows Programmatically expand/collapse rows in a grouped grid. This sample uses the
C1TrueDBGrid control.

TriStateCheckBox How to add a tristate check box to the grid. This sample uses the C1TrueDBGrid
control.

UsingC1TDBDropdown How to use C1TrueDBDropDown to map IDs to Names. This sample uses the
C1TrueDBGrid and C1TrueDBDropDown controls.

Zoom Change the size of the grid. This sample uses the C1TrueDBDropDown control.

C# Samples

Sample Description

AggreGateFooter Using notifications to customize the grids footer. This sample uses the
C1TrueDBGrid control.

AutoFilter Using C1TrueDBDropDown in the filter bar. This sample uses the C1TrueDBGrid and
C1TrueDBDropDown controls.

TrueDBGrid for WinForms 230

Copyright © 2019 GrapeCity, Inc. All rights reserved.

CustomFiltering Roll your own filtering for the grid. This sample uses the C1TrueDBGrid control.

CustomSorting Roll your own sorting. This sample uses the C1TrueDBGrid control.

DataTimePicker How to use a datetimepicker control in the grid for date columns. This sample uses
the C1TrueDBGrid control.

FilterDefinitionTdbg Uses the FilterDefinition property to save/load custom filters in code.This sample
application enables users to apply one of a few pre-defined filters.

FindRow How to find a row in the underlying datasource. This sample uses the C1TrueDBGrid
control.

HyperLink Add hyperlinks to cells. This sample uses the C1TrueDBGrid control.

IncrementalSearch Add incremental search to the grid. This sample uses the C1TrueDBGrid control.

MultipleLayouts How to store multiple layout files. This sample uses the C1TrueDBGrid control.

MultipleSelection Select or deselect rows when you click a row.

SettingCellToNull How to set the underlying datasource value to null. This sample uses the
C1TrueDBGrid control.

ToggleGroupRows Programmatically expand/collapse rows in a grouped grid. This sample uses the
C1TrueDBGrid control.

TriStateCheckBox How to add a tristate check box to the grid. This sample uses the C1TrueDBGrid
control.

UsingC1TDBDropdown How to use C1TrueDBDropDown to map IDs to Names. This sample uses the
C1TrueDBGrid and C1TrueDBDropDown controls.

Zoom Change the size of the grid. This sample uses the C1TrueDBDropDown control.

TrueDBGrid for WinForms 231

Copyright © 2019 GrapeCity, Inc. All rights reserved.

True DBGrid for WinForms Tutorials
Twenty-Two tutorials are presented in this chapter. The tutorials assume that you are familiar with programming in
Visual Studio, know what a DataSet is, and generally know how to use bound controls. The tutorials provide step-by-
step instructions—no prior knowledge of True DBGrid for WinForms is needed. By following the steps outlined in
this chapter, you will be able to create projects demonstrating a variety of True DBGrid for WinForms features, and
get a good sense of what the True DBGrid for WinForms can do and how to do it.

The tutorials use an Access database, C1NWind.mdb. The database file C1NWind.mdb is in the Common
subdirectory of the ComponentOne Samples folder and the tutorial projects are in the Tutorials folder of
Documents\ComponentOne Samples\WinForms\C1TrueDBGrid. Although the tutorials are numbered you do not
have to complete them in order; the tutorial number refers to the files in the Tutorials folder.

We encourage you to run the tutorial projects in Visual Studio, examine the code, and experiment with your own
modifications. This is the best and quickest way to realize the full potential of True DBGrid. You will find that True
DBGrid is very easy to use, and it enables you to create powerful database applications.

The tutorials assume that the database file C1NWind.mdb is in the Documents\ComponentOne Samples\Common
directory, and refer to it by filename instead of the full pathname for the sake of brevity.

Note: Depending on where you store the projects and database files, you may need to change the location of
the C1NWind.mdb reference in the DataSet.

Some of the projects created in the following tutorials are built upon later tutorials; for example the projects created
in tutorials 1, 3, 6, 7, 8, and 10 are used in other tutorials. As the projects created in some of the tutorials are used
again in multiple tutorials it is recommended that you save your file after completing each tutorial.

Tutorial 1: Binding True DBGrid to a DataSet
In this tutorial, you will learn how to bind True DBGrid for WinForms controls to a DataSet and create a fully
functional database browser. You will also learn about the basic properties of the True DBGrid for WinForms and
then be able to run the program and observe the run-time features of the grid.

Note: A video is available for this tutorial on the ComponentOne Videos Web page.

Complete the following steps:

1. Create a new .NET project.
2. Open the Toolbox, which is initially located on the left side of the IDE and has a hammer and a wrench as its

icon. From the Toolbox, locate and double-click the C1TrueDBGrid icon .
The grid is added to the form and the C1TrueDBGrid Tasks menu appears.

3. In the menu, select the Choose Data Source drop-down arrow and click Add Project Data Source.

TrueDBGrid for WinForms 232

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/videos

4. The Data Source Configuration Wizard appears and Database is selected. Click Next.
5. Click the New Connection button to locate and connect to a database.
6. Click the Browse button and locate the C1NWind.mdb file in the Documents\ComponentOne

Samples\Common directory. Select it and click Open.
7. Click the Test Connection button to make sure that you have successfully connected to the database or server

and click OK. The new string appears in the data connection drop-down list.
8. Click the Next button to continue. A dialog box will appear asking if you would like to add the data file to your

project and modify the connection string. Click No.
9. In the next window, the Yes, save the connection as check box is checked by default and a name

("TDBGDemoConnectionString") has been automatically entered in the text box. Click Next to continue.
10. In the Choose Your Database Objects window, select the tables and fields that you would like in your dataset.

TrueDBGrid for WinForms 233

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The DataSet is given a default name ("TDBGDemoDataSet") in the DataSet name text box.

11. Click Finish to exit the wizard. The DataSet, BindingSource and TableAdapter now appear on your form.
12. Resize the grid and double-click the form. Notice that Visual Studio has added the following code to the

Form_Load event:

To write code in Visual Basic

Visual Basic

Me.ComposerTableAdapter.Fill(Me.DsComposer.Composer)

To write code in C#

C#

this.ComposerTableAdapter.Fill(this.DsComposer.Composer);

13. Click the Design tab to return to the designer and then select the grid.
14. Open the C1TrueDBGrid Tasks menu and select C1TrueDBGrid Tasks.

TrueDBGrid for WinForms 234

Copyright © 2019 GrapeCity, Inc. All rights reserved.

15. Check the Enable Adding and Enable Deleting check boxes. This sets the AllowAddNew and AllowDelete
properties of C1TrueDBGrid1 to True, enabling the user to add or delete records in the grid.

Run the program and observe the following:
True DBGrid retrieves the database schema information from the DataSet and automatically configures itself
to display all of the fields contained in the database table. Note that the field names are used as the default
column headings.
True DBGrid automatically communicates with the DataSet. Any actions taken on the DataSet will be reflected
in the grid.
A fully functional database browser has been created by only writing four lines of simple code.

Refer to Run-Time Interaction and try out the instructions for navigating, editing, and configuring the grid at run time.

To end the program, close the window or press the stop button on the Visual Basic Toolbar.

Congratulations, you have successfully completed binding True DBGrid to a DataSet!

Tutorial 2: Using True DBGrid for WinForms with SQL Query
Results
An important feature of True DBGrid for WinForms is its ability to automatically sense changes to the database at
run time. In this tutorial, you will learn how to use True DBGrid for WinForms to display the results of ad-hoc SQL
queries. In addition, it will also outline how to set up a connection to a DataSet at run time. Note that in order for the
grid to automatically respond to field layout changes, you must not have defined any column properties at design
time. If a layout is already defined, use the grid's Clear Fields context menu command to remove it. This will cause the
grid to configure itself automatically at run time.

Note: A video is available for this tutorial on the ComponentOne Videos Web page.

Complete the following steps:

TrueDBGrid for WinForms 235

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/videos

1. Create a new .NET project.
2. Place a C1TrueDBGrid control (C1TrueDBGrid1), a Button (Button1), and a TextBox control (TextBox1) on the

form. Set the Text property of the command button to read "Execute SQL" and set the Text property of the
TextBox1 to "Enter SQL statement here":

3. Go to the DataSource property and select Add Project Data Source from the drop-down. In the adapter's
Data Source Configuration Wizard, either select a connection to C1NWind.mdb or create a new connection
to this database. On the Choose your database objects page of the wizard, select all fields in the Customers
table and type "DsCustomers" into the DataSet name box, and then finish out the wizard.

4. Visual Studio will add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.CustomersTableAdapter.Fill(Me.DsCustomers.Customers)

To write code in C#

C#

this.CustomersTableAdapter.Fill(this.DsCustomers.Customers);

5. Add the following code to the Click event of Button1:

To write code in Visual Basic

Visual Basic

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

 Dim sqlStr As String = TextBox1.Text
 Dim da as Oledb.OleDbDataAdapter = New Oledb.OleDbDataAdapter (sqlStr,
Me.CustomersTableAdapter.Connection)
 Dim ds As DataSet = New DataSet()

TrueDBGrid for WinForms 236

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 ds.Clear()
 Try
 da.Fill(ds, "mySQL")
 Me.C1TrueDBGrid1.DataSource = Nothing
 Me.C1TrueDBGrid1.ClearFields()
 Me.C1TrueDBGrid1.SetDataBinding(ds.Tables("mySQL"), "", False)
 Catch
 MessageBox.Show("Error in SQL clause")
 End Try
End Sub

To write code in C#

C#

private void button1_Click(System.object sender, System.EventArgs e)
{

 string sqlStr = TextBox1.Text;
 da as Oledb.OleDbDataAdapter = New Oledb.OleDbDataAdapter (sqlStr,
this.CustomersTableAdapter.Connection);
 DataSet DataSet ds = new DataSet();

 ds.Clear();
 try
 {
 da.Fill(ds, "mySQL");
 this.c1TrueDBGrid1.DataSource = null;
 this.c1TrueDBGrid1.ClearFields();
 this.c1TrueDBGrid1.SetDataBinding(ds.Tables["mySQL"], "", false);
 }
 catch ()
 {
 MessageBox.Show ("Error in SQL clause");
 }
}

Run the program and observe the following:
As in Tutorial 1: Binding True DBGrid to a DataSet, True DBGrid for WinForms retrieves the database schema
information from the DataSet and automatically configures itself to display the data for all fields in the database table.
Note that the field names are used as the default column headings.

1. In the TextBox control, type the following SQL statement:

Select * from Customer

Press the Execute SQL button. The above SQL statement displays all fields from the Customer table and is
equivalent to the default display.

2. In the TextBox control, type the following SQL statement:

Select Company from Customer

TrueDBGrid for WinForms 237

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Press the Execute SQL button. The grid responds by displaying only one column for the Company field.

3. In the TextBox control, type the following SQL statement:

Select LastName, Company from Customer

Press the Execute SQL button. This is similar to the previous SQL statement except that two columns
(LastName and Company) are now displayed.

4. In the TextBox control, type the following SQL statement:

Select Count(*) from Customer

Press the Execute SQL button. The above SQL statement uses an aggregate function, Count(*), to return the
total number of records in the Customer table. Even though the SQL result is not a set of records, the grid
faithfully responds by displaying the number of records in a single column. By default, Expr1000 is used as the
column heading, indicating that the display is the result of an expression.

5. In the TextBox control, type the following SQL statement:

Select UCase(LastName) as ULAST, UCase(FirstName) AS UFIRST from Customer

Press the Execute SQL button. The above SQL statement produces two calculated columns that display the
LastName and FirstName fields in upper case. The grid also displays the (assigned) calculated column names,
ULAST and UFIRST, as the column headings.

6. In the TextBox control, type the following SQL statement:

SELECT * FROM Customer WHERE FirstName = "Jerry"

Press the Execute SQL button. The above SQL statement displays only records with FirstName equal to Jerry.

7. In the TextBox control, type the following SQL statement:

SELECT * FROM Customer ORDER BY LastName

Press the Execute SQL button. The above SQL statement displays records in alphabetical order according to
the LastName field.

You can also use an SQL statement to join two database tables, as demonstrated in Tutorial 3: Linking Multiple True
DBGrid Controls.

This concludes tutorial 2; you've successfully completed using True DBGrid with SQL query results.

Tutorial 3: Linking Multiple True DBGrid Controls
This tutorial demonstrates how to link multiple True DBGrid for WinForms controls using a Master Detail dataset.

Complete the following steps:

1. Create a new .NET project.
2. Navigate to the Visual Studio Toolbox and double-click the C1TrueDBGrid item twice to add two

C1TrueDBGrid controls to the form (C1TrueDBGrid1 and C1TrueDBGrid2).
3. In the C1TrueDBGrid1 control's C1TrueDBGrid Tasks menu, locate the Choose Data Source drop-down and

select Add Project Data Source.
4. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or create a

new connection to this database. On the Choose your database objects page of the wizard, select all fields in
the Composer table and all fields in the Opus table, and type "DsMasterDetail" into the DataSet name box,
and then finish out the wizard.

TrueDBGrid for WinForms 238

Copyright © 2019 GrapeCity, Inc. All rights reserved.

5. Double-click DsMasterDetail.xsd in the Solution Explorer window. This will open the DsMasterDetail.xds file,
which will appear similar to the following:

6. To make a relation between two tables, click and hold down the mouse button in the area next to the Last field
in Composer, and then drag the mouse up over the Composers table over to the Opus table, then release the
mouse over the area next to the Last field. This will bring up the Relation dialog box:

Make sure Parent Table is set to Composer and the Child Table is set to Opus. In addition make sure both
fields are set to the Last column and that the Relation Only is selected (as in the preceding screenshot). Click
OK and exit the Edit Relation dialog box.

7. Now go to the Build menu of Visual Studio and choose Build Solution. This will ensure that this new relation
is available in the project.

8. Return to the form's Design view and in the Toolbox, locate the <Your Project Name> Components tab. Add
an instance of the DsMasterDetail, ComposerTable, and OpusTableAdapter to the form.

TrueDBGrid for WinForms 239

Copyright © 2019 GrapeCity, Inc. All rights reserved.

9. Now in the Properties window, set the DataSource property for the first C1TrueDBGrid control to
DsMasterDetail1 and the DataMember property to Composer.

If prompted to replace the column layout, click Yes.
10. For the second C1TrueDBGrid control, set the DataSource property to DsMasterDetail1 and the

DataMember property to Composer.Composer_Opus.

If prompted to replace the column layout, click Yes.
11. All that is left is to populate the DataAdapters.
12. Double-click the form to switch to Code view and create the Form_Load event handler. Add the following code

to the Load event of Form1:

To write code in Visual Basic

Visual Basic

Me.ComposerTableAdapter1.Fill(Me.DsMasterDetail1.Composer)
Me.OpusTableAdapter1.Fill(Me.DsMasterDetail1.Opus)

To write code in C#

C#

this.composerTableAdapter1.Fill(this.dsMasterDetail1.Composer);
this.opusTableAdapter1.Fill(this.dsMasterDetail1.Opus);

Run the program and observe the following:
When Form1 is loaded, C1TrueDBGrid1 and C1TrueDBGrid2 retrieve the database schema information from
DsMasterDetail:

TrueDBGrid for WinForms 240

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Change the current record position of the first grid by clicking on different rows. Observe that C1TrueDBGrid2
(the detail grid) will configure itself to display a new record set every time the row changes in C1TrueDBGrid1
(the master grid).

This concludes this tutorial; you've successfully completed linking multiple True DBGrid controls.

Tutorial 4: Interacting with Code and Other Bound Controls
In this tutorial, you will learn how True DBGrid interacts with other bound controls and with code that manipulates
the same DataSet to which the grid is bound.

Complete the following steps:

1. Create a new .NET project.
2. Place the following controls on the form (Form1) as shown in the figure below:

C1TrueDBGrid control (C1TrueDBGrid1)
ListBox control (ListBox1)
Three text controls (TextBox1 to 3)
Seven buttons (Named btnFirst, btnNext, btnPrevious, btnLast, btnDelete, btnUpdate, btnAdd)
Four labels (Label1 to 4)

Set the Text properties for each of the labels and buttons seen below:

TrueDBGrid for WinForms 241

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. In the C1TrueDBGrid Tasks menu, locate the Choose Data Source drop-down and select Add Project Data
Source. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or
create a new connection to this database. On the Choose your database objects page of the wizard, select all
fields in the Customers table and type "DsCustomers" into the DataSet name box, and then finish out the
wizard.

4. Visual Studio adds the following code to the Form_Load event :

To write code in Visual Basic

Visual Basic

Me.CustomersTableAdapter.Fill(Me.DsCustomers.Customers)

To write code in C#

C#

this.CustomersTableAdapter.Fill(this.DsCustomers.Customers);

5. Now for each of the four Buttons (Button4, 5, 6, 7) on the lower right in the above image, add the following
code:

To write code in Visual Basic

Visual Basic

Private Sub btnFirst_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnFirst.Click

 ' Move to the first record in the grid.

TrueDBGrid for WinForms 242

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Me.C1TrueDBGrid1.MoveFirst()
End Sub

Private Sub btnNext_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnNext.Click

 ' Move to the next record in the grid.
 Me.C1TrueDBGrid1.MoveNext()
End Sub

Private Sub btnPrevious_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnPrevious.Click

 ' Move to the previous record in the grid.
 Me.C1TrueDBGrid1.MovePrevious()
End Sub

Private Sub btnLast_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnLast.Click

 ' Move to the last record in the grid.
 Me.C1TrueDBGrid1.MoveLast()
End Sub

To write code in C#

C#

private void btnFirst_Click(System.object sender, System.EventArgs e)
{
 // Move to the first record in the grid.
 this.c1TrueDBGrid1.MoveFirst();
}

private void btnNext_Click(System.object sender, System.EventArgs e)
{
 // Move to the next record in the grid.
 this.c1TrueDBGrid1.MoveNext();
}

private void btnPrevious_Click(System.object sender, System.EventArgs e)
{
 // Move to the previous record in the grid.
 this.c1TrueDBGrid1.MovePrevious();
}

private void btnLast_Click(System.object sender, System.EventArgs e)
{
 // Move to the last record in the grid.
 this.c1TrueDBGrid1.MoveLast();
}

6. Set the code for the three buttons on the upper right in the above image:

TrueDBGrid for WinForms 243

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnDelete.Click

 ' Delete the record and save the changes to the database.
 Me.C1TrueDBGrid1.Delete()
 Call UpdateCustomers()
End Sub

Private Sub BtnUpdate_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnUpdate.Click

 ' Update the grid, call UpdateCustomers to save.
 Me.C1TrueDBGrid1.UpdateData()
 Call UpdateCustomers()
End Sub

Private Sub BtnAdd_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnAdd.Click

 ' This "Add New" button moves the cursor to the "new (blank) row" at the end
so that user can start adding data to the new record.
 ' Move to last record, "new row" will be visible.
 Me.C1TrueDBGrid1.MoveLast()

 ' Move to the "addnew row", and set focus to the grid.
 Me.C1TrueDBGrid1.Row = Me.C1TrueDBGrid1.Row + 1
 Me.C1TrueDBGrid1.Select()
End Sub

To write code in C#

C#

private void btnDelete_Click(System.object sender, System.EventArgs e)
{
 // Delete the record and save the changes to the database.
 this.c1TrueDBGrid1.Delete();
 UpdateCustomers();
}

private void BtnUpdate_Click(System.object sender, System.EventArgs e)
{
 // Update the grid, call UpdateCustomers to save.
 this.c1TrueDBGrid1.UpdateData();
 UpdateCustomers();
}

private void BtnAdd_Click(System.object sender, System.EventArgs e)

TrueDBGrid for WinForms 244

Copyright © 2019 GrapeCity, Inc. All rights reserved.

{
 // This "Add new" button moves the cursor to the "new (blank) row" at the
end so that user can start adding data to the new record.
 // Move to last record, "new row" will be visible.
 this.c1TrueDBGrid1.MoveLast();

 // Move to the "addnew row", and set focus to the grid.
 this.c1TrueDBGrid1.Row = this.c1TrueDBGrid1.Row + 1;
 this.c1TrueDBGrid1.Select();
}

7. Now add the UpdateCustomers subroutine. It sends information back to the DataSet from temporary
DataTables:

To write code in Visual Basic

Visual Basic

Private Sub UpdateCustomers()
 Me.CustomersTableAdapter.Connection.Open()
 Dim UpdatedRows As System.Data.DataSet
 Dim InsertedRows As System.Data.DataSet
 Dim DeletedRows As System.Data.DataSet

 ' These Data Tables hold any changes that have been made to the dataset
since the last update.
 UpdatedRows = Me.DsCustomers.GetChanges(DataRowState.Modified)
 InsertedRows = Me.DsCustomers.GetChanges(DataRowState.Added)
 DeletedRows = Me.DsCustomers.GetChanges(DataRowState.Deleted)

 Try

 ' For each of these, we have to make sure that the Data Tables contain any
records, otherwise, we will get an error.
 If Not UpdatedRows Is Nothing Then
Me.CustomersTableAdapter.Update(UpdatedRows)
 If Not InsertedRows Is Nothing Then
Me.CustomersTableAdapter.Update(InsertedRows)
 If Not DeletedRows Is Nothing Then
Me.CustomersTableAdapter.Update(DeletedRows)
 Catch eUpdate As System.Exception
 MessageBox.Show ("Caught exception: " & eUpdate.Message)
 End Try

 Me.CustomersTableAdapter.Connection.Close()
End Sub

To write code in C#

C#

private void UpdateCustomers()
{
 this.CustomersTableAdapter.Connection.Open();

TrueDBGrid for WinForms 245

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 System.Data.DataSet UpdatedRows;
 System.Data.DataSet InsertedRows;
 System.Data.DataSet DeletedRows;

 // These Data Tables hold any changes that have been made to the dataset
since the last update.
 UpdatedRows = this.DsCustomers.GetChanges(DataRowState.Modified);
 InsertedRows = this.DsCustomers.GetChanges(DataRowState.Added);
 DeletedRows = this.DsCustomers.GetChanges(DataRowState.Deleted);

 try
 {
 // For each of these, we have to make sure that the Data Tables contain
any records, otherwise, we will get an error.
 if (! UpdatedRows == null)
 this.CustomersTableAdapter.Update(UpdatedRows)
 if (! InsertedRows == null)
 this.CustomersTableAdapter.Update(InsertedRows)
 if (! DeletedRows == null)
 this.CustomersTableAdapter.Update(DeletedRows)
 }
 catch (System.Exception eUpdate)
 {
 MessageBox.Show ("Caught exception: " + eUpdate.Message);
 }
 this.CustomersTableAdapter.Connection.Close();
}

8. Now back in the .NET designer, click the ListBox1 control. In the Properties window set its DataSource
property to CustomersBindingSource, and its DisplayMember property to LastName.

9. Click on the first TextBox (TextBox1) on the form. In the Properties window, expand its DataBindings object.
Set the Text property under the DataBindings object to CustomersBindingSource - FirstName. In a similar
manner set the same Text property under the associated DataBindings object for the next two TextBoxes.
TextBox2 should be set to LastName, and TextBox3 should be set to Company.

10. Finally in the Properties window set the AllowAddNew, AllowDelete, and AllowUpdate properties to True for
the C1TrueDBGrid control.

Run the program and observe the following:
Use the mouse or the keyboard to change the current row position in the grid, and observe the other bound
controls (ListBox1 and the TextBoxes) changing their record positions along with the grid, even though they
contain no code.
Click the Next, Previous, Last, and First buttons and observe that they have the same effects as the
corresponding buttons on the Data control.
Modify data in a few cells (in the same row) on the grid. Press the Update button. Observe that the modified
data has been updated to the database and the pencil icon on the record selector column disappears. Other
bound controls on the form now display the modified data.
Modify data in one or more of the Text controls. Press the Update or the Next button. The grid will
automatically update its data to reflect the new changes.
Move the current cell of the grid to any record you wish to delete, then click the Delete button. The record will
be deleted and disappears from the grid. The grid automatically moves the current row to the record after the
deleted record. Other bound controls on the form also respond by moving their record positions.

TrueDBGrid for WinForms 246

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This concludes this tutorial; you've successfully completed interacting with code and other bound controls.

Tutorial 5: Selecting Multiple Rows Using Bookmarks
In this tutorial, you will learn how to select and highlight records that satisfy specified criteria. A group of similar items
is generally implemented as a collection in True DBGrid. When manipulating a group of items in True DBGrid, use
techniques similar to those described here.

Complete the following steps:

1. Create a new .NET project.
2. From the Toolbox on the left side of the IDE add two command buttons and a C1TrueDBGrid control onto the

form. The C1TrueDBGrid icon looks like this:

3. Set Button1's Text property to "Select" and set Button2's Text property to "Clear."
4. In the C1TrueDBGrid Tasks menu, locate the Choose Data Source drop-down and select Add Project Data

Source. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or
create a new connection to this database. On the Choose your database objects page of the wizard, select all
fields in the Composers table and type "DsComposers" into the DataSet name box, and then finish out the
wizard.

5. Visual Studio adds the following code to the Form_Load event :

To write code in Visual Basic

Visual Basic

Me.ComposerTableAdapter.Fill(Me.DsComposer.Composer)

To write code in C#

C#

this.ComposerTableAdapter.Fill(this.DsComposer.Composer);

TrueDBGrid for WinForms 247

Copyright © 2019 GrapeCity, Inc. All rights reserved.

6. We can easily select and deselect rows in True DBGrid by manipulating the SelectedRowCollection. To select
rows, add the following code to the Click event of Button1:

To write code in Visual Basic

Visual Basic

Dim l As Integer
For l = 0 To Me.DsComposer.Composer.Rows.Count - 1
 If Me.DsComposer.Composer.Rows(l).Item("Country") = "Germany" Then
 Me.C1TrueDBGrid1.SelectedRows.Add(l)
 End If
Next
Me.C1TrueDBGrid1.Refresh()

To write code in C#

C#

int l;
for (l = 0 ; l < this.DsComposer.Composer.Rows.Count; l++)
{
 if (this.DsComposer.Composer.Rows[l].["Country"] == "Germany")
 {
 this.c1TrueDBGrid1.SelectedRows.Add(l);
 }
}
this.c1TrueDBGrid1.Refresh();

7. To deselect rows, add the following code to the Click event of Button2:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.SelectedRows.Clear()

To write code in C#

C#

this.c1TrueDBGrid1.SelectedRows.Clear();

Run the program and observe the following:
C1TrueDBGrid1 retrieves the database schema information from the DataSet and automatically configures itself
to display all of the fields in the joined database tables. This is again similar to the behavior of the grid in
Tutorial 1.
Click the Select button and observe that all records with the Country field equal to Germany will be
highlighted.

TrueDBGrid for WinForms 248

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To deselect the highlighted records, click the Clear button. Alternatively, clicking anywhere on a grid cell will
also clear the selected rows.

This concludes this tutorial; you've successfully completed selecting multiple rows using bookmarks.

Tutorial 6: Defining Unbound Columns in a Bound Grid
In this tutorial, you will learn how to use the UnboundColumnFetch event to display two fields (FirstName and
LastName) together in one column. You will also learn how to use an SQL statement to create a join between two
tables in a database.

Complete the following steps:

1. Create a new .NET project.
2. From the Toolbox on the left side of the IDE double-click the C1TrueDBGrid icon to add the control to the

form. The C1TrueDBGrid icon looks like this:

3. In the C1TrueDBGrid Tasks menu, locate the Choose Data Source drop-down and select Add Project Data
Source. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or
create a new connection to this database. On the Choose your database objects page of the wizard, select all
fields in the Contacts table and type "DsContacts" into the DataSet name box, and then finish out the wizard.

4. Double click DsContacts.xsd in the Solution Explorer window to edit it in the Designer. Right click on the
Contacts table and choose Configure from the context menu.

5. Modify the SQL string in the Table Adapter Configuration Wizard to:
SELECT Customers.FirstName, Customers.LastName, Customers.CustType,
Contacts.ContactType, Contacts.Callback, Contacts.ContactDate, Contacts.UserCode,
Customers.UserCode AS Expr1 FROM Contacts INNER JOIN Customers ON
Contacts.UserCode = Customers.UserCode

6. The Contacts table is now joined with the Customers table. Click the Finish button to exit the wizard.
7. Return to Design view and if prompted to replace existing column layout, click Yes.

Note: If all of the columns are not showing up in C1TrueDBGrid, select the DataSource again from the drop-
down box in the C1TrueDBGrid Tasks menu. Here, you would re-select the Contacts table under DSContacts.

8. Declare a new global DataTable object in Form1:

To write code in Visual Basic

TrueDBGrid for WinForms 249

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Dim dtCopy As New DataTable

To write code in C#

C#

DataTable dtCopy = new DataTable;

9. Now in the Form_Load event add the following code. The first line, supplied by Visual Studio, fills the dataset
and the second line makes a copy of this DataSet, which we will use later to populate the unbound column:

To write code in Visual Basic

Visual Basic

Me.ContactsTableAdapter.Fill(Me.DsContacts.Contacts)
dtCopy = Me.DsContacts.Tables(0).Copy()

To write code in C#

C#

this.ContactsTableAdapter.Fill(this.DsContacts.Contacts);
dtCopy = this.DsContacts.Tables(0).Copy();

10. To create an unbound column, open up the C1TrueDBGrid Designer by clicking on the ellipsis button (…)
next to the Columns property in the Properties window. Next click the Appendcolumn button to create a new
column. Set the new column's Caption property to "Name" in the left pane. Notice that a value resides in the
Caption field, but no value in the DataField, which is how the grid knows that this is an unbound column. The
grid now knows to fire the UnboundColumnFetch event. Click the OK button to close the C1TrueDBGrid
Designer.

11. Open the SplitCollection editor by clicking on the ellipsis button next to the Splits property in the Properties
window. Now open up the C1DisplayColumnCollection editor by clicking on the ellipsis button next to the
DisplayColumns property. In this editor, find the unbound column in the left pane that we just created. It is
positioned as the last column in the grid. The DisplayColumns Collection determines the position of the field.
Maneuver the column to the desired location by using the up and down arrow buttons in the left pane. Then in
the right pane, set its Visible property equal to True. Now our unbound column is visible to the end-user and
not just the True DBGrid for WinForms control.
You can hide columns here that are used in the unbound column. Select the FirstName column from the left
pane, then in the right, set its Visible property equal to False. This hides the FirstName column from view.
Repeat, selecting the LastName column.
Select OK to close the C1DisplayColumnCollection editor and click OK again to close the SplitCollection editor.

12. Add the following code to the UnboundColumnFetch event. This code uses dtCopy to gather values to place
into the unbound column, then setting these values equal to e.Value, places the value into the unbound
column:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_UnboundColumnFetch(ByVal sender As System.Object,
ByVal e As C1.Win.C1TrueDBGrid.UnboundColumnFetchEventArgs) Handles
C1TrueDBGrid1.UnboundColumnFetch
 If e.Column.Caption = "Name" AndAlso e.Row < dtCopy.Rows.Count Then
 e.Value = Me.C1TrueDBGrid1(e.Row, "FirstName").ToString + " " +

TrueDBGrid for WinForms 250

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Me.C1TrueDBGrid1(e.Row, "LastName").ToString
 End If
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_UnboundColumnFetch(object sender,
C1.Win.C1TrueDBGrid.UnboundColumnFetchEventArgs e)
{
 if(e.Column.Caption == "Name" && e.Row < dtCopy.Rows.Count)
 {
 e.Value = this.c1TrueDBGrid1[e.Row, "FirstName"].ToString()+ " " +
this.c1TrueDBGrid1[e.Row, "LastName"].ToString();
 }
}

Run the program and observe the following:
When the application runs, it should look like the following:

C1TrueDBGrid1 displays data from the joined table according to the five columns configured at design time.
The first column displays the combined FirstName and LastName fields as defined in the UnboundColumnFetch
event.
The CustType, ContactType and Callback columns display numeric values that are quite cryptic to users and
provide an unappealing data presentation. In the next three tutorials (7, 8, and 9), techniques will be illustrated
that improve both the display and the user interface.

This concludes this tutorial; you've successfully completed defining unbound columns in a bound grid.

TrueDBGrid for WinForms 251

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Tutorial 7: Displaying Translated Data with the Built-In
Combo
In this tutorial, you will learn how to use the ValueItems object to display translated text and enable the grid's built-in
drop-down combo for editing—all without writing a single line of code.

Complete the following steps:

1. Start with the project created in Tutorial 6: Defining Unbound Columns in a Bound Grid.
2. Make sure the C1TrueDBGrid has focus, then click the ellipsis button next to the Columns property in the

Properties window. This brings up the C1TrueDBGrid Designer.
3. Select the CustType column member. Then in the left pane, click the expand icon next to the Valueitems

property. This will display all of the members of the Valueitems object.
4. Click on the ellipsis button next to the Values property in the C1TrueDBGrid Designer. This brings up the

ValueitemCollection Editor.
5. In the left pane create five new ValueItem objects by clicking on the Add button five times. Notice that a

ValueItem has two properties: DisplayValue and Value.
6. Enter the following DisplayValue/Value pairs into the right pane, then close the ValueItemCollection Editor:

DisplayValue Value

Value 0

Prospective 1

Normal 2

Buyer 3

Distributor 4

Other 5

7. Under the Valueitems object in the C1DataColumn Editor, set the Presentation property to ComboBox, and
the Translate property to True.

8. Click the OK button at the bottom of the Property Pages dialog box to accept the changes.

Run the program and observe the following:
C1TrueDBGrid1 displays data from the joined tables as in Tutorial 6: Defining Unbound Columns in a Bound
Grid.
The CustType column now displays the translated text instead of numeric values.
Click a cell in the CustType column to make it the current cell. Notice that a drop-down button appears at the
right edge of the cell.
Click the drop-down button or press ALT+DOWN ARROW to display the built-in combo box containing
translated values, as shown in the following figure. Change the data in the current cell by selecting the desired
item from the combo box.

TrueDBGrid for WinForms 252

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This concludes this tutorial; you've successfully completed displaying translated data with the built-in combo.

Tutorial 8: Attaching a Drop-Down Control to a Grid Cell
In this tutorial, you will learn how to attach a multicolumn True DBDropDown control to a grid cell. Unlike the built-in
combo demonstrated in Tutorial 7: Displaying Translated Data with the Built-In Combo, the C1TrueDBDropDown
control can be bound to a data source, which makes it ideal for data entry involving a secondary lookup table. The
drop-down control appears whenever the user clicks a button within the current cell. This button appears
automatically when the user gives focus to a column that has a drop-down control connected to it.

Complete the following steps:

1. Start with the project constructed in Tutorial 6: Defining Unbound Columns in a Bound Grid.
2. Add a C1TrueDBDropDown control (C1TrueDBDropDown1) to the form. The icon for the C1TrueDBDropDown

looks like the following:

3. Go to the DataSource property and select Add Project Data Source from the drop-down. In the adapter's
Data Source Configuration Wizard, either select a connection to C1NWind.mdb or create a new connection
to this database. On the Choose your database objects page of the wizard, select the TypeID and TypeDesc
fields in the CustType table and type "DsCustType" into the DataSet name box, and then finish out the wizard.

4. Visual Studio adds the following code to the Load event of Form1 to fill the new dataset:

To write code in Visual Basic

Visual Basic

Me.CustTypeTableAdapter.Fill(Me.DsCustType.CustType)

To write code in C#

C#

this.CustTypeTableAdapter.Fill(this.DsCustType.CustType);

5. Then again in the Load event of Form1, add the following code to set the C1TrueDBDropDown1 to the
CustType column:

TrueDBGrid for WinForms 253

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns("CustType").DropDown = Me.C1TrueDBDropdown1

To write code in C#

C#

this.c1TrueDBGrid1.Columns["CustType"].DropDown = this.c1TrueDBDropdown1;

6. In the Properties window set the DisplayMember property of the C1TrueDBDropDown1 to TypeID. This
property informs the drop-down which column will be synchronized with the grid column that the drop-down
is bound to.

Run the program and observe the following:
C1TrueDBGrid1 displays data from the joined table as in Tutorial 6: Defining Unbound Columns in a Bound
Grid.
Click a cell in the CustType column to make it the current cell as indicated by the highlight. A button will be
displayed at the right edge of the cell. Click the button to display the True DBDropDown control as shown in
the following figure.

Use the UP ARROW and DOWN ARROW keys to move the highlight bar of C1TrueDBDropDown control. If
another cell in the grid is clicked, C1TrueDBDropDown will lose focus and become invisible.
Select any item in the C1TrueDBDropDown. The current cell in the grid will be updated with the selected item,
and the C1TrueDBDropDown will disappear until editing is initiated again.
If the current cell is moved to another column, the button will disappear from the cell in the CustType column.

You've successfully completed attaching a drop-down control to a grid cell; this concludes tutorial 8

Tutorial 9: Attaching an Arbitrary Drop-Down Control to a
Grid Cell

TrueDBGrid for WinForms 254

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In this tutorial, you will learn how to drop-down an arbitrary control from a grid cell. This example uses a ListBox
control containing pre-defined input values in order to facilitate user data entry. The list will drop down whenever the
user initiates editing, such as by clicking the current cell. You will also learn how to place a button in the cell which,
when clicked, will cause the ListBox control to appear. You can drop-down any control from a grid cell using
techniques similar to those described in this tutorial.

Complete the following steps:

1. Start with the project constructed in Tutorial 6: Defining Unbound Columns in a Bound Grid.
2. Add a ListBox control (ListBox1) to the form as shown in the figure.

3. Set the Visible property of ListBox1 to False.

Adding code to drop down a ListBox control
The CustType field in the second column (Column1) of the grid displays numeric values ranging from 1 through 5,
which represent the following customer types:

1 = Prospective
2 = Normal
3 = Buyer
4 = Distributor
5 = Other

Drop down ListBox1, which will contain textual customer type descriptions, and allow users to double-click an item in
order to enter the associated value into the grid.

1. Include the following code in the general declaration section of Form1. Adding these namespaces will simplify
the code we will need to write later.

To write code in Visual Basic

Visual Basic

Imports System.Data
Imports System.Data.Oledb
Imports System.IO
Imports System.Collections

To write code in C#

C#

using System.Data;
using System.Data.Oledb;
using System.IO;
using System.Collections;

TrueDBGrid for WinForms 255

Copyright © 2019 GrapeCity, Inc. All rights reserved.

2. In the Load event of Form1, add the code to include the customer types to ListBox1. Also, place a button in the
CustType column using the Button property. The Form1_Load event handler now looks like this:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Me.ContactsTableAdapter.Fill(Me.DsContacts.Contacts)

 ' Add customer types to ListBox1.
 With Me.ListBox1
 .Items.Add("Prospective")
 .Items.Add("Normal")
 .Items.Add("Buyer")
 .Items.Add("Distributor")
 .Items.Add("Other")
 .Visible = False
 End With

 ' Place a button in the CustType column.
 Me.C1TrueDBGrid1.Splits(0).DisplayColumns("CustType").Button = True
End Sub

To write code in C#

C#

private void Form1_Load(System.object sender, System.EventArgs e)
{
 this.ContactsTableAdapter.Fill(this.DsContacts.Contacts);

 // Add customer types to ListBox1.
 this.listBox1.Items.Add("Prospective");
 this.listBox1.Items.Add("Normal");
 this.listBox1.Items.Add("Buyer");
 this.listBox1.Items.Add("Distributor");
 this.listBox1.Items.Add("Other");
 this.listBox1.Visible = false;

 // Place a button in the CustType column.
 this.c1TrueDBGrid1.Splits[0].DisplayColumns["CustType"].Button = true;
}

3. If a cell in the CustType column becomes current, a button will be placed at the right edge of the cell. Clicking
the button will trigger the grid's ButtonClick event. We will drop down ListBox1 whenever the button is clicked:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_ButtonClick(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.ColEventArgs) Handles C1TrueDBGrid1.ButtonClick
 With ListBox1

TrueDBGrid for WinForms 256

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 .Left = Me.C1TrueDBGrid1.Left + Me.C1TrueDBGrid1.RecordSelectorWidth +
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).Width +
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1).Width
 .Top = Me.C1TrueDBGrid1.Top +
Me.C1TrueDBGrid1.RowTop(Me.C1TrueDBGrid1.Row)
 .Visible = True
 .Select()
 End With
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_ButtonClick(object sender,
C1.Win.C1TrueDBGrid.ColEventArgs e)
{
 this.listBox1.Left = this.c1TrueDBGrid1.Left +
this.c1TrueDBGrid1.RecordSelectorWidth +
this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].Width +
this.c1TrueDBGrid1.Splits[0].DisplayColumns[1].Width;
 this.listBox1.Top = this.c1TrueDBGrid1.Top +
this.c1TrueDBGrid1.RowTop(this.c1TrueDBGrid1.Row);
 this.listBox1.Visible = true;
 this.listBox1.Select();
}

4. In the DoubleClick event of ListBox1, add the following code. When an item is selected in ListBox1, this code
will copy its index to the proper column in C1TrueDBGrid1, then make ListBox1 invisible.

To write code in Visual Basic

Visual Basic

Private Sub ListBox1_DoubleClick(ByVal sender As Object, ByVal e As
System.EventArgs) Handles ListBox1.DoubleClick
 Me.C1TrueDBGrid1.Columns("CustType").Text = Me.ListBox1.SelectedIndex + 1
 Me.ListBox1.Visible = False
End Sub

To write code in C#

C#

private void listBox1_DoubleClick(object sender, System.EventArgs e)
{
 this.c1TrueDBGrid1.Columns["CustType"].Text = (this.listBox1.SelectedIndex +
1).ToString();
 this.listBox1.Visible = false;
}

5. Then in the Leave event of ListBox1, add the following code to make sure the listbox becomes invisible once
the selection has been made:

To write code in Visual Basic

TrueDBGrid for WinForms 257

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Private Sub ListBox1_Leave(ByVal sender As Object, ByVal e As System.EventArgs)
Handles ListBox1.Leave
 Me.ListBox1.Visible = False
End Sub

To write code in C#

C#

private void listBox1_Leave(object sender, System.EventArgs e)
{
 this.listBox1.Visible = false;
}

6. Then in the Scroll event of C1TrueDBGrid1, add the following code to make sure the listbox becomes invisible
once the grid is scrolled:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_Scroll(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.CancelEventArgs) Handles C1TrueDBGrid1.Scroll
 Me.ListBox1.Visible = False
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_Scroll(object sender,
C1.Win.C1TrueDBGrid.CancelEventArgs e)
{
 this.listBox1.Visible = false;
}

Run the program and observe the following:
C1TrueDBGrid1 displays data from the joined table as in Tutorial 6: Defining Unbound Columns in a Bound
Grid.
Click a cell in the CustType column to make it the current cell as indicated by the highlight. A button will be
displayed at the right edge of the cell. Click the button to fire the ButtonClick event. ListBox1 will drop down at
the right edge of the cell as shown in the following illustration.

TrueDBGrid for WinForms 258

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Use the mouse or the UP ARROW and DOWN ARROW keys to move the highlight bar of ListBox1. If another
cell in the grid is clicked, ListBox1 will lose focus and become invisible.
Double-click any item in ListBox1. The current cell in the grid will be updated with the selected item, and
ListBox1 will disappear until editing is again initiated.
If the current cell is moved to another column, the button will disappear from the cell in the CustType column.

You've successfully completed attaching an arbitrary drop-down control to a grid cell; this concludes tutorial 9.

Tutorial 10: Enhancing the User Interface with In-Cell
Bitmaps
In this tutorial, you will learn how to use the ValueItems object and its collection of ValueItem objects to display
bitmaps and check boxes in a cell—without writing a single line of code!

Complete the following steps:

1. Start with the project used in Tutorial 7: Displaying Translated Data with the Built-In Combo.
2. First, change the captions of the ContactType and Callback columns. Open up the C1TrueDBGrid Designer by

clicking on the ellipsis button next to the Columns property in the Properties window.
3. Select the ContactType column, then in the left pane, change its Caption property to "How". Then in a similar

manner, change the CallBack column caption to "Call?"
4. Change the HorizontalAlignment property of these two columns by clicking the Align center button so that

the bitmaps will be centered within each cell. Open the SplitCollection Editor by clicking on the ellipsis
button next to the Splits property in the Properties window. Next open the C1DisplayColumnCollection Editor
by clicking on the ellipsis next to the DisplayColumn property in the Splits editor. Select the How column in
the left pane, then in the right pane, click the expand icon next to the Styles property. Under the Styles object
for this column set the HorizontalAlignment property to Center. Then set the VerticalAlignment properties to
Center. In a similar manner, set the HorizontalAlignment and VerticalAlignment properties for the Call?
column.

5. Next, assign bitmaps and check boxes to selected columns by populating the corresponding ValueItems object.
We will start with the bitmaps in column 2. Open up the C1TrueDBGrid Designer by clicking on the ellipsis
button next to the Columns property in the Properties window. Select the How column, and then in the left
pane, click the expand icon next to the Valueitem object. Open up the ValueItemCollection Editor by clicking
on the ellipsis button next to the Values property:

TrueDBGrid for WinForms 259

Copyright © 2019 GrapeCity, Inc. All rights reserved.

6. Create three new ValueItem objects by clicking the Add button in the left pane. The possible values of the
ContactType field are 0, 1, and 2, which represent telephone, mail, and personal contact, respectively. Bitmaps
shall be displayed in the cell instead of these numeric values. If the full product is installed, the following files
will be found in the Tutor10 subdirectory of the Tutorials installation directory: PHONE.BMP, MAIL.BMP, and
PERSON.BMP.

7. In the right pane, for the first ValueItem, enter 0 as the value, then in the DisplayValue property box, click the
ellipsis button to search for the Image file to display in the cell. Locate the Phone.bmp file in the Tutor10
subdirectory of the WinForms Edition installation directory. In a similar manner set the other two ValueItem
objects to a Value of 1, DisplayValue of Mail.bmp, and a Value of 2, DisplayValue of Person.BMP, respectively.
Return to the ValueItems object in the C1TrueDBGrid Designer and set the Translate and CycleOnClick
properties equal to True.

8. To set the check boxes for column 3, in the C1TrueDBGrid Designer, select the Call column. In the left pane,
expand the ValueItems object and set the Presentation property to CheckBox. This will display the column's
Boolean values as check boxes. Then finally, under the same object set the Translate and CycleOnClick
properties to True.

Run the program and observe the following:
C1TrueDBGrid1 displays data from the joined table.
The How and Call? columns now display bitmaps instead of numeric values as shown in the following figure.

TrueDBGrid for WinForms 260

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Click a cell in the How column to make it the current cell. Then click it again several times and observe how the
cell cycles through the PHONE, MAIL, and PERSON bitmaps.
Click a cell in the Call? column and observe how the cell cycles through the check box bitmaps.

You've successfully completed enhancing the user interface with in-cell bitmaps; this concludes tutorial 10.

Tutorial 11: Using Styles to Highlight Related Data
In this tutorial, you will learn how to change the grid's display to highlight rows by creating row styles depending
upon a value in the grid. True DBGrid uses the FetchRowStyle event to create style characteristics and apply them to
rows dynamically.

Complete the following steps:

1. Start with the project used in Tutorial 10: Enhancing the User Interface with In-Cell Bitmaps.
2. Add thee buttons to the form. Change the caption of Button1 to Prospective Customers, Button2 to Distributors,

and Button3 to Reset the Grid so that the form appears as follows.

TrueDBGrid for WinForms 261

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. Add the following declarations to the General section of Form1:

To write code in Visual Basic

Visual Basic

Dim bflag As Integer

To write code in C#

C#

int bflag;

4. Enter the following code in the Click event of Button1:

To write code in Visual Basic

Visual Basic

' Prospective Customers.
Me.C1TrueDBGrid1.FetchRowStyles = True
bFlag = 1
Me.C1TrueDBGrid1.Refresh()

To write code in C#

C#

// Prospective Customers.
this.c1TrueDBGrid1.FetchRowStyles = true;
bFlag = 1;
this.c1TrueDBGrid1.Refresh();

5. Enter the following code in the Click event of Button2:

To write code in Visual Basic

Visual Basic

' Distributors.
Me.C1TrueDBGrid1.FetchRowStyles = True
bFlag = 2
Me.C1TrueDBGrid1.Refresh()

To write code in C#

C#

// Distributors.
this.c1TrueDBGrid1.FetchRowStyles = true;
bFlag = 2;
this.c1TrueDBGrid1.Refresh();

6. Enter the following code in the Click event of Button3:

To write code in Visual Basic

Visual Basic

TrueDBGrid for WinForms 262

Copyright © 2019 GrapeCity, Inc. All rights reserved.

' Reset the grid.
Me.C1TrueDBGrid1.FetchRowStyles = False
Me.C1TrueDBGrid1.Refresh()

To write code in C#

C#

// Reset the grid.
this.c1TrueDBGrid1.FetchRowStyles = false;
this.c1TrueDBGrid1.Refresh();

7. Next enter the following code into the FetchRowStyles event. This code interacts with the setting of the
FetchRowStyles property in the click event. When the FetchRowStyles is set to True, the grid fires the
FetchRowStyle event when it needs to repaint the cells. Thus the row style is applied according to the value of
the bflag flag integer:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FetchRowStyle(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchRowStyleEventArgs) Handles C1TrueDBGrid1.FetchRowStyle

 If bFlag = 1 And Me.C1TrueDBGrid1 (e.Row,"CustType") = 1 Then
 Dim fntFont As New Font(e.CellStyle.Font.Name, e.CellStyle.Font.Size,
FontStyle.Bold)
 e.CellStyle.Font = fntFont
 e.CellStyle.ForeColor = System.Drawing.Color.Blue
 End If

 If bFlag = 2 And Me.C1TrueDBGrid1 (e.Row, "CustType") = 4 Then
 e.CellStyle.ForeColor = System.Drawing.Color.White
 e.CellStyle.BackColor = System.Drawing.Color.Red
 End If
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_FetchRowStyle(object sender,
C1.Win.C1TrueDBGrid.FetchRowStyleEventArgs e)
{
 if (bFlag == 1 && (int)this.c1TrueDBGrid1 [e.Row, "CustType"] == 1)
 {
 Font fntFont = new Font(e.CellStyle.Font.Name, e.CellStyle.Font.Size,
FontStyle.Bold);
 e.CellStyle.Font = fntFont;
 e.CellStyle.ForeColor = System.Drawing.Color.Blue;
 }

 if (bFlag == 2 && this.c1TrueDBGrid1 [e.Row, "CustType"] == 4)
 {

TrueDBGrid for WinForms 263

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 e.CellStyle.ForeColor = System.Drawing.Color.White;
 e.CellStyle.BackColor = System.Drawing.Color.Red;
 }
}

Run the program and observe the following:
C1TrueDBGrid1 displays data as in Tutorial 10: Enhancing the User Interface with In-Cell Bitmaps.
Click the Prospective Customers button. The grid should appear as follows.

Click the Distributors button. The grid should now appear as follows:

Finally, click the Reset the Grid button. The grid should now clear itself of the styles.

You've successfully completed using styles to highlight related data; this concludes tutorial 11.

Tutorial 12: Displaying Rows in Alternating Colors

TrueDBGrid for WinForms 264

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In this tutorial, you will learn how to use the AlternatingRows property and built-in styles to apply alternating colors to
grid rows to improve their readability.

Complete the following steps:

1. Start with the project used in Tutorial 10: Enhancing the User Interface with In-Cell Bitmaps.
2. In the Properties window, set the AlternatingRows property to True. The grid has default settings for both the

EvenRow and OddRow styles. Use the default settings first and then change the settings for the EvenRowStyle.

3. Run the program and observe that C1TrueDBGrid1 displays data as in Tutorial 10: Enhancing the User Interface
with In-Cell Bitmaps except that even-numbered rows have a light cyan background.

4. Click the ellipsis button next to the Styles property in the Properties window. This will bring up the
C1TrueDBGrid Style Editor.

5. Select the EvenRowStyle in the left pane, and in the right pane change its BackColor to LightGray. Click OK
and close the editor.

Run the program and observe the following:
C1TrueDBGrid1 displays data as in the previous image, except that even-numbered rows now have a light gray
background:

TrueDBGrid for WinForms 265

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This concludes the tutorial.

Tutorial 13: Implementing Drag-and-Drop Functionality
In this tutorial, you will learn how to implement drag-and-drop functionality in True DBGrid for WinForms.

Set up the True DBGrid for WinForms controls

Complete the following steps:

1. Start a new .NET project
2. Place two C1TrueDBGrid controls (C1TrueDBGrid1, C1TrueDBGrid2) onto the form. Also add three labels onto

the form and arrange them to look like the picture below.
3. In the C1TrueDBGrid Tasks menu for C1TrueDBGrid1, locate the Choose Data Source drop-down and select

Add Project Data Source. In the adapter's Data Source Configuration Wizard, either select a connection to
C1NWind.mdb or create a new connection to this database. On the Choose your database objects page of
the wizard, select all fields in the Customers table and type "DsCustomers" into the DataSet name box, and
then finish out the wizard.

4. In the C1TrueDBGrid Tasks menu for C1TrueDBGrid2, locate the Choose Data Source drop-down and select
Add Project Data Source. In the adapter's Data Source Configuration Wizard, either select a connection to
C1NWind.mdb or create a new connection to this database. On the Choose your database objects page of
the wizard, select all fields in the CallList table and type "DsCallList" into the DataSet name box, and then
finish out the wizard.

5. In the general section of the form, add the following declarations:

To write code in Visual Basic

Visual Basic

Dim _ptStartDrag As Point
Dim _dragRow As Long

To write code in C#

C#

TrueDBGrid for WinForms 266

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Point _ptStartDrag;
long _dragRow;

6. Visual Studio adds the following code to the Load event of Form1 to fill the new datasets:

To write code in Visual Basic

Visual Basic

Me.CallListTableAdapter.Fill(Me.DsCallList.CallList)
Me.CustomersTableAdapter.Fill(Me.DsCustomers.Customers)

To write code in C#

C#

this.CallListTableAdapter.Fill(this.DsCallList.CallList);
this.CustomersTableAdapter.Fill(this.DsCustomers.Customers);

7. For the first grid (C1TrueDBGrid1) set the AllowDrag property to True. While, for the second grid, set the
AllowDrop property to True.

8. Right-click C1TrueDBGrid1 and select Retrieve Fields. Do the same with the other grid.
9. Open up the C1TrueDBGrid Designer for C1TrueDBGrid1 by clicking on the ellipsis button next to the

Columns property for the C1TrueDBGrid in the Properties window.
10. Remove all of the columns from the grid except LastName, FirstName, Company, and Phone by clicking the

Remove Column button for each column to remove. Enter the C1TrueDBGrid Designer for the other grid and
remove all of its columns except Customer, Phone, and CallDate.

11. In the Properties window set the MarqueeStyle for C1TrueDBGrid1 to SolidCellBorder. In the C1TrueDBGrid
Designer set Column 3's (Phone) NumberFormat property to "(###)###-####". Open up the C1TrueDBGrid
Designer for the second grid and set its Column 2's NumberFormat property to "(###)###-####". The grid
should now look like the following:

Add code to your project

TrueDBGrid for WinForms 267

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This section describes the code needed to drag the contents of a cell or row from C1TrueDBGrid1 to C1TrueDBGrid2.
The code assumes that if you want to drag the entire row of data to C1TrueDBGrid2 in order to add a new record
there.

1. Add the following subroutine to the project to reset the MarqueeStyle property of each grid, which is used to
provide visual feedback while dragging is in progress. The reset routine will be called to perform clean-up after
a drag-and-drop operation concludes.

To write code in Visual Basic

Visual Basic

Private Sub ResetDragDrop()
 ' Turn off drag-and-drop by resetting the highlight and label text.
 Me._ptStartDrag = Point.Empty
 Me._dragRow = - 1
 Me.C1TrueDBGrid1.MarqueeStyle =
C1.Win.C1TrueDBGrid.MarqueeEnum.SolidCellBorder
 Me.C1TrueDBGrid2.MarqueeStyle =
C1.Win.C1TrueDBGrid.MarqueeEnum.SolidCellBorder
 Me.Label3.Text = "Drag a row from the top grid and drop it on the bottom
grid."
End Sub

To write code in C#

C#

private void ResetDragDrop()
{
 // Turn off drag-and-drop by resetting the highlight and label text.
 this._ptStartDrag = Point.Empty;
 this._dragRow = - 1;
 this.c1TrueDBGrid1.MarqueeStyle =
C1.Win.C1TrueDBGrid.MarqueeEnum.SolidCellBorder;
 this.c1TrueDBGrid2.MarqueeStyle =
C1.Win.C1TrueDBGrid.MarqueeEnum.SolidCellBorder;
 this.label3.Text = "Drag a row from the top grid and drop it on the bottom
grid.";
}

2. Enter the following code to handle the mouse related events:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_MouseDown(ByVal sender As Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles C1TrueDBGrid1.MouseDown
 Dim row, col As Integer
 Me._ptStartDrag = Point.Empty
 Me._dragRow = - 1
 If Me.C1TrueDBGrid1.CellContaining(e.X, e.Y, row, col) Then

 ' Save the starting point of the drag operation.

TrueDBGrid for WinForms 268

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Me._ptStartDrag = New Point(e.X, e.Y)
 Me._dragRow = row
 End If
End Sub

Private Sub C1TrueDBGrid1_MouseMove(ByVal sender As Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles C1TrueDBGrid1.MouseMove

 ' If we don't have an empty start drag point, then the drag has been
initiated.
 If Not Me._ptStartDrag.IsEmpty Then

 ' Create a rectangle that bounds the start of the drag operation by 2
pixels.
 Dim r As New Rectangle(Me._ptStartDrag, Size.Empty)
 r.Inflate(2, 2)

 ' If we've moved more than 2 pixels, start the drag operation.
 If Not r.Contains(e.X, e.Y) Then
 Me.C1TrueDBGrid1.Row = Me._dragRow
 Me.C1TrueDBGrid1.MarqueeStyle =
C1.Win.C1TrueDBGrid.MarqueeEnum.HighlightRow
 Me.C1TrueDBGrid1.DoDragDrop(Me._dragRow, DragDropEffects.Copy)
 End If
 End If
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)
{
 int row, col;
 this._ptStartDrag = Point.Empty;
 this._dragRow = - 1;
 if (this.c1TrueDBGrid1.CellContaining(e.X, e.Y, row, col))
 {
 // Save the starting point of the drag operation.
 this._ptStartDrag = new Point(e.X, e.Y);
 this._dragRow = row;
 }
}

private void C1TrueDBGrid1_MouseMove(object sender,
System.Windows.Forms.MouseEventArgs e)
{
 // If we don't have an empty start drag point, then the drag has been
initiated.
 if (!this._ptStartDrag.IsEmpty)
 {

TrueDBGrid for WinForms 269

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // Create a rectangle that bounds the start of the drag operation by 2
pixels.
 Rectangle r = new Rectangle(this._ptStartDrag, Size.Empty);
 r.Inflate(2, 2);

 // If we've moved more than 2 pixels, start the drag operation.
 if (!r.Contains(e.X, e.Y))
 {
 this.c1TrueDBGrid1.Row = this._dragRow;
 this.c1TrueDBGrid1.MarqueeStyle =
C1.Win.C1TrueDBGrid.MarqueeEnum.HighlightRow;
 this.c1TrueDBGrid1.DoDragDrop(this._dragRow, DragDropEffects.Copy);
 }
 }
}

3. Enter the following code to handle the dragging and dropping events:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid2_DragEnter(ByVal sender As Object, ByVal e As
System.Windows.Forms.DragEventArgs) Handles C1TrueDBGrid2.DragEnter
 Me.Label3.Text = "Create a new record when dropped..."
 e.Effect = DragDropEffects.Copy
End Sub

Private Sub C1TrueDBGrid2_DragDrop(ByVal sender As Object, ByVal e As
System.Windows.Forms.DragEventArgs) Handles C1TrueDBGrid2.DragDrop
 Try
 Dim row As Integer = CInt(e.Data.GetData(GetType(Integer)))

 ' Use the grid's indexer to get some data.
 Dim custname As String = Me.C1TrueDBGrid1(row, "FirstName").ToString()

 ' Use the CellText() method to get some data.
 custname += " " + Me.C1TrueDBGrid1.Columns("LastName").CellText(row)

 ' Use the CellValue() method to get some data.
 custname += " " +
Me.C1TrueDBGrid1.Columns("Company").CellValue(row).ToString()

 ' Add a new row to the data set for the bottom grid.
 Dim drv As DataRowView = Me.DsCallList.CallList.DefaultView.AddNew()
 drv("CallDate") = DateTime.Now
 drv("Customer") = custname
 drv("Phone") = Me.C1TrueDBGrid1.Columns("Phone").Value.ToString()
 drv.EndEdit()
 Me.C1TrueDBGrid2.MoveLast()
 Me.C1TrueDBGrid2.Select()

 ' Commit changes to the database.

TrueDBGrid for WinForms 270

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Dim inserted As DataSet = Me.DsCallList.GetChanges(DataRowState.Added)
 If Not (inserted Is Nothing) Then
 Me.CallListTableAdapter.Update(inserted)
 End If
 Me.ResetDragDrop()
 Catch ex As System.Exception
 MessageBox.Show(ex.Message)
 End Try
End Sub

To write code in C#

C#

private void C1TrueDBGrid2_DragEnter(object sender,
System.Windows.Forms.DragEventArgs e)
{
 this.label3.Text = "Create a new record when dropped...";
 e.Effect = DragDropEffects.Copy;
}

private void C1TrueDBGrid2_DragDrop(object sender,
System.Windows.Forms.DragEventArgs e)
{
 try
 {
 int row = (int)e.Data.GetData(typeof(int));

 // Use the grid's indexer to get some data.
 string custname = this.c1TrueDBGrid1[row, "FirstName"].ToString();

 // Use the CellText() method to get some data.
 custname += " " + this.c1TrueDBGrid1.Columns["LastName"].CellText(row);

 // Use the CellValue() method to get some data.
 custname += " " +
this.c1TrueDBGrid1.Columns["Company"].CellValue(row).ToString();

 // Add a new row to the data set for the bottom grid.
 DataRowView drv = this.DsCallList.CallList.DefaultView.AddNew();
 drv["CallDate"] = DateTime.Now;
 drv["Customer"] = custname;
 drv["Phone"] = this.c1TrueDBGrid1.Columns["Phone"].Value.ToString();
 drv.EndEdit();
 this.c1TrueDBGrid2.MoveLast();
 this.c1TrueDBGrid2.Select();

 // Commit changes to the database.
 DataSet inserted = this.DsCallList.GetChanges(DataRowState.Added);
 if (! (inserted == null))
 {
 this.CallListTableAdapter.Update(inserted);

TrueDBGrid for WinForms 271

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 }
 this.ResetDragDrop();
 }
 catch (System.Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Run the program and observe the following:
If an item in a column in C1TrueDBGrid1 is dragged, the entire row in C1TrueDBGrid1 is highlighted, indicating
that the entire row of data is being dragged.
When dragging to TDBGrid2, the current cell marquee (a solid border around the cell) disappears.

If the data is dropped on C1TrueDBGrid2, a new record is created using the data from the current row of
C1TrueDBGrid1.

You've successfully completed implementing drag-and-drop in C1TrueDBGrid; this concludes tutorial 13.

Tutorial 14: Creating a Grid with Fixed, Nonscrolling
Columns
Often, you would like to prevent one or more columns from scrolling horizontally or vertically so that they will always
be in view. The SplitCollection of True DBGrid provides a generalized mechanism for defining groups of adjacent
columns, and can be used to implement any number of fixed, nonscrolling columns or rows. In this tutorial, you will
learn how to write code to create a grid with two horizontal splits, and then "fix" a pair of columns in the leftmost
split.

Complete the following steps:

TrueDBGrid for WinForms 272

Copyright © 2019 GrapeCity, Inc. All rights reserved.

1. Follow Tutorial 1: Binding True DBGrid to a DataSet to create a project with a C1TrueDBGrid bound to a
DataSet.

2. In the Load event for Form1, place the following code to create an additional split and to fix columns 0 and 1
in the leftmost split:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 ' Create an additional split.
 Me.C1TrueDBGrid1.InsertHorizontalSplit(0)

 ' Hide all columns in the leftmost split except 0 and 1.
 Dim x As Integer
 For x = 2 To Me.C1TrueDBGrid1.Columns.Count - 1
 Me.C1TrueDBGrid1.Splits(0).DisplayColumns(x).Visible = False
 Next

 ' Configure split 0 to display exactly 2 columns.
 With Me.C1TrueDBGrid1.Splits(0)
 .SplitSizeMode = C1.Win.C1TrueDBGrid.SizeModeEnum.NumberOfColumns
 .SplitSize = 2
 .AllowHorizontalSizing = False
 End With

 ' Make columns 0 and 1 invisible in split 1.
 Me.C1TrueDBGrid1.Splits(1).DisplayColumns(0).Visible = False
 Me.C1TrueDBGrid1.Splits(1).DisplayColumns(1).Visible = False

 ' Turn off record selectors in split 1.
 Me.C1TrueDBGrid1.Splits(1).RecordSelectors = False
End Sub

To write code in C#

C#

private void Form1_Load(System.object sender, System.EventArgs e)
{
 // Create an additional split.
 this.c1TrueDBGrid1.InsertHorizontalSplit(0);

 // Hide all columns in the leftmost split except 0 and 1.
 int x;
 for (x = 2 ; x < this.c1TrueDBGrid1.Columns.Count; x++)
 {
 this.c1TrueDBGrid1.Splits[0].DisplayColumns[x].Visible = false;
 }

 // Configure split 0 to display exactly 2 columns.
 this.c1TrueDBGrid1.Splits[0].SplitSizeMode =

TrueDBGrid for WinForms 273

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1.Win.C1TrueDBGrid.SizeModeEnum.NumberOfColumns;
 this.c1TrueDBGrid1.Splits[0].SplitSize = 2;
 this.c1TrueDBGrid1.Splits[0].AllowHorizontalSizing = false;

 // Make columns 0 and 1 invisible in split 1.
 this.c1TrueDBGrid1.Splits[1].DisplayColumns[0].Visible = false;
 this.c1TrueDBGrid1.Splits[1].DisplayColumns[1].Visible = false;

 // Turn off record selectors in split 1.
 this.c1TrueDBGrid1.Splits[1].RecordSelectors = false;
}

Run the program and observe the following:
C1TrueDBGrid displays data from the Data control as in Tutorial 1: Binding True DBGrid to a DataSet.
The two columns (First and Last) in the leftmost split are fixed and cannot be scrolled. In fact, there is no
horizontal scroll bar present under the left split. A horizontal scroll bar appears under the rightmost split,
allowing users to scroll the columns in this split.

Use splits to create fixed, non-scrolling columns anywhere within the grid – even in the middle. Also use splits to
present different views of data. For example, splits can be created that scroll independently (in the vertical direction)
so that users may compare records at the beginning of the database with those at the end. For more information, see
How to Use Splits.

You've successfully completed creating a grid with fixed, nonscrolling columns; this concludes tutorial 14.

Tutorial 15: Using PrintInfo and Print Preview
In this tutorial, you will learn how to use the printing and exporting capabilities of True DBGrid for WinForms.

Complete the following steps:

1. Start with the project created in Tutorial 1: Binding True DBGrid to a DataSet.
2. Add one Button to the form (Button1) and change its Text property to "Print Preview".
3. Enter the following code in the Load event of Form1. It changes the BackColor of a column, changes a

TrueDBGrid for WinForms 274

Copyright © 2019 GrapeCity, Inc. All rights reserved.

column's font, sets the NumberFormat property for a column to the FormatText event, and changes the
HeadingStyle:

To write code in Visual Basic

Visual Basic

' Change the presentation of the grid.
With Me.C1TrueDBGrid1.Splits(0).DisplayColumns
 .Item("Country").Style.BackColor = System.Drawing.Color.Cyan
 Dim fntFont As Font
 fntFont = New Font("Times New Roman", .Item("Country").Style.Font.Size,
FontStyle.Regular)
 .Item("Country").Style.Font = fntFont
 .Item("Last").Style.ForeColor = System.Drawing.Color.Red
End With
Me.C1TrueDBGrid1.Columns("last").NumberFormat = "FormatText Event"
With Me.C1TrueDBGrid1.HeadingStyle
 Dim fntfont As Font
 fntfont = New Font(.Font.Name, .Font.Size, FontStyle.Bold)
 .Font = fntfont
 .BackColor = System.Drawing.Color.Blue
 .ForeColor = System.Drawing.Color.Yellow
End With

To write code in C#

C#

// Change the presentation of the grid.
C1DisplayColumn col = this.c1TrueDBGrid1.Splits[0].DisplayColumns["Country"];
col.Style.BackColor = System.Drawing.Color.Cyan;
Font fntFont;
fntFont = new Font("Times new Roman", col.Style.Font.Size, FontStyle.Regular);
col.Style.Font = fntFont;
c1TrueDBGrid1.Splits[0].DisplayColumns["Last"].Style.ForeColor =
System.Drawing.Color.Red;
this.c1TrueDBGrid1.Columns["last"].NumberFormat = "FormatText event";
Font fntfont;
fntfont = new Font(Font.Name, this.c1TrueDBGrid1.HeadingStyle.Font.Size,
FontStyle.Bold);
this.c1TrueDBGrid1.HeadingStyle.Font = fntfont;
this.c1TrueDBGrid1.HeadingStyle.BackColor = System.Drawing.Color.Blue;
this.c1TrueDBGrid1.HeadingStyle.ForeColor = System.Drawing.Color.Yellow;

4. In the previous code the NumberFormat property for a column was set to FormatText. This means that the
FormatText event will fire enabling the programmer to change the style and format of column values. Enter
the following code into the FormatText event, which changes the column values to uppercase:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FormatText(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FormatTextEventArgs) Handles C1TrueDBGrid1.FormatText

TrueDBGrid for WinForms 275

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 e.Value = UCase(e.Value)
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_FormatText(object sender,
C1.Win.C1TrueDBGrid.FormatTextEventArgs e)
{
 e.Value = e.Value.ToUpper();
}

5. Add the following code to the Click event of Button1. It uses the PrintInfo object and its properties and
methods to create a print page header and footer. It ends by calling the PrintPreview method that invokes the
Print Preview window:

To write code in Visual Basic

Visual Basic

With Me.C1TrueDBGrid1.PrintInfo
 Dim fntFont As Font
 fntFont = New Font(.PageHeaderStyle.Font.Name, .PageHeaderStyle.Font.Size,
FontStyle.Italic)
 .PageHeaderStyle.Font = fntFont
 .PageHeader = "Composers Table"

 ' Column headers will be on every page.
 .RepeatColumnHeaders = True

 ' Display page numbers (centered).
 .PageFooter = "Page: \p"

 ' Invoke print preview.
 .UseGridColors = True
 .PrintPreview()
End With

To write code in C#

C#

Font fntFont;
fntFont = new Font(this.c1TrueDBGrid1.PrintInfo.PageHeaderStyle.Font.Name,
this.c1TrueDBGrid1.PrintInfo.PageHeaderStyle.Font.Size, FontStyle.Italic);
this.c1TrueDBGrid1.PrintInfo.PageHeaderStyle.Font = fntFont;
this.c1TrueDBGrid1.PrintInfo.PageHeader = "Composers Table";

// Column headers will be on every page.
this.c1TrueDBGrid1.PrintInfo.RepeatColumnHeaders = true;

// Display page numbers (centered).
this.c1TrueDBGrid1.PrintInfo.PageFooter = "Page: \\p";

TrueDBGrid for WinForms 276

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Invoke print preview.
this.c1TrueDBGrid1.PrintInfo.UseGridColors = true;
this.c1TrueDBGrid1.PrintInfo.PrintPreview();

Run the program and observe the following:
C1TrueDBGrid1 displays the data using the font and color changes specified in step 4.

Clicking Print Preview button will open the PrintPreview Window, which allows you to display and
customize the layout of each page before it is printed. Note that the output mirrors the format of the grid.
The PrintPreview Window appears as shown below:

TrueDBGrid for WinForms 277

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You've successfully completed using PrintInfo and Print Preview; this concludes tutorial 15.

Tutorial 16: Using the Hierarchical Display
In this tutorial, you will learn how to display Master Detail DataSet information through the grid's hierarchical display.
This tutorial is similar to Tutorial 3: Linking Multiple True DBGrid Controls, but this tutorial displays the same master
detail information as Tutorial 3: Linking Multiple True DBGrid Controls, except it only uses one C1TrueDBGrid object.

Complete the following steps:

1. Start by setting up a form with a grid and Master Detail DataSet by following the steps in Tutorial 3: Linking
Multiple True DBGrid Controls.

2. In the Properties window, set the DataSource property of the grid to dsMasterDetail and the DataMember
property to Composer.

3. Next in the Load event of Form1 add the following code, which fills both the DataAdapters and sets the grid's
display to hierarchical:

To write code in Visual Basic

Visual Basic

Me.ComposerTableAdapter.Fill(Me.DsMasterDetail.Composer)
Me.OpusTableAdapter.Fill(this.DsMasterDetail.Opus)
Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.Hierarchical

To write code in C#

C#

this.ComposerTableAdapter.Fill(this.DsMasterDetail.Composer);
this.OpusTableAdapter.Fill(this.DsMasterDetail.Opus);
this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.Hierarchical;

Run the program and observe the following:
C1TrueDBGrid1 displays the Composers table as it would if it were bound to it, but each row has an expand
icon. Expand one of the rows. Notice that the associated Opus column data is displayed in the far columns of
the grid. The data showing relates to the record in the Composers table that was expanded:

TrueDBGrid for WinForms 278

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You've successfully completed using the hierarchical display; this concludes the tutorial.

Tutorial 17: Creating a Grouping Display
In this tutorial, you will learn how to use the DataView property to create a Grouping area above the grid, which
enables the user to sort the data by columns at run time.

Complete the following steps:

1. Start with the project created in Tutorial 1: Binding True DBGrid to a DataSet.
2. Add the following code to the Load event of Form1 after the current DataAdapter code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy

To write code in C#

C#

this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy;

Run the program and observe the following:
C1TrueDBGrid1 displays the data specified in Tutorial 1: Binding True DBGrid to a DataSet.
Notice that there is a grouping section above the grid now.
Click the Country column header and drag it into the grouping area. Your grid should now look like the
following:

TrueDBGrid for WinForms 279

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Notice that the C1TrueDBGrid has placed all of the members of the Country class into the left column and each
row has an expand icon. Clicking on the expand icon will show you the data for every composer born in this
country.
Now drag the Last column header into the grouping area, then click the expand icon next to Germany. Notice
that the data is first sorted by country, then sorted by the last name of the composer. Clicking on the expand
icon for one of the composers under last will bring up the remaining columns of data:

You've successfully completed creating a grouping area in the grid; this concludes the tutorial.

Tutorial 18: Using Value Translation
In this tutorial, you will learn how to use the C1TrueDBDropDowns ValueTranslate property to automatically translate
data from the drop-down detail data to the grid's master data.

Complete the following steps:

1. Start with the project created in Tutorial 8: Attaching a Drop-Down Control to a Grid Cell.

TrueDBGrid for WinForms 280

Copyright © 2019 GrapeCity, Inc. All rights reserved.

2. In the Load event of the form add the following code to the existing code:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBDropDown1.ValueTranslate = True
Me.C1TrueDBDropDown1.ListField = "TypeDesc"
Me.C1TrueDBDropDown1.DataField = "TypeID"

To write code in C#

C#

this.c1TrueDBDropDown1.ValueTranslate = true;
this.c1TrueDBDropDown1.ListField = "TypeDesc";
this.c1TrueDBDropDown1.DataField = "TypeID";

Run the program and observe the following:
C1TrueDBGrid1 displays the data specified in Tutorial 8: Attaching a Drop-Down Control to a Grid Cell.
The values in the CustType column of the grid now display the long descriptions displayed in the drop-down.
The values were automatically translated from the drop-down to the grid column at run time.

You've successfully completed using the C1TrueDBDropDowns ValueTranslate property; this concludes the tutorial.

Tutorial 19: Using Range Selection
In this tutorial, you will learn how to use the SelectedRows and SelectedCols objects copy a range from the grid in
such a format that it can be pasted into Microsoft Excel.

Complete the following steps:

1. Start with the project created in Tutorial 1: Binding True DBGrid to a DataSet.
2. Add a command button to the form, place it in the lower left corner of the form, and set its Text property to

"Copy".
3. Next add the following code to the Click event of Button1:

To write code in Visual Basic

Visual Basic

' String to be copied to the clipboard.
Dim strTemp As String

Dim row As Integer
Dim col As C1.Win.C1TrueDBGrid.C1DataColumn
Dim cols As Integer, rows As Integer
If Me.C1TrueDBGrid1.SelectedRows.Count > 0 Then
 For Each row In Me.C1TrueDBGrid1.SelectedRows

 ' Copy everything here.
 For Each col In Me.C1TrueDBGrid1.SelectedCols
 strTemp = strTemp & col.CellText(row) & vbTab

TrueDBGrid for WinForms 281

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Next
 strTemp = strTemp & vbCrLf
 Next
 System.Windows.Forms.Clipboard.SetDataObject(strTemp, False)
 MessageBox.Show ("Range of " & Me.C1TrueDBGrid1.SelectedCols.Count & " x " &
C1TrueDBGrid1.SelectedRows.Count & " cells have been copied to the clipboard in
TAB delimited format")
Else
 MessageBox.Show ("Please select a range of cells")
End If

To write code in C#

C#

// String to be copied to the clipboard.
string strTemp;

int row;
C1.Win.C1TrueDBGrid.C1DataColumn col;
int cols, rows;
if (this.c1TrueDBGrid1.SelectedRows.Count > 0)
{
 foreach (row in this.c1TrueDBGrid1.SelectedRows)
 {

 // Copy everything here.
 foreach (col in this.c1TrueDBGrid1.SelectedCols)
 {
 strTemp = strTemp + col.CellText(row) + "\t";
 }
 strTemp = strTemp + "\n";
 }
 System.Windows.Forms.Clipboard.SetDataObject(strTemp, false);
 MessageBox.Show ("Range of " +
this.c1TrueDBGrid1.SelectedCols.Count.ToString() + " x " +
this.c1TrueDBGrid1.SelectedRows.Count.ToString() + " cells have been copied to
the clipboard in TAB delimited format");
}
else
{
 MessageBox.Show ("Please select a range of cells");
}

Run the program and observe the following:
C1TrueDBGrid1 displays the data specified in Tutorial 1: Binding True DBGrid to a DataSet.
If you select a range of cells in the True DBGrid, then press the copy button a message box will appear
detailing the cells that you have copied to the clipboard.

TrueDBGrid for WinForms 282

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Now open Microsoft Excel. Select the exact amount of row and column cells as you selected in the True
DBGrid, then click the Paste button. The cells that you copied in the grid are now pasted into Microsoft Excel.

You've successfully completed using range selection; this concludes the tutorial.

Tutorial 20: Displaying Multiple Data Views
In this tutorial, you will learn how to use the grid's DataView property to display data in uncommon display formats
such as Inverted View, GroupBy View, and Form View.

Complete the following steps:

1. Start with the project created in Tutorial 1: Binding True DBGrid to a DataSet.
2. Add a ComboBox control (ComboBox1) to the project, and set its Text property to "Data View".
3. In the Properties window, open up the List editor for the ComboBox by clicking on the ellipsis button next to

the Items property. In this editor add the following items:
Normal
Inverted
Form
GroupBy
MultipleLines
Hierarchical

4. Now add the following code to the existing code in the Load event of Form1:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.Normal
Me.ComboBox1.SelectedIndex = 0

To write code in C#

C#

this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.Normal;

TrueDBGrid for WinForms 283

Copyright © 2019 GrapeCity, Inc. All rights reserved.

this.comboBox1.SelectedIndex = 0;

5. Now add the following code to the SelectedIndexChanged event of ComboBox1. It changes the DataView
property of the grid for each value the user selects in the ComboBox:

To write code in Visual Basic

Visual Basic

Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles ComboBox1.SelectedIndexChanged
 Select Case ComboBox1.SelectedItem
 Case "Normal"
 Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.Normal
 Case "Inverted"
 Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.Inverted
 Case "Form"
 Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.Form
 Case "GroupBy"
 Me.C1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy
 Case "MultipleLines"
 Me.C1TrueDBGrid1.DataView =
C1.Win.C1TrueDBGrid.DataViewEnum.MultipleLines
 Case "Hierarchical"
 MessageBox.Show ("Hierarchical View can't be set at run time. Please
see the Hierarchical Display tutorial")
 End Select
End Sub

To write code in C#

C#

private void ComboBox1_SelectedIndexChanged(object sender, System.EventArgs e)
{
 switch (ComboBox1.SelectedItem)
 {
 case "Normal":
 this.c1TrueDBGrid1.DataView =
C1.Win.C1TrueDBGrid.DataViewEnum.Normal;
 break;
 case "Inverted":
 this.c1TrueDBGrid1.DataView =
C1.Win.C1TrueDBGrid.DataViewEnum.Inverted;
 break;
 case "Form":
 this.c1TrueDBGrid1.DataView = C1.Win.C1TrueDBGrid.DataViewEnum.Form;
 break;
 case "GroupBy":
 this.c1TrueDBGrid1.DataView =
C1.Win.C1TrueDBGrid.DataViewEnum.GroupBy;
 break;
 case "MultipleLines":
 this.c1TrueDBGrid1.DataView =

TrueDBGrid for WinForms 284

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1.Win.C1TrueDBGrid.DataViewEnum.MultipleLines;
 break;
 case "Hierarchical";
 MessageBox.Show ("Hierarchical View can't be set at run time. Please
see the Hierarchical Display tutorial");
 break;
 }
}

Run the program and observe the following:
C1TrueDBGrid1 displays the data specified in Tutorial 1: Binding True DBGrid to a DataSet.
Change the ComboBox to Inverted. Inverted view shows the grid columns as rows and the grid rows as column.
The grid should now look like the following:

Change the ComboBox to Form. Form view shows each record in a Form-like view that is optimal for data-entry.
The grid should now look like the following:

TrueDBGrid for WinForms 285

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Change the ComboBox to GroupBy. GroupBy View contains a grouping section above the grid where columns
can be dragged. Dragging a column to this area sorts the rest of the grid by this column. Drag the Company
column to the grouping area. The grid should now look like the following:

Change the ComboBox to MultipleLines. The MultipleLines View shows all of the columns in the current grid
area, wrapping the columns that will not fit to successive lines. Notice that the three columns that would have
spilled off of the grid are now on a second line. The grid should now look like the following:

Now set the ComboBox to Hierarchical. No changes occur and the Message Box statement included in the
event above pops up which is due to the fact that the hierarchical DataView cannot be set at run time.
Hierarchical data must be set before the application runs. For more information on this view, see Tutorial 16:
Using the Hierarchical Display.

You've successfully completed displaying multiple data views; this concludes the tutorial.

Tutorial 21: Adding a Filter Bar
In this tutorial, you will learn how to use the grid's Filter Bar functionality to allow the end user to sort column data
dynamically at run time. Complete the following steps:

TrueDBGrid for WinForms 286

Copyright © 2019 GrapeCity, Inc. All rights reserved.

1. Start with the project created in Tutorial 1: Binding True DBGrid to a DataSet.
2. After the existing code in the Load event of Form1 add the following line:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.FilterBar = True

To write code in C#

C#

this.c1TrueDBGrid1.FilterBar = true;

Run the program and observe the following:
C1TrueDBGrid1 displays the data specified in Tutorial 1: Binding True DBGrid to a DataSet.
Above the grid data is now a line that accepts user input. This is the Filter Bar. When a user enters data into the
bar the grid automatically filters the column data.

Before Filter:

After Filter:

TrueDBGrid for WinForms 287

Copyright © 2019 GrapeCity, Inc. All rights reserved.

If you would prefer to handle the filtering yourself, then you would have to change the AllowFilter property to
False (keeping FilterBar equal to True). Then you would have to handle the FilterChange event which fires
each time the state of the Filter Bar changes.

You've successfully completed adding a filter bar; this concludes the tutorial.

Tutorial 22: Borders, Scroll Tracking, and Scroll Tips
In this tutorial, you will learn how to adjust borders, add scroll tracking, and add scroll tips to the grid. Complete the
following steps:

1. Create a new project. Add a C1TrueDBGrid control to the form.
2. Add the following items to the form and situate them like they appear in the following image.

Five ComboBoxes (ComboBox1 – 5).
Two GroupBoxes (GroupBox1 – 2) and set their Text property to "Border Size" and "Scrolling"
respectively.
Four Labels (Label1 – 5) and set their Text properties to "Top Width", "Bottom Width", "Left Width",
"Right Width", and "Border Appearance" respectively.
Button (Button1) and set its Text property to "Border Color".
Two Checkboxes and set their text properties to "ScrollTips" and "ScrollTracking".

TrueDBGrid for WinForms 288

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. Add a Color Dialog control to the form (ColorDialog1).
4. In the C1TrueDBGrid Tasks menu, locate the Choose Data Source drop-down and select Add Project Data

Source. In the adapter's Data Source Configuration Wizard, either select a connection to C1NWind.mdb or
create a new connection to this database. On the Choose your database objects page of the wizard, select all
fields in the Customer table and type "DsCustomer" into the DataSet name box, and then finish out the wizard.

5. Click the grid to give it focus, then in the Properties window set the RowHeight property to 40.
6. Visual Studio adds the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.CustomerTableAdapter.Fill(Me.DsCustomer.Customer)

To write code in C#

C#

this.CustomerTableAdapter.Fill(this.DsCustomer.Customer);

7. In the general section of Form1 add the following declarations:

To write code in Visual Basic

Visual Basic

' Copy the data.
Dim dbTable As DataTable

Dim borderColor As Color
Dim borderLeft As Integer, borderTop As Integer, borderRight As Integer,
borderBottom As Integer
Dim borderType As C1.Win.C1TrueDBGrid.BorderTypeEnum

TrueDBGrid for WinForms 289

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

// Copy the data.
DataTable dbTable;

Color borderColor;
int borderLeft, int borderTop, int borderRight, int borderBottom;
C1.Win.C1TrueDBGrid.BorderTypeEnum borderType;

8. Into the Load event of Form1 add the following code:

To write code in Visual Basic

Visual Basic

dbTable = Me.DsCustomer.Tables(0).Copy()

' Fill each combobox.
FillComboBox1()
FillCombo(ComboBox2)
FillCombo(ComboBox3)
FillCombo(ComboBox4)
FillCombo(ComboBox5)
Me.CheckBox2.Checked = True

' Initalize border sizes.
Me.borderBottom = 1
Me.borderLeft = 1
Me.borderRight = 1
Me.borderTop = 1

To write code in C#

C#

dbTable = this.DsCustomer.Tables[0].Copy();

// Fill each combobox.
FillComboBox1();
FillCombo(comboBox2);
FillCombo(comboBox3);
FillCombo(comboBox4);
FillCombo(comboBox5);
this.checkBox2.Checked = true;

// Initalize border sizes.
this.borderBottom = 1;
this.borderLeft = 1;
this.borderRight = 1;
this.borderTop = 1;

9. Now add the functions that will fill the ComboBoxes:

To write code in Visual Basic

TrueDBGrid for WinForms 290

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

' Fill each combo with numbers from 1 to 10.
Private Sub FillCombo(ByRef com As ComboBox)
 Dim i As Integer
 com.Text = 1
 For i = 1 To 10
 com.Items.Add(i)
 Next
End Sub

' Fill the first combo with border types.
Private Sub FillComboBox1()
 Me.ComboBox1.Text = "None"
 With Me.ComboBox1.Items
 .Add("Fillet")
 .Add("Flat")
 .Add("Groove")
 .Add("Inset")
 .Add("InsetBevel")
 .Add("None")
 .Add("Raised")
 .Add("RaisedBevel")
 End With
End Sub

To write code in C#

C#

// Fill each combo with numbers from 1 to 10.
private void FillCombo(ref ComboBox com)
{
 int i;
 com.Text = 1;
 for (i = 1 ; i <= 10; i++)
 {
 com.Items.Add[I];
 }
}

// Fill the first combo with border types.
private void FillComboBox1()
{
 this.comboBox1.Text = "None";
 this.comboBox1.Items.Add("Fillet");
 this.comboBox1.Items.Add("Flat");
 this.comboBox1.Items.Add("Groove");
 this.comboBox1.Items.Add("Inset");
 this.comboBox1.Items.Add("InsetBevel");
 this.comboBox1.Items.Add("None");
 this.comboBox1.Items.Add("Raised");
 this.comboBox1.Items.Add("RaisedBevel");

TrueDBGrid for WinForms 291

Copyright © 2019 GrapeCity, Inc. All rights reserved.

}

10. Now create a handler for the Click event of Button1 that will set the color of the border using the color dialog
box:

To write code in Visual Basic

Visual Basic

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Dim result As DialogResult
 result = Me.ColorDialog1.ShowDialog()
 If result = DialogResult.OK Then
 borderColor = Me.ColorDialog1.Color
 Button1.BackColor = borderColor
 End If
 UpdateBorder()
End Sub

To write code in C#

C#

private void button1_Click(System.object sender, System.EventArgs e)
button1.Click {
 DialogResult result;
 result = this.colorDialog1.ShowDialog();
 if (result == DialogResult.OK)
 {
 borderColor = this.colorDialog1.Color;
 button1.BackColor = borderColor;
 }
 UpdateBorder();
}

11. Now include the function that updates the borders:

To write code in Visual Basic

Visual Basic

Private Sub UpdateBorder()
 With
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(Me.C1TrueDBGrid1.Col).Style.Borders
 .Color = ColorDialog1.Color
 .BorderType = borderType
 .Bottom = borderBottom
 .Left = borderLeft
 .Right = borderRight
 .Top = borderTop
 End With
End Sub

To write code in C#

TrueDBGrid for WinForms 292

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

private void UpdateBorder()
{
 C1.Win.C1TrueDBGrid.GridBorders b;
 b =
this.c1TrueDBGrid1.Splits[0].DisplayColumns(this.c1TrueDBGrid1.Col).Style.Borders;
 b.Color = colorDialog1.Color;
 b.BorderType = borderType;
 b.Bottom = borderBottom;
 b.Left = borderLeft;
 b.Right = borderRight;
 b.Top = borderTop;
}

12. Now include the code that handles changes in the ComboBox values:

To write code in Visual Basic

Visual Basic

Private Sub ComboBox1_SelectionChangeCommitted(ByVal sender As Object, ByVal e As
System.EventArgs) Handles ComboBox1.SelectionChangeCommitted
 Select Case Me.ComboBox1.SelectedItem
 Case "Fillet"
 Me.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Fillet
 Case "Flat"
 Me.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Flat
 Case "Groove"
 Me.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Groove
 Case "Inset"
 Me.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Inset
 Case "InsetBevel"
 Me.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.InsetBevel
 Case "None"
 Me.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.None
 Case "Raised"
 Me.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Raised
 Case "RaisedBevel"
 Me.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.RaisedBevel
 End Select
 Me.UpdateBorder()
End Sub

Private Sub ComboBox2_SelectionChangeCommitted(ByVal sender As Object, ByVal e As
System.EventArgs) Handles ComboBox2.SelectionChangeCommitted
 Me.borderTop = Me.ComboBox2.SelectedItem
 Me.UpdateBorder()
End Sub

Private Sub ComboBox3_SelectionChangeCommitted(ByVal sender As Object, ByVal e As
System.EventArgs) Handles ComboBox3.SelectionChangeCommitted
 Me.borderBottom = Me.ComboBox3.SelectedItem
 Me.UpdateBorder()
End Sub

TrueDBGrid for WinForms 293

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Private Sub ComboBox4_SelectionChangeCommitted(ByVal sender As Object, ByVal e As
System.EventArgs) Handles ComboBox4.SelectionChangeCommitted
 Me.borderLeft = Me.ComboBox4.SelectedItem
 Me.UpdateBorder()
End Sub

Private Sub ComboBox5_SelectionChangeCommitted(ByVal sender As Object, ByVal e As
System.EventArgs) Handles ComboBox5.SelectionChangeCommitted
 Me.borderRight = Me.ComboBox5.SelectedItem
 Me.UpdateBorder()
End Sub

To write code in C#

C#

private void ComboBox1_SelectionChangeCommitted(object sender, System.EventArgs
e) {
 switch (this.comboBox1.SelectedItem)
 {
 case "Fillet";
 this.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Fillet;
 break;
 case "Flat";
 this.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Flat;
 break;
 case "Groove";
 this.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Groove;
 break;
 case "Inset";
 this.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Inset;
 break;
 case "InsetBevel";
 this.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.InsetBevel;
 break;
 case "None";
 this.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.None;
 break;
 case "Raised";
 this.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.Raised;
 break;
 case "RaisedBevel";
 this.borderType = C1.Win.C1TrueDBGrid.BorderTypeEnum.RaisedBevel;
 break;
 }
 this.UpdateBorder();
}

private void comboBox2_SelectionChangeCommitted(object sender, System.EventArgs
e) {
 this.borderTop = this.comboBox2.SelectedItem;
 this.UpdateBorder();

TrueDBGrid for WinForms 294

Copyright © 2019 GrapeCity, Inc. All rights reserved.

}

private void comboBox3_SelectionChangeCommitted(object sender, System.EventArgs
e) {
 this.borderBottom = this.comboBox3.SelectedItem;
 this.UpdateBorder();
}

private void comboBox4_SelectionChangeCommitted(object sender, System.EventArgs
e) {
 this.borderLeft = this.comboBox4.SelectedItem;
 this.UpdateBorder();
}

private void comboBox5_SelectionChangeCommitted(object sender, System.EventArgs
e) {
 this.borderRight = this.comboBox5.SelectedItem;
 this.UpdateBorder();
}

13. Finally include the code that handles the check boxes and the FetchScrollTips event that sets the ToolTip box
that displays when the user is scrolling:

To write code in Visual Basic

Visual Basic

Private Sub CheckBox1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles CheckBox1.Click
 Me.C1TrueDBGrid1.ScrollTips = Me.CheckBox1.Checked
End Sub

Private Sub CheckBox2_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles CheckBox2.Click
 Me.C1TrueDBGrid1.ScrollTrack = Me.CheckBox2.Checked
End Sub

Private Sub C1TrueDBGrid1_FetchScrollTips(ByVal sender As System.Object, ByVal e
As C1.Win.C1TrueDBGrid.FetchScrollTipsEventArgs) Handles
C1TrueDBGrid1.FetchScrollTips

 ' Set the ScrollTip depending on which scroll bar was moved.
 Select Case e.ScrollBar
 Case C1.Win.C1TrueDBGrid.ScrollBarEnum.Horizontal
 e.ScrollTip = Me.C1TrueDBGrid1.Columns(e.ColIndex).Caption
 Case C1.Win.C1TrueDBGrid.ScrollBarEnum.Vertical
 e.ScrollTip = "Record: " & CStr(e.Row + 1) & " of " &
CStr(Me.dbTable.Rows.Count) & vbCrLf & "Company: " &
Me.dbTable.Rows(e.Row).Item("Company") & vbCrLf & "User code: " &
Me.dbTable.Rows(e.Row).Item("UserCode")
 End Select
 e.TipStyle.ForeColor = Color.Blue
End Sub

TrueDBGrid for WinForms 295

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

private void checkBox1_Click(object sender, System.EventArgs e)
{
 this.c1TrueDBGrid1.ScrollTips = this.checkBox1.Checked;
}

private void checkBox2_Click(object sender, System.EventArgs e)
{
 this.c1TrueDBGrid1.ScrollTrack = this.checkBox2.Checked;
}

private void c1TrueDBGrid1_FetchScrollTips(System.object sender,
C1.Win.C1TrueDBGrid.FetchScrollTipsEventArgs e)
{
 // Set the ScrollTip depending on which scroll bar was moved.
 switch (e.ScrollBar)
 {
 case C1.Win.C1TrueDBGrid.ScrollBarEnum.Horizontal:
 e.ScrollTip = this.c1TrueDBGrid1.Columns[e.ColIndex].Caption;
 break;
 case C1.Win.C1TrueDBGrid.ScrollBarEnum.Vertical:
 e.ScrollTip = "Record: " + (e.Row + 1).ToString() + " of " +
this.dbTable.Rows.Count.ToString() + "\n" + "Company: " + this.dbTable.Rows[e.Row]
["Company"].ToString() + "\n" + "User code: " + this.dbTable.Rows[e.Row]
["UserCode"].ToString();
 break;
 }
 e.TipStyle.ForeColor = Color.Blue;
}

Run the program and observe the following:
C1TrueDBGrid1 displays the data specified.
Setting ScrollTrack to True lets you see the data as it is being scrolled.
Setting ScrollTips to True shows a ToolTip box with column information while the user is scrolling.

By manipulating the ComboBoxes and the Color Dialog, create a border around a column's cells and set them to
a System color.

TrueDBGrid for WinForms 296

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You've successfully adjusted borders, added scroll tracking, and added scroll tips to the grid; this concludes the tutorial.

TrueDBGrid for WinForms 297

Copyright © 2019 GrapeCity, Inc. All rights reserved.

True DBGrid for WinForms Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio, and know how to use the
C1TrueDBGrid control in general. If you are unfamiliar with the True DBGrid for WinForms product, please see the
True DBGrid for WinForms Tutorials first.

Each topic in this section provides a solution for specific tasks using the True DBGrid for WinForms product.

Each task-based help topic also assumes that you have created a new .NET project. Some of the examples reference
the C1NWind.mdb database which is installed in Documents\ComponentOne Samples\Common by default.

Adding a New Row to C1TrueDBGrid
To add a new row to C1TrueDBGrid, use the AllowAddNew property and the UpdateData method.

Complete the following steps:

1. Set the AllowAddNew property to True.

In the Designer

Locate the AllowAddNew property in the Properties window and set it to True.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AllowAddNew = True

To write code in C#

C#

this.c1TrueDBGrid1.AllowAddNew = true;

2. Move to the last column in the grid by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.MoveLast()

To write code in C#

C#

this.c1TrueDBGrid.MoveLast();

3. Select the new row:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Row = Me.C1TrueDBGrid1.Row + 1

TrueDBGrid for WinForms 298

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Me.C1TrueDBGrid1.Select()

To write code in C#

C#

this.c1TrueDBGrid1.Row = this.c1TrueDBGrid1.Row + 1;
this.c1TrueDBGrid1.Select();

4. Assign values to the new cells in the first three columns:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns(0).Text = "New Row"
Me.C1TrueDBGrid1.Columns(1).Text = "New Row"
Me.C1TrueDBGrid1.Columns(2).Text = "New Row"

To write code in C#

C#

this.c1TrueDBGrid1.Columns[0].Text = "New Row";
this.c1TrueDBGrid1.Columns[1].Text = "New Row";
this.c1TrueDBGrid1.Columns[2].Text = "New Row";

5. Update the data to the dataset:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.UpdateData()

To write code in C#

C#

this.c1TrueDBGrid1.UpdateData();

What You've Accomplished
In this example, a new row has been added to the C1NWind.mdb:

TrueDBGrid for WinForms 299

Copyright © 2019 GrapeCity, Inc. All rights reserved.

There is also a SelectedRows property which points to a collection which contains a reference to all the selected rows
in the grid.

Selecting a Row
Highlighting a row does not select the row. In order for the row to be selected, it must be added to
the SelectedRowCollection. This can be done using the Add method.

Add the following code to the Click event of the Select button:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.SelectedRows.Add(Me.C1TrueDBGrid1.Bookmark)

To write code in C#

C#

this.c1TrueDBGrid1.SelectedRows.Add(this.c1TrueDBGrid1.Bookmark);

What You've Accomplished
Using this example, the current row is selected:

TrueDBGrid for WinForms 300

Copyright © 2019 GrapeCity, Inc. All rights reserved.

See Tutorial 5: Selecting Multiple Rows Using Bookmarks for an example of the Add method being used.

Accessing the Values of the Selected Rows in the Grid
To access the values of the selected rows in a grid, you must access the SelectedRows collection.

Use the following code to write each of the selected rows to the Debug window:

To write code in Visual Basic

Visual Basic

Dim row As Integer
For Each row In Me.C1TrueDBGrid1.SelectedRows
 Debug.WriteLine(Me.C1TrueDBGrid1.Columns(0).CellValue(row))
Next

To write code in C#

C#

int row;
foreach (int row in this.c1TrueDBGrid1.SelectedRows)
{
 Debug.WriteLine(this.c1TrueDBGrid1.Columns(0).CellValue(row));
}

You can also use the grid's index to access the rows. Use the following code:

To write code in Visual Basic

Visual Basic

Dim row As Integer
For Each row In Me.C1TrueDBGrid1.SelectedRows
 Debug.WriteLine(Me.C1TrueDBGrid1(row, 0).ToString())

TrueDBGrid for WinForms 301

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Next

To write code in C#

C#

int row;
foreach (int row in this.c1TrueDBGrid1.SelectedRows)
{
 Debug.WriteLine(this.c1TrueDBGrid1(row, 0).ToString());
}

For this example, the following code was added to the Button1_Click event in Tutorial 5: Selecting Multiple Rows
Using Bookmarks:

To write code in Visual Basic

Visual Basic

Dim row As Integer
For Each row In Me.C1TrueDBGrid1.SelectedRows
 Debug.WriteLine(Me.C1TrueDBGrid1(row, 1).ToString())
Next

To write code in C#

C#

int row;
foreach (int row in this.c1TrueDBGrid1.SelectedRows)
{
 Debug.WriteLine(this.c1TrueDBGrid1(row, 1).ToString());
}

What You've Accomplished
The Last name of each composer in a selected row is returned in the Debug window:

TrueDBGrid for WinForms 302

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Controling Grid Interaction
The following task-based help topics detail how you can limit your users' interaction with True DBGrid for
WinForms. For example, you can prevent users from interacting with the grid by sorting, editing, and more.

Disabling Column Sorting
To disable column sorting, set the AllowSort property to False. This property can be set either in the designer or in
code.

In the Designer
Locate the AllowSort property in the Properties window and set it to False.

In Code
Add the following code to the Form_Load event to set the AllowSort property to False.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AllowSort = False

To write code in C#

C#

this.c1TrueDBGrid1.AllowSort = false;

What You've Accomplished
Clicking on the First column does not sort the column:

TrueDBGrid for WinForms 303

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Locking a Cell from Being Edited
You may want to prevent the end user from editing the data in particular cells. If you choose, you can lock individual
grid cells from being edited at run time by using the FetchCellStyle event.

To lock the value in cell (1, 0), complete the following steps:

1. Set the FetchStyle property of the column containing the cell to True.

In the Designer

Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.
Select the First column by clicking on its column header in the right pane.
Alternatively, it can also be selected from the drop-down list in the toolbar.
Click the Display Columns tab in the left pane.
Set the FetchStyle property to True.
Click OK to close the designer.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns(0).FetchStyle = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns[0].FetchStyle = true;

2. Set the Locked property of the CellStyle object to True only for the value in row one:

TrueDBGrid for WinForms 304

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FetchCellStyle(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchCellStyleEventArgs) Handles
C1TrueDBGrid1.FetchCellStyle
 If e.Row = 1 Then
 e.CellStyle.Locked = True
 End If
End Sub

To write code in C#

C#

private void C1TrueDBGrid1_FetchCellStyle(object sender,
C1.Win.C1TrueDBGrid.FetchCellStyleEventArgs e)
{
 if (e.Row == 1)
 {
 e.CellStyle.Locked = true;
 }
}

What You've Accomplished
The value in the cell (1, 0) cannot be edited:

Freezing Columns
To freeze columns in the grid, set the Frozen property to True. Freezing columns locks them from being scrolled and

TrueDBGrid for WinForms 305

Copyright © 2019 GrapeCity, Inc. All rights reserved.

also prevents all columns with a lesser index from being scrolled. This property can be set either in the designer or in
code.

In the Designer
1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see

Accessing the C1TrueDBGrid Designer.
2. In the designer, select the Last column by clicking it in the right pane.

The column can also be selected by choosing Last from the drop-down list in the toolbar.
3. Click the Display Column tab in the left pane.
4. Locate the Frozen property and set it to True.
5. Click OK to close the designer.

In Code
Add the following code to the Form_Load event to freeze the Last column:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Last").Frozen = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns["Last"].Frozen = true;

What You've Accomplished
Both the First and Last columns are frozen and will remain on the grid when it is scrolled to the right:

TrueDBGrid for WinForms 306

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Restricting Editing in Specific Columns
To restrict editing in specific columns, set the Locked property to True. This property can be set either in the designer
or in code.

In the Designer
Complete the following steps to lock the Last column:

1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.

2. In the designer, select the Last column by clicking it in the right pane.
The column can also be selected by choosing Last from the drop-down list in the toolbar.

3. Click the Display Column tab in the left pane.
4. Locate the Locked property and set it to True.
5. Click OK to close the designer.

In Code
Add the following code to the Form_Load event to lock the Last column:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Last").Locked = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns["Last"].Locked = true;

What You've Accomplished
The cells in the Last column cannot be edited, but other columns can be edited:

TrueDBGrid for WinForms 307

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Setting the Grid's Appearance
The following task-based help topics detail how you can change the appearance of True DBGrid for WinForms
controls. For example, you can add gradients to columns, change the font, set background color and height of rows,
and more.

Adding a Gradient Fill to a Column
To add a gradient fill to a column, set the GradientMode, BackColor, and BackColor2 properties. Also, setting the
GammaCorrection property to True to apply the gradient with a more uniform intensity. These properties can be set
either in the designer or in code.

In the Tasks Menu
Complete the following steps to set the gradient fill using the C1TrueDBGrid Tasks menu:

1. Select the Last column in the grid and click it to open the C1TrueDBGrid Tasks menu.

2. Select Column Style from the menu.

TrueDBGrid for WinForms 308

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. Click the Fill Effects tab.
4. Set BackColor 2 to Aqua.
5. Set Gradient mode to ForwardDiagonal.
6. Check the Gamma correction box.

TrueDBGrid for WinForms 309

Copyright © 2019 GrapeCity, Inc. All rights reserved.

7. Click Ok to close the Column Style(Last) dialog box.

In the Designer
Alternatively, the gradient fill can also be set through the C1TrueDBGrid Designer. To set the gradient fill using the
designer, complete the following:

1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.

2. Select the Last column by clicking it in the right pane.
The column can also be selected by choosing Last from the drop-down list in the toolbar.

3. Click the Display Column tab in the left pane.
4. Click the ellipsis button next to the Style property to open the Style Editor.
5. In the Style Editor, click the Fill Effects tab.
6. Set BackColor 2 to Aqua.
7. Set Gradient mode to ForwardDiagonal.
8. Check the Gamma correction box.

TrueDBGrid for WinForms 310

Copyright © 2019 GrapeCity, Inc. All rights reserved.

9. Click Ok to close the Style Editor.
10. Click OK to close the C1TrueDBGrid Designer.

In Code
1. Set GradientMode to ForwardDiagonal by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Last").Style.GradientMode =
C1.Win.C1TrueDBGrid.GradientModeEnum.ForwardDiagonal

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns["Last"].Style.GradientMode =
C1.Win.C1TrueDBGrid.GradientModeEnum.ForwardDiagonal;

2. Set BackColor2 to Aqua:

To write code in Visual Basic

TrueDBGrid for WinForms 311

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Last").Style.BackColor2 = Color.Aqua

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns["Last"].Style.BackColor2 =
Color.Aqua;

3. Set GammaCorrection to True:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Last").Style.GammaCorrection = True

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns["Last"].Style.GammaCorrection =
true;

What You've Accomplished
The Last column has a white to aqua, forward diagonal gradient fill:

Formatting Rows by Specific Criteria
To format rows based on specific criteria, use the FetchRowStyles property and the FetchRowStyle event. In this
example, rows that do not have values in the Birth or Death columns will be highlighted green and all other rows will

TrueDBGrid for WinForms 312

Copyright © 2019 GrapeCity, Inc. All rights reserved.

be locked and formatted in Steel Blue, Tahoma font.

1. Set the FetchRowStyles property to True.
In the Designer
Locate the FetchRowStyles property in the Properties window and set it to True. br/>In Code
Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.FetchRowStyles = True

To write code in C#

C#

this.c1TrueDBGrid1.FetchRowStyles = true;

2. Add the FetchRowStyle event:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FetchRowStyle(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchRowStyleEventArgs) Handles C1TrueDBGrid1.FetchRowStyle

End Sub

To write code in C#

C#

private void c1TrueDBGrid1_FetchRowStyle(object sender,
C1.Win.C1TrueDBGrid.FetchRowStyleEventArgs e)
{

}

3. Declare the variables to get the values in the Birth and Death columns by adding the following code to the
FetchRowStyle event:

To write code in Visual Basic

Visual Basic

 ' Declare variables to get the values in the columns.
 Dim bday As String =
Me.C1TrueDBGrid1.Columns("Birth").CellText(e.Row).ToString
 Dim ddate As String =
Me.C1TrueDBGrid1.Columns("Death").CellText(e.Row).ToString

To write code in C#

C#

// Declare variables to get the values in the columns.

TrueDBGrid for WinForms 313

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 string bday = this.c1TrueDBGrid1.Columns["Birth"].CellText(e.Row).ToString;
 string ddate = this.c1TrueDBGrid1.Columns["Death"].CellText(e.Row).ToString;

4. Disable editing and change the font if there is an empty cell in either the Birth or Death column by adding the
following code after the code in step 3:

To write code in Visual Basic

Visual Basic

' If the Birth or Death column does not contain an empty cell, disable editing
and change the font.
 If (bday <> "" AndAlso ddate <> "") And (bday <> "" OrElse ddate <> "") Then
 e.CellStyle.Locked = True
 e.CellStyle.Font = New Font("Tahoma", 9)
 e.CellStyle.ForeColor = Color.SteelBlue
 End If

To write code in C#

C#

// If the Birth or Death column does not contain an empty cell, disable editing
and change the font.
 if ((bday != "" && ddate != "") And (bday != "" || ddate != ""))
 {
 e.CellStyle.Locked = true;
 e.CellStyle.Font = new Font("Tahoma", 9);
 e.CellStyle.ForeColor = Color.SteelBlue;
 }

5. Highlight the rows that contain an empty cell by adding the following code after the code in step 4:

To write code in Visual Basic

Visual Basic

' If the Birth or Death column contains an empty cell, highlight the row.
 If bday = "" Or ddate = "" Then
 e.CellStyle.BackColor = Color.PaleGreen
 End If

To write code in C#

C#

// If the Birth or Death column contains an empty cell, highlight the row.
 if (bday == "" || ddate == ""
 {
 e.CellStyle.BackColor = Color.PaleGreen;
 }

What You've Accomplished
Rows with blank values in the Birth or Death column are highlighted and all other rows are not editable and in a

TrueDBGrid for WinForms 314

Copyright © 2019 GrapeCity, Inc. All rights reserved.

different font. Adding a value to a blank cell will change the formatting of the cell.

Hiding the Record Selectors Column
The Record Selectors column appears by default at the far left side of the control and it includes an icon to indicate
the selected row. To hide the Record Selectors column, set the RecordSelectors property to False. Hiding the Record
Selectors column restricts selecting rows. This property can be set either in the designer or in code.

In the Designer
To set the RecordSelectors property using the C1TrueDBGrid Designer:

1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.

2. In the designer, click Record Selectors in the toolbar to hide the column.

3. Click OK to close the C1TrueDBGrid Designer.

In the Properties Window
Alternatively, the RecordSelectors property can also be set in the Properties window. To set the RecordSelectors
property in the Properties window:

Locate the RecordSelectors property in the Properties window and set it to False.

In Code
Add the following code to the Form_Load event to hide the Record Selectors column:

To write code in Visual Basic

TrueDBGrid for WinForms 315

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Me.C1TrueDBGrid1.RecordSelectors = False

To write code in C#

C#

this.c1TrueDBGrid1.RecordSelectors = false;

What You've Accomplished
The Record Selectors column is not visible:

Highlighting the Row of the Selected Cell
To highlight the row of the selected cell, set the MarqueeStyle property to HighlightRow. This can be set either in the
designer or in code.

In the Designer
Complete the following steps to highlight the row of the selected cell using the designer:

1. Locate the MarqueeStyle property in the Properties window and set it to HighlightRow.

TrueDBGrid for WinForms 316

Copyright © 2019 GrapeCity, Inc. All rights reserved.

2. Click the ellipsis button next to the HighlightRowStyle property in the Properties window to open the Style
Editor.

3. On the Contents tab, set the ForeColor to WhiteSmoke.
4. On the Fill Effects tab, set the BackColor to Navy.

5. Click Ok to close the Style Editor.

In Code
To highlight the row of the selected cell using code, complete the following steps:

1. Set the MarqueeStyle property to HighlightRow by adding the following code to the Form_Load event:

TrueDBGrid for WinForms 317

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.MarqueeStyle = C1.Win.C1TrueDBGrid.MarqueeEnum.HighlightRow

To write code in C#

C#

this.c1TrueDBGrid1.MarqueeStyle = C1.Win.C1TrueDBGrid.MarqueeEnum.HighlightRow;

2. Set the ForeColor of the highlight to WhiteSmoke:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.HighLightRowStyle.ForeColor = Color.WhiteSmoke

To write code in C#

C#

this.c1TrueDBGrid1.HighLightRowStyle.ForeColor = Color.WhiteSmoke;

3. Set the BackColor of the highlight to Navy:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.HighLightRowStyle.BackColor = Color.Navy

To write code in C#

C#

this.c1TrueDBGrid1.HighLightRowStyle.BackColor = Color.Navy;

What You've Accomplished
When a cell is selected, the entire row will highlight with the text in WhiteSmoke and the highlight in Navy:

TrueDBGrid for WinForms 318

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Disabling Selected Highlight
You can disable cell highlighting by setting the MarqueeStyle and SelectedStyle properties. To highlight the row of the
selected cell, set the MarqueeStyle property to NoMarquee. See Highlighting the Current Row or Cell for details. To
disable the selected style, change the SelectedStyle property's attributes.

In the Designer
Complete the following steps to highlight the row of the selected cell using the designer:

1. Locate the MarqueeStyle property in the Properties window and set it to NoMarquee.
2. Click the ellipsis button next to the SelectedStyle property in the Properties window to open the Style Editor.
3. On the Contents tab, set the ForeColor to Black.
4. On the Fill Effects tab, set the BackColor to Transparent.
5. Click Ok to close the Style Editor.

In Code
To highlight the row of the selected cell using code, complete the following steps:

1. Set the MarqueeStyle property to NoMarquee by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.MarqueeStyle = C1.Win.C1TrueDBGrid.MarqueeEnum.NoMarquee

To write code in C#

C#

this.c1TrueDBGrid1.MarqueeStyle = C1.Win.C1TrueDBGrid.MarqueeEnum.NoMarquee;

TrueDBGrid for WinForms 319

Copyright © 2019 GrapeCity, Inc. All rights reserved.

2. Set the ForeColor of the highlight to Black:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.SelectedStyle.ForeColor = Color.Black

To write code in C#

C#

this.c1TrueDBGrid1.SelectedStyle.ForeColor = Color.Black;

3. Set the BackColor of the highlight to Transparent:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Selected.BackColor = Color.Transparent

To write code in C#

C#

this.c1TrueDBGrid1.Selected.BackColor = Color.Transparent;

What You've Accomplished
Selected cells, rows, and columns will no longer display any indicating highlighting.

Placing an Image in a Column Header
To place an image in a column header, set the ForegroundImage and ForeGroundPicturePosition properties. These
properties can be set either in the designer or in code.

In the Tasks Menu
To place an image in a column header using the C1TrueDBGrid Tasks menu:

1. Select the Last column in the grid and click it to open the C1TrueDBGrid Tasks menu.

2. Select Caption Style from the menu.

TrueDBGrid for WinForms 320

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. Click the Images tab.
4. Click the ellipsis button next to the Foreground Image. Browse for the image and click Open.

TrueDBGrid for WinForms 321

Copyright © 2019 GrapeCity, Inc. All rights reserved.

5. Specify the position of the picture using the Foreground Picture Position drop-down box.
6. Click Ok to close the Caption Style(Last) dialog box.

In the C1DisplayColumn Collection Editor
Alternatively, an image can also be placed in the column header at design time using the C1DisplayColumn Collection
Editor.

1. Click the ellipsis button (...) next to the Splits property of the grid in the Visual Studio Properties window. The Split
Collection Editor appears.

2. Click the ellipsis button next to the DisplayColumns property to bring up the C1DisplayColumn Collection Editor.
3. Select the column header from the list of Members on the left-hand side.

4. Expand the HeadingStyle property on the right-hand side.
5. Click the ellipsis button next to the ForegroundImage property.

TrueDBGrid for WinForms 322

Copyright © 2019 GrapeCity, Inc. All rights reserved.

6. Browse for a graphic and click Open.
7. Specify the position of the graphic using the ForeGroundPicturePosition property.
8. Click OK to close the C1DisplayColumn Collection Editor.
9. Click OK again to close the Split Collection Editor.

In Code
Add the following code to the Form_Load event:

1. Specify the image to appear in the header:

To write code in Visual Basic

Visual Basic

Dim bmp As New Bitmap("c:\sort.bmp")

To write code in C#

C#

Bitmap bmp = new Bitmap("c:\\sort.bmp");

2. Specify where the image should appear:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1).HeadingStyle.ForegroundImage = bmp
Me.C1TrueDBGrid1.Splits(0).DisplayColumns(1).HeadingStyle.ForeGroundPicturePosition =
C1.Win.C1TrueDBGrid.ForeGroundPicturePositionEnum.LeftOfText

To write code in C#

C#

TrueDBGrid for WinForms 323

Copyright © 2019 GrapeCity, Inc. All rights reserved.

this.c1TrueDBGrid1.Splits[0].DisplayColumns[1].HeadingStyle.ForegroundImage = bmp;
this.c1TrueDBGrid1.Splits[0].DisplayColumns[1].HeadingStyle.ForeGroundPicturePosition
= C1.Win.C1TrueDBGrid.ForeGroundPicturePositionEnum.LeftOfText;

What You've Accomplished
In this example, the image appears to the left of the text in the header of the Last column:

Setting Multiple Height Values for Rows
To set multiple height values for rows, set the AllowRowSizing property to IndividualRows then assign height values to
rows.

Complete the following steps:

1. Set the AllowRowSizing property to IndividualRows.

In the Designer

Locate the AllowRowSizing property in the Properties window and set it to IndividualRows.

TrueDBGrid for WinForms 324

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AllowRowSizing =
C1.Win.C1TrueDBGrid.RowSizingEnum.IndividualRows

To write code in C#

C#

this.c1TrueDBGrid1.AllowRowSizing =
C1.Win.C1TrueDBGrid.RowSizing.IndividualRows;

2. Assign different row heights to the first two rows by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).Rows(0).Height = 25
Me.C1TrueDBGrid1.Splits(0).Rows(1).Height = 50

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].Rows[0].Height = 25;
this.c1TrueDBGrid1.Splits[0].Rows[1].Height = 50;

What You've Accomplished
The first row is set to 25 and the second row is set to 50:

TrueDBGrid for WinForms 325

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Setting the Background Color of a Row
To set the background color of a row, set the FetchRowStyles property to fire the FetchRowStyle event.

Complete the following steps:

1. Set the FetchRowStyles property to True.

In the Designer

Locate the FetchRowStyles property in the Properties window and set it to True.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.FetchRowStyles = True

To write code in C#

C#

this.c1TrueDBGrid1.FetchRowStyles = true;

2. Specify the background color of the desired rows using the FetchRowStyle event:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_FetchRowStyle(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.FetchRowStyleEventArgs) Handles C1TrueDBGrid1.FetchRowStyle
 Dim S As String = C1TrueDBGrid1.Columns("Country").CellText(e.Row).ToString
 If S <> "Germany" Then
 e.CellStyle.BackColor = System.Drawing.Color.LemonChiffon

TrueDBGrid for WinForms 326

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 End If
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_FetchRowStyle(object sender,
C1.Win.C1TrueDBGrid.FetchRowStyleEventArgs e)
{
 string S = c1TrueDBGrid1.Columns("Country").CellText(e.Row).ToString;
 if (S != "Germany")
 {
 e.CellStyle.BackColor = System.Drawing.Color.LemonChiffon;
 }
}

What You've Accomplished
In this example, each row that does not contain the word "Germany" in the Country column has a background color of
lemon chiffon:

Setting the Column's Caption Height
To set the column's caption height, set the ColumnCaptionHeight property. This can be set either in the designer or in
code.

In the Designer
To set the column's caption height in the Designer, complete the following steps:

TrueDBGrid for WinForms 327

Copyright © 2019 GrapeCity, Inc. All rights reserved.

1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.

2. Click the Split tab in the left pane.
3. Locate the ColumnCaptionHeight property and set it to 34.
4. Click the Column tab.
5. Locate the Caption property and change it from First to "Composer's First Name".
6. Click OK to close the C1TrueDBGrid Designer.

In Code
To set the column's caption height in code, complete the following steps:

1. Set the ColumnCaptionHeight property to fit two rows by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).ColumnCaptionHeight =
Me.C1TrueDBGrid1.Splits(0).ColumnCaptionHeight * 2

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].ColumnCaptionHeight =
this.c1TrueDBGrid1.Splits[0].ColumnCaptionHeight * 2;

2. Set the Caption property:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns(0).Caption = "Composer's First Name"

To write code in C#

C#

this.c1TrueDBGrid1.Columns[0].Caption = "Composer's First Name";

What You've Accomplished
The caption in the column containing first names is set to Composer's First Name and spans two rows:

TrueDBGrid for WinForms 328

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Setting the Font Style of a Column
The font style of a column can be set either in the designer or in code.

In the Tasks Menu
To set the font style using the C1TrueDBGrid Tasks menu, complete the following steps:

1. Select the Country column in the grid and click it to open the C1TrueDBGrid Tasks menu.

2. Select Column Style from the menu.

TrueDBGrid for WinForms 329

Copyright © 2019 GrapeCity, Inc. All rights reserved.

3. Click the ellipsis button after the Font property to open the Font dialog box.

TrueDBGrid for WinForms 330

Copyright © 2019 GrapeCity, Inc. All rights reserved.

4. Set the Font to Times New Roman, the Font style to Bold, and click OK to close the Font dialog box.

5. Click OK to close the Column Style(Country) dialog box.

TrueDBGrid for WinForms 331

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In the Designer
Alternatively, the font style can also be set through the C1TrueDBGrid Designer. To set the font style using the
designer:

1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.

2. Select the Country column by selecting it's column header from the right pane.
The column can also be selected by choosing Country from the drop-down list on the toolbar.

3. Set the font to Times New Roman and click Bold on the toolbar.

4. Click OK to close the designer.

In Code
To set the font style using code, complete the following steps:

1. Declare a new font variable:

To write code in Visual Basic

Visual Basic

Dim fntFont As Font

To write code in C#

C#

Font fntFont;

2. Set the desired column's font to the new font variable:

To write code in Visual Basic

Visual Basic

fntFont = New Font("Times New Roman",
Me.C1TrueDBGrid1.Splits(0).DisplayColumns.Item("Country").Style.Font.Size,
FontStyle.Bold)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns.Item("Country").Style.Font = fntFont

To write code in C#

C#

fntFont = new Font("Times New Roman",
this.c1TrueDBGrid1.Splits[0].DisplayColumns["Country"].Style.Font.Size,
FontStyle.Bold);
this.c1TrueDBGrid1.Splits[0].DisplayColumns["Country"].Style.Font = fntFont;

What You've Accomplished

TrueDBGrid for WinForms 332

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In this example, the rows of the Country column are now Times New Roman font and bold:

For more information on specifying cell styles, see Applying Styles to Cells.

Aligning the Column Headers
You may choose to align the column headers with or without aligning the column text. In the following example, the
caption for the Last column has been centered:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("Last").HeadingStyle.HorizontalAlignment =
AlignHorzEnum.Center

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns["Last"].HeadingStyle.HorizontalAlignment
= AlignHorzEnum.Center;

What You've Accomplished
The First column is has been center-aligned:

TrueDBGrid for WinForms 333

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To align all column headers in the grid, loop through each column.

Moving the Focus in Code
At run time the grid cell's focus is usually determined by the user's mouse and keyboard interaction with the grid.
However, if you choose to, you can set the column and row of the grid that has focus using the Col and Row
properties of the grid.

In this topic you'll add two NumbericUpDown controls to the form. When the value in those boxes changes, the
column and row focus of the grid will change.

Complete the following steps:

1. Navigate to the Visual Studio Toolbox and add two Label controls and two NumberUpDown controls to the
form.

2. Arrange Label1 next to NumberUpDown1 and Label2 next to NumericUpDown2 and set the following
properties for the controls:

Set Label1.Text to "Column:".
Set Label2.Text to "Row:".

3. Double-click NumbericUpDown1 to create the ValueChanged event handler and switch to code view.
4. Add the following code to the NumericUpDown1_ValueChanged event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Col = Me.NumericUpDown1.Value

To write code in C#

C#

this.c1TrueDBGrid1.Col = this.numericUpDown1.Value;

5. Return to Design view and double-click NumbericUpDown2 to create the ValueChanged event handler and
switch to code view.

6. Add the following code to the NumericUpDown2_ValueChanged event:

To write code in Visual Basic

TrueDBGrid for WinForms 334

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Me.C1TrueDBGrid1.Row = Me.NumericUpDown2.Value

To write code in C#

C#

this.c1TrueDBGrid1.Row = this.numericUpDown2.Value;

What You've Accomplished
Change the value in the NumericUpDown boxes. Note that the focus of the grid changes and the grid scrolls to bring
the column and row in focus into view:

Adding Custom Error Checking to C1TrueDBGrid
C1TrueDBGrid displays a message for any errors that occur when building a project. You must switch off the internal
error handling.

Complete the following steps:

1. To do this, set the Handled property to True in the Error event of the grid. It will switch off the grid's built-in
error checking:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_Error(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.ErrorEventArgs) Handles C1TrueDBGrid1.Error
 e.Handled = True
End Sub

To write code in C#

TrueDBGrid for WinForms 335

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

private void c1TrueDBGrid1_Error(object sender,
C1.Win.C1TrueDBGrid.ErrorEventArgs e)
{
 e.Handled = true;
}

2. You can then add your own error-handling code. For example:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_Error(ByVal sender As Object, ByVal e As
C1.Win.C1TrueDBGrid.ErrorEventArgs) Handles C1TrueDBGrid1.Error
 If C1TrueDBGrid1.Columns(C1TrueDBGrid1.Col).DataField = "CategoryID" Then
 e.Handled = True
 MessageBox.Show("Your User Friendly Message")
 Else
 e.Handled = False
 MessageBox.Show("Enter a string")
 End If
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_Error(object sender,
C1.Win.C1TrueDBGrid.ErrorEventArgs e)
{
 if (c1TrueDBGrid1.Columns[c1TrueDBGrid1.Col].DataField ==
"CategoryID")
 {
 e.Handled = true;
 MessageBox.Show("Your User Friendly Message");
 }
 else
 {
 e.Handled = false;
 MessageBox.Show("Enter a string");
 }
}

Changing the Column Order in the Grid
To change the column order in the grid, use the C1TrueDBGrid Designer or set RemoveAt and Insert methods in
code.

In the Designer
To change the grid column order in the Designer, complete the following steps:

TrueDBGrid for WinForms 336

Copyright © 2019 GrapeCity, Inc. All rights reserved.

1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.

2. In the designer, select the Country column from the right pane.
3. Click and drag the Country column to the left. A red arrow will appear where the column can be dropped.

4. Drop the Country column before the First column.
5. Click OK to close the designer.

In Code
To change the grid column order in code, complete the following steps:

1. Declare the variable for the Country column by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Dim dispColumn As C1.Win.C1TrueDBGrid.C1DisplayColumn
dispColumn = Me.C1TrueDBGrid1.Splits(0).DisplayColumns(2)

To write code in C#

C#

C1.Win.C1TrueDBGrid.C1DisplayColumn dispColumn;
dispColumn = this.c1TrueDBGrid.Splits[0].DisplayColumns[2];

2. Move the Country column before the First column:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns.RemoveAt(2)
Me.C1TrueDBGrid1.Splits(0).DisplayColumns.Insert(0, dispColumn)

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns.RemoveAt(2);
this.c1TrueDBGrid1.Splits[0].DisplayColumns.Insert(0, dispColumn);

What You've Accomplished
The Country column appears in the grid before the First column:

TrueDBGrid for WinForms 337

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Resizing Columns During Grid Resizing
To expand or shrink columns during grid resizing, set the SpringMode property to True and the MinWidth property
for each column. This can be done either in the designer or in code.

In the Designer
To expand or shrink columns during grid resizing in the designer, complete the following steps:

1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.

2. Click the Split tab in the left pane.
3. Locate the SpringMode property and set it to True.

Alternatively, the SpringMode property can also be in the Properties window.
4. Select the First column in the right pane by clicking on it.

The column can also be selected by choosing First from the drop-down list in the toolbar.
5. Click the Display Column tab in the left pane.
6. Locate the MinWidth property and set it to 50.
7. Click OK to close the designer.

In Code
To expand or shrink columns during grid resizing in code, complete the following steps:

1. Set the SpringMode property to True by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.SpringMode = True

To write code in C#

TrueDBGrid for WinForms 338

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

this.c1TrueDBGrid1.SpringMode = true;

2. Set the MinWidth property to 50 for the First column:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Splits(0).DisplayColumns("First").MinWidth = 50

To write code in C#

C#

this.c1TrueDBGrid1.Splits[0].DisplayColumns["First"].MinWidth = 50;

What You've Accomplished
When the grid is resized horizontally, the columns will expand or shrink proportionally, except for the First column
which will only shrink to 50:

Exporting Grid Data
Grid data can be exported as a delimited text, Excel, HTML, PDF, or RTF file. The following table describes the methods
used to export each file type:

File Type Method Description

All ExportTo Opens a dialog box in which the user can select the export
format.

Delimited
Text

ExportToDelimitedFile Exports the specified rows from the grid to the specified file as
delimited text.

TrueDBGrid for WinForms 339

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Excel ExportToExcel Exports the grid to an Excel file.

HTML ExportToHTML Exports the grid to an HTML file.

PDF ExportToPDF Exports the grid to a PDF file.

RTF ExportToRTF Exports the grid to an RTF file.

Note: C1TrueDBGrid's export feature uses Reports for WinForms' components internally, and you may need
to reference Reports for WinForms' assemblies (C1.Win.C1Report and C1.C1Report) if you are receiving an
error related to the assembly.

To set one the following export methods, add the appropriate code to the Click event of the Export button:

Exporting To All Available File Types
To set the ExportTo method, add the following code to the Click event of the Export button:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.ExportTo()

To write code in C#

C#

this.c1TrueDBGrid1.ExportTo();

Note: C1TrueDBGrid's export feature uses Reports for WinForms' components internally, and you may need to
reference Reports for WinForms' assemblies (C1.Win.C1Report and C1.C1Report) if you are receiving an error
related to the assembly.

TrueDBGrid for WinForms 340

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This topic illustrates the following:
Clicking the Export button opens the TrueDBGrid Print/Export Options dialog box.

1. In the Action drop-down list, select the file type, including metafiles and image files.
2. Click the ellipsis button next to the File name box to open the Export To dialog box. Browse to a location to

save the file and enter the file name in the File name box. Click OK to close the Export To dialog box.
3. Under Page Headers and Footers, add Header text and Footer text.

4. Click OK to export the file.

The final output will look similar to the following image:

Exporting to Delimited Text
To set the ExportToDelimitedFile method, add the following code to the Click event of the Export button:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.ExportToDelimitedFile("c:\temp\composers.csv",

TrueDBGrid for WinForms 341

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1.Win.C1TrueDBGrid.RowSelectorEnum.AllRows, ",")

To write code in C#

C#

this.c1TrueDBGrid1.ExportToDelimitedFile(@"c:\temp\composers.csv",
C1.Win.C1TrueDBGrid.RowSelectorEnum.AllRows, ",");

Note: C1TrueDBGrid's export feature uses Reports for WinForms' components internally, and you may need
to reference Reports for WinForms' assemblies (C1.Win.C1Report and C1.C1Report) if you are receiving an
error related to the assembly.

What You've Accomplished
Clicking the Export button creates a delimited text file in the temp directory specified in the code above. Each value in
the file is separated by a comma:

Exporting to Excel
TrueDBGrid allows exporting grid data to Microsoft Excel format by using either of the following methods:

SaveExcel method
ExportToExcel method

TrueDBGrid for WinForms 342

Copyright © 2019 GrapeCity, Inc. All rights reserved.

It is important to note that time taken to export grid data to Excel format is very small when using the SaveExcel
method. In comparison, the ExportToExcel method takes much longer to export data.

SaveExcel method

To set the SaveExcel method, add the following code to the Click event of the Export button:

To write code in Visual Basic

Visual Basic

Me.c1TrueDBGrid1.SaveExcel("../../GridData.xlsx")

To write code in C#

C#

this.c1TrueDBGrid1.SaveExcel("../../GridData.xlsx");

ExportToExcel method

To set the ExportToExcel method, add the following code to the Click event of the Export button:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.ExportToExcel("c:\temp\composers.xls")

To write code in C#

C#

this.c1TrueDBGrid1.ExportToExcel(@"c:\temp\composers.xls");

Note: C1TrueDBGrid's export feature uses Reports for WinForms' components internally, and you may need
to reference Reports for WinForms' assemblies (C1.Win.C1Report and C1.C1Report) if you are receiving an
error related to the assembly.

What You've Accomplished
Clicking the Export button creates an Excel file in the temp directory indicated in the code above:

TrueDBGrid for WinForms 343

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Exporting to HTML
To set the ExportToHTML method, add the following code to the Click event of the Export button:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.ExportToHTML("c:\temp\composers.html")

To write code in C#

C#

this.c1TrueDBGrid1.ExportToHTML(@"c:\temp\composers.html");

Note: C1TrueDBGrid's export feature uses Reports for WinForms' components internally, and you may need
to reference Reports for WinForms' assemblies (C1.Win.C1Report and C1.C1Report) if you are receiving an
error related to the assembly.

What You've Accomplished
Clicking the Export button creates an HTML file in the temp directory indicated in the code above:

TrueDBGrid for WinForms 344

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Exporting to PDF
To set the ExportToPDF method, add the following code to the Click event of the Export button:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.ExportToPDF("c:\temp\composers.pdf")

To write code in C#

C#

this.c1TrueDBGrid1.ExportToPDF(@"c:\temp\composers.pdf");

Note: C1TrueDBGrid's export feature uses Reports for WinForms' components internally, and you may need
to reference Reports for WinForms' assemblies (C1.Win.C1Report and C1.C1Report) if you are receiving an
error related to the assembly.

What You've Accomplished
Clicking the Export button creates a PDF file in the temp directory:

TrueDBGrid for WinForms 345

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Exporting to RTF
To set the ExportToRTF method, add the following code to the Click event of the Export button:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.ExportToRTF("c:\temp\composers.rtf")

To write code in C#

C#

this.c1TrueDBGrid1.ExportToRTF(@"c:\temp\composers.rtf");

Note: C1TrueDBGrid's export feature uses Reports for WinForms' components internally, and you may need
to reference Reports for WinForms' assemblies (C1.Win.C1Report and C1.C1Report) if you are receiving an
error related to the assembly.

What You've Accomplished
Clicking the Export button creates a RTF file in the temp directory indicated in the code above:

TrueDBGrid for WinForms 346

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Getting the DataRow for a Row Index After Sorting or Filtering
When sorting or filtering is applied to the grid, it uses the underlying DataView of the DataSource and DataMember. To get the
DataRow for a row index after the sort or filter, access the same underlying list as accessed by the grid with the following code:

To write code in Visual Basic

Visual Basic

If Me.C1TrueDBGrid1.FocusedSplit.Rows(Me.C1TrueDBGrid1.Row).RowType =
C1.Win.C1TrueDBGrid.RowTypeEnum.DataRow Then
 Dim dr As System.Data.DataRowView =
CType(Me.C1TrueDBGrid1(Me.C1TrueDBGrid1.RowBookmark(Me.C1TrueDBGrid1.Row)), System.Data.DataRowView)
End If

To write code in C#

C#

if (this.c1TrueDBGrid1.FocusedSplit.Rows[this.c1TrueDBGrid1.Row].RowType ==
C1.Win.C1TrueDBGrid.RowTypeEnum.DataRow)
{
 System.Data.DataRowView dr =
(System.Data.DataRowView)this.c1TrueDBGrid1[this.c1TrueDBGrid1.RowBookmark(this.c1TrueDBGrid1.Row)];
}

Modifying the ConnectionString
To change the location of the C1NWind.mdb reference, you can edit the ConnectionString property of the
OleDbConnection. Note that you can see Data Binding for more information about binding the grid.

Complete the following steps:

TrueDBGrid for WinForms 347

Copyright © 2019 GrapeCity, Inc. All rights reserved.

1. In the C1TrueDBGrid Tasks menu, select Add Project Data Source from the drop-down box next to Choose
Data Source.

2. The Data Source Configuration Wizard appears. Select Database on the Choose a Data Source type page
and click Next.

3. Click the New Connection button to create a new connection or choose one from the drop-down list.
4. Click the Browse button to specify the location of the data and enter the correct login information. Click the

Test Connection button to make sure that you have successfully connected to the database or server and click
OK. The new string appears in the on the Choose your data connection page.

5. Click the Next button to continue. A dialog box will appear asking if you would like to add the data file to your
project and modify the connection string. Click No.

6. Save the connection string in the application configuration file by checking the Yes, save the connection as
box and entering a name. Click the Next button to continue.

TrueDBGrid for WinForms 348

Copyright © 2019 GrapeCity, Inc. All rights reserved.

7. On the Choose your database object page, select the tables and fields that you would like in your dataset.
Enter a name for your DataSet in the DataSet name box and click Finish to exit the wizard.

A DataSet and a connection string are added to your project. Additionally, Visual Studio automatically creates
the code to fill the DataSet.

Moving to the AddNew Row
To make the AddNew row the active row when the program runs, use the AllowAddNew property, and the MoveLast
and Select methods.

Complete the following steps:

1. Set the AllowAddNew property to True either in the Properties window or by adding the following code to the
Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AllowAddNew = True

To write code in C#

C#

this.c1TrueDBGrid1.AllowAddNew = true;

2. Move to the last record in the grid by adding following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

TrueDBGrid for WinForms 349

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Me.C1TrueDBGrid1.MoveLast()

To write code in C#

C#

this.c1TrueDBGrid.MoveLast();

3. Move to the AddNew row by adding following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Row = Me.C1TrueDBGrid1.Row + 1

To write code in C#

C#

this.c1TrueDBGrid1.Row = this.c1TrueDBGrid1.Row + 1;

4. Set focus to the grid by adding following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Select()

To write code in C#

C#

this.c1TrueDBGrid1.Select();

What You've Accomplished
When the program runs, the active row is the AddNew row:

TrueDBGrid for WinForms 350

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Saving the Layout of the Grid
To save the layout of the grid, use the SaveLayout method, which will save the layout in an XML file. This can be done
either in the designer or in code.

In the Designer
Complete the following steps to save the layout of the grid:

1. Open the C1TrueDBGrid Designer. For information on how to access the C1TrueDBGrid Designer, see
Accessing the C1TrueDBGrid Designer.

2. In the designer, click Save Layout on the toolbar to open the Save As dialog box.

3. Browse to a location and enter a file name in the File Name box.
4. Click Save to save the layout as an XML file.
5. Click OK to close the designer.

In Code
Add the following code to the Click event of a button to save the layout of the grid:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.SaveLayout("c:\temp\ComposerLayout.xml")

To write code in C#

C#

this.c1TrueDBGrid1.SaveLayout(@"c:\temp\ComposerLayout.xml");

TrueDBGrid for WinForms 351

Copyright © 2019 GrapeCity, Inc. All rights reserved.

What You've Accomplished
You've learned how to use the SaveLayout method to save the layout in an XML file.

Searching for Entries in a Column
To search for entries in a column using an incremental search, add a Timer component to the form, then set the
KeyPress and Tick events.

Complete the following steps:

1. Add a Timer component from the Visual Studio Toolbox to the form.

2. Set the Timer's Interval property to 1 second.

In the Designer

Locate the Interval property for Timer1 in the Properties window and set it to 1000.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.Timer1.Interval = 1000

To write code in C#

C#

this.timer1.Interval = 1000;

3. Declare the search string variable at the form level:

To write code in Visual Basic

Visual Basic

Dim searchString As String = String.Empty

To write code in C#

C#

string searchString = string.Empty;

4. Add the KeyPress event:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_KeyPress(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyPressEventArgs) Handles C1TrueDBGrid1.KeyPress

TrueDBGrid for WinForms 352

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 ' Handle the keystroke.
 e.Handled = True

 Me.searchString += e.KeyChar
 Dim count As Integer = Me.C1TrueDBGrid1.Splits(0).Rows.Count
 Dim start As Integer = Me.C1TrueDBGrid1.Row
 Dim current As Integer = (start + 1) Mod count

 ' Stop if search returns to the starting position.
 While current <> start

 ' Get the value.
 Dim s As String = Me.C1TrueDBGrid1(current,
Me.C1TrueDBGrid1.Col).ToString()

 ' If a match is found, exit.
 If s.Substring(0, Me.searchString.Length).ToUpper() =
Me.searchString.ToUpper() Then
 Exit While
 End If

 ' Search the next row, wrapping the column if needed.
 current = (current + 1) Mod count
 End While

 ' Update the grid's current row.
 Me.C1TrueDBGrid1.Row = current

 ' Highlight the entry.
 Me.C1TrueDBGrid1.MarqueeStyle =
C1.Win.C1TrueDBGrid.MarqueeEnum.HighlightCell

 ' Clear the search string at 1 second.
 Me.Timer1.Enabled = True
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_KeyPress(object sender,
System.Windows.Forms.KeyPressEventArgs e)
{
 // Handle the keystroke.
 e.Handled = true;

 this.searchString += e.KeyChar;
 int count = this.c1TrueDBGrid1.Splits[0].Rows.Count;
 int start = this.c1TrueDBGrid1.Row;
 int current = (start + 1) % count;

 // Stop if search returns to the starting position.

TrueDBGrid for WinForms 353

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 while(current != start)
 {
 // Get the value.
 string s = this.c1TrueDBGrid1[current,
this.c1TrueDBGrid1.Col].ToString();

 // If a match is found, exit.
 if(s.Substring(0, this.searchString.Length).ToUpper() ==
this.searchString.ToUpper())
 break;

 // Search the next row, wrapping the column if needed.
 current = (current + 1) % count;
 }

 // Update the grid's current row.
 this.c1TrueDBGrid1.Row = current;

 // Highlight the entry.
 this.c1TrueDBGrid1.MarqueeStyle =
C1.Win.C1TrueDBGrid.MarqueeEnum.HighlightCell;

 // Clear the search string at 1 second.
 this.timer1.Enabled = true;
}

5. Add the Tick event for the timer:

To write code in Visual Basic

Visual Basic

Private Sub Timer1_Tick(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Timer1.Tick
 Me.searchString = String.Empty
 Me.Timer1.Enabled = False
End Sub

To write code in C#

C#

private void timer1_Tick(object sender, System.EventArgs e)
{
 this.searchString = string.Empty;
 this.timer1.Enabled = false;
}

What You've Accomplished
As the user types, the search will highlight the cell containing that letter. In this example, tying V in the Last column
highlights "Varese".

TrueDBGrid for WinForms 354

Copyright © 2019 GrapeCity, Inc. All rights reserved.

If more than one entry begins with the same letter, typing the next letter will highlight the entry with those letters. For
example, typing Viv in the Last column will highlight "Vivaldi":

Note: After 1 second, the search string will reset.

Setting Default Values for New Rows
To set default values for new rows, set the column's Value property in the OnAddNew event. This is useful if adding
multiple rows with similar information.

Complete the following steps:

1. Set the AllowAddNew property to True.

In the Designer

Locate the AllowAddNew property in the Properties window and set it to True.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AllowAddNew = True

To write code in C#

C#

this.c1TrueDBGrid1.AllowAddNew = true;

2. Add the following OnAddNew event to the form:

To write code in Visual Basic

TrueDBGrid for WinForms 355

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Private Sub C1TrueDBGrid1_OnAddNew(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1TrueDBGrid1.OnAddNew
 Me.C1TrueDBGrid1.Columns("Country").Value = "United States"
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_OnAddNew(object sender, System.EventArgs e)
{
 this.c1TrueDBGrid1.Columns["Country"].Value = "United States";
}

What You've Accomplished
The value in the Country column automatically adds "United States" when a new row is added:

Displaying a Column Total in the Footer
You can easily display a sum of all values in a column in the footer of a grid. To do so, you would need to make the
column footers visible by setting the ColumnFooters property to True; you would then create a function to calculate
the sum of the column. Note that in the following example, the grid has been bound to the Products table in the
Northwind database.

Complete the following steps to calculate the total of the UnitsInStock column:

1. Add the following code in the Code Editor:

To write code in Visual Basic

Visual Basic

TrueDBGrid for WinForms 356

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Public Sub CalculateFooter()
 Dim i As Integer
 Dim sum As Double
 For i = 0 To Me.C1TrueDBGrid1.Splits(0).Rows.Count - 1
 sum += Me.C1TrueDBGrid1.Columns("UnitsInStock").CellValue(i)
 Next
 Me.C1TrueDBGrid1.Columns("UnitsInStock").FooterText = sum
End Sub

To write code in C#

C#

public void CalculateFooter()
{
 int i = 0;
 double sum = 0;
 for (i = 0; i <= this.c1TrueDBGrid1.Splits[0].Rows.Count - 1; i++)
 {
 sum +=
Convert.ToDouble(this.c1TrueDBGrid1.Columns["UnitsInStock"].CellValue(i));
 }
 this.c1TrueDBGrid1.Columns["UnitsInStock"].FooterText =
Convert.ToString(sum);
}

This code creates the CalculateFooter function to calculate the total of the UnitsInStock column.
2. Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.ColumnFooters = True
CalculateFooter()

To write code in C#

C#

c1TrueDBGrid1.ColumnFooters = true;
CalculateFooter();

This code sets the visibility of the column footer and initializes the CalculateFooter function.

What You've Accomplished
The column total for the UnitsInStock column is now displayed in the grid's footer:

TrueDBGrid for WinForms 357

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Displaying the Current Column and Row
Using the Row and Col properties you can get the index of the currently selected cell's row and column. In the
following example, you'll add two text boxes to your grid application, one that displays the currently selected row and
another displaying the current column.

Complete the following steps to display the current row and column:

1. From the Visual Studio Toolbox add two Label and two TextBox controls.
2. Resize and arrange the controls so that Label1 is next to TextBox1 and Label2 is next to TextBox2.
3. In the Properties window, set the following properties:

Set Label1's Text property to "Row".
Set Label2's Text property to "Column".

4. Add the following RowColChange event in the Code Editor:

To write code in Visual Basic

Visual Basic

Private Sub C1TrueDBGrid1_RowColChange(ByVal sender As System.Object, ByVal e As
C1.Win.C1TrueDBGrid.RowColChangeEventArgs) Handles C1TrueDBGrid1.RowColChange
 Me.TextBox1.Text = C1TrueDBGrid1.Row
 Me.TextBox2.Text = C1TrueDBGrid1.Col
End Sub

To write code in C#

C#

private void c1TrueDBGrid1_RowColChange(object sender, RowColChangeEventArgs e)
{
 this.textBox1.Text = c1TrueDBGrid1.Row;
 this.textBox2.Text = c1TrueDBGrid1.Col;
}

This code will set the current row and column indexes to appear in the text boxes.

TrueDBGrid for WinForms 358

Copyright © 2019 GrapeCity, Inc. All rights reserved.

What You've Accomplished
Run your application and observe that the row and column text boxes display the row and column index for the
selected grid cell:

Choose a different cell and note that the text in the text boxes changes to display the currently selected cell's row and
column index.

Displaying the Date and Time in a Column
In previous versions of True DBGrid for WinForms, the default behavior in a column with a DataType of DateTime
was to display both the date and the time in the column. Currently the default behavior is to display only the date. In
the following steps, you'll set the column's NumberFormat property to "g" (which displays the short date and short
time according to your current culture's format) for both the data and time to be displayed and you'll disable the
DateTimePicker used to edit the date and time at run time.

In the Designer
Complete the following steps to display both the date and the time in the column:

1. Click the ellipsis button next to the Columns collection in the Properties window to open the C1TrueDBGrid
Designer. For information on how to access the C1TrueDBGrid Designer, see Accessing the C1TrueDBGrid
Designer.

2. In the designer's right pane, select the column you wish to change.
3. In the left pane, select the Column tab to view the column's properties.
4. In the properties grid, select the drop-down arrow next to the column's NumberFormat property and set it to

"g".
5. Select the drop-down arrow next to the column's EnableDateTimeEditor property and set it to False.
6. Click OK to save your changes and close the designer.

In Code

TrueDBGrid for WinForms 359

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Add the following code to the Form_Load event to display both the date and the time in the second column:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Columns(1).EnableDateTimeEditor = False
Me.C1TrueDBGrid1.Columns(1).NumberFormat = "g"

To write code in C#

C#

this.c1TrueDBGrid1.Columns[1].EnableDateTimeEditor = false;
this.c1TrueDBGrid1.Columns[1].NumberFormat = "g";

What You've Accomplished
The selected column displays both the date and the time.

Programmatically Entering Edit Mode
At run time cell edit mode is usually entered by the user's mouse and keyboard interaction with the grid. However, if
you choose, you can set the currently focused cell to enter edit mode in code. To enter edit mode, simply set
the EditActive property to True.

In the following steps you'll add two labels and text boxes to your project to choose a cell to edit, a button to change
focus to that cell, and another button that enters the focused cell into edit mode.

Complete the following steps:

1. Navigate to the Visual Studio Toolbox and add two Label controls and two TextBox controls to the form.
2. Arrange Label1 next to TextBox1 and Label2 next to TextBox2 and, in the Properties window, set the

following properties for the controls:
Set Label1.Text to "Column:".
Set TextBox1.Text to "0".
Set Label2.Text to "Row:".
Set TextBox2.Text to "0".

3. Navigate to the Visual Studio Toolbox and add two Button controls to the form.
4. Arrange the Button controls next to the Label and TextBox controls, and set the following properties in the

Properties window:
Set Button11.Text to "Set Focus".
Set Button2.Text to "Edit Cell".

5. Double-click Button1 to create the Click event handler and switch to code view.
6. Add the following code to the Button1_Click event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.Col = Me.TextBox1.Text
Me.C1TrueDBGrid1.Row = Me.TextBox2.Text

To write code in C#

TrueDBGrid for WinForms 360

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

this.c1TrueDBGrid1.Col = this.textBox1.Text;
this.c1TrueDBGrid1.Row = this.textBox2.Text;

7. Return to Design view and double-click Button2 to create the Click event handler and switch to code view.
8. Add the following code to the Button2_Click event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.EditActive = True

To write code in C#

C#

this.c1TrueDBGrid1.EditActive = true;

What You've Accomplished
Using the textboxes and buttons, you can change the cell that is in focus, and you can enter edit mode on the
selected cell. Complete the following:

1. Run your application.
2. Change the values in the Column and Row text boxes, for example to "2" and "3", and click the Set Focus

button.
The focus of the grid changes and, if needed, the grid scrolls to bring the column and row in focus into view.

3. Click the Edit Cell button.

The selected cell will enter edit mode:

TrueDBGrid for WinForms 361

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Changing the Filter Language
To change the language used in the column filter editor, you can use the Language property.

1. Right-click your grid and select Properties to view the Visual Studio Properties window.
2. Confirm that the AllowFilter property is set to True.
3. Click the drop-down arrow next to the Language property and select a language (for example, Danish).
4. Run the project and click the drop-down arrow on one of the column headers to open the column filter editor.

The language of the column filter editor matches the language specified in the Language property.

In Code
Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1TrueDBGrid1.AllowFilter = True
Me.C1TrueDBGrid1.Language = C1.Util.Localization.Language.Danish

To write code in C#

C#

this.c1TrueDBGrid1.AllowFilter = true;
this.c1TrueDBGrid1.Language = C1.Util.Localization.Language.Danish;

This topic illustrates the following:
Notice the language of the column filter editor matches the language specified in the Language property.

Creating a Custom Print Preview
You can create a custom print preview and customize how your grid will appear when printed. You can do this using
the Init method. To override properties like FormBorderStyle, MaximizeBox, MinimizeBox, ControlBox and so on
of a Form inherited from C1.Win.C1TrueDBGrid.PrintForm, override the Init method of the PrintForm. First call the
base.Init(), then set the properties you want.

Complete the following steps:

1. Navigate to the Toolbox and double-click the SplitContainer panel to add it to the Form.
2. Navigate to the Properties window and set the SplitContainer panel's Orientation property to Horizontal.
3. Click in the top panel of the SplitContainer, navigate to the Toolbox and double-click the Button control to

add it to the application.
4. In the Properties window, set the Button control's Text property to "Preview".
5. Click in the bottom panel of the C1SplitContainer, navigate to the Toolbox, and locate and then double-click

the C1TrueDBGrid control to add it to the application.
6. Click the C1TrueDBGrid control's smart tag and choose the Dock in Parent Container option from the Tasks

menu.
7. Right-click the project in the Solution Explorer and select Add Reference. In the Add Reference dialog box,

locate and select the C1.Win.C1RibbonPreview.4 and C1.Win.C1Ribbon.4 assemblies and click OK. This is
required for enabling print preview.

TrueDBGrid for WinForms 362

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note: C1TrueDBGrid also supports old C1.C1Report and C1.Win.C1Report assemblies for print preview.
It is recommended to use the C1.Win.C1RibbonPreview.4 and C1.Win.C1Ribbon.4 assemblies to get
Ribbon print preview look and feel.

8. Double-click the Form to switch to Code view and create the Form_Load event handler.
9. Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

FillGrid()

To write code in C#

C#

FillGrid();

10. Add the FillGrid event just below the Form_Load event:

To write code in Visual Basic

Visual Basic

Private Sub FillGrid()
 Dim maxrows As Integer = 5

 Dim dt As New DataTable("testdatatable")

 Dim dc As DataColumn
 Dim dr As DataRow

 ' set up an integer column
 dc = New DataColumn()
 dc.DataType = System.Type.[GetType]("System.DateTime")
 dc.ColumnName = "DT1"
 dt.Columns.Add(dc)

 ' do string
 dc = New DataColumn()
 dc.DataType = System.Type.[GetType]("System.DateTime")
 dc.ColumnName = "DT2"
 dt.Columns.Add(dc)

 ' do string
 dc = New DataColumn()
 dc.DataType = System.Type.[GetType]("System.DateTime")
 dc.ColumnName = "DT3"
 dt.Columns.Add(dc)

 Dim rnd As New Random()
 For i As Integer = 0 To maxrows - 1
 dr = dt.NewRow()
 dr("DT1") = DateTime.Now.AddDays(i)

TrueDBGrid for WinForms 363

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 dr("DT2") = DateTime.Now.AddMonths(i)
 dr("DT3") = DateTime.Now.AddYears(i)
 dt.Rows.Add(dr)
 Next
 Me.C1TrueDBGrid1.DataSource = dt
 Me.C1TrueDBGrid1.Columns("DT1").EnableDateTimeEditor = True
 Me.C1TrueDBGrid1.Columns("DT2").EnableDateTimeEditor = True
 Me.C1TrueDBGrid1.Columns("DT3").EnableDateTimeEditor = True
End Sub

To write code in C#

C#

private void FillGrid()
{
 int maxrows = 5;

 DataTable dt = new DataTable("testdatatable");

 DataColumn dc;
 DataRow dr;

 // set up an integer column
 dc = new DataColumn();
 dc.DataType = System.Type.GetType("System.DateTime");
 dc.ColumnName = "DT1";
 dt.Columns.Add(dc);

 // do string
 dc = new DataColumn();
 dc.DataType = System.Type.GetType("System.DateTime");
 dc.ColumnName = "DT2";
 dt.Columns.Add(dc);

 // do string
 dc = new DataColumn();
 dc.DataType = System.Type.GetType("System.DateTime");
 dc.ColumnName = "DT3";
 dt.Columns.Add(dc);

 Random rnd = new Random();
 for (int i = 0; i < maxrows; i++)
 {
 dr = dt.NewRow();
 dr["DT1"] = DateTime.Now.AddDays(i); ;
 dr["DT2"] = DateTime.Now.AddMonths(i);
 dr["DT3"] = DateTime.Now.AddYears(i);
 dt.Rows.Add(dr);
 }
 this.c1TrueDBGrid1.DataSource = dt;
 this.c1TrueDBGrid1.Columns["DT1"].EnableDateTimeEditor = true;

TrueDBGrid for WinForms 364

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 this.c1TrueDBGrid1.Columns["DT2"].EnableDateTimeEditor = true;
 this.c1TrueDBGrid1.Columns["DT3"].EnableDateTimeEditor = true;
}

11. In the Solution Explorer, right-click the project and select Add | Windows Form. In the Add New Item dialog
box, name the form "PrintForm1" and click the Add button.

12. Double-click the new form to switch to Code view.
13. Edit the initial class declaration to inherit from C1.Win.C1TrueDBGrid.PrintForm:

To write code in Visual Basic

Visual Basic

Public Class PrintForm1
 Inherits C1.Win.C1TrueDBGrid.PrintForm

To write code in C#

C#

public partial class PrintForm1 : C1.Win.C1TrueDBGrid.PrintForm

14. Add the following code below the class declaration:

To write code in Visual Basic

Visual Basic

Protected Overrides Sub Init()
 MyBase.Init()
 FormBorderStyle = FormBorderStyle.Sizable
 Me.ControlBox = True
 Me.MinimizeBox = False
 Me.MaximizeBox = False
End Sub

To write code in C#

C#

protected override void Init()
{
 base.Init();
 FormBorderStyle = FormBorderStyle.Sizable;
 this.ControlBox = true;
 this.MinimizeBox = false;
 this.MaximizeBox = false;
}

15. Return to Form1 in Design view and double-click the Button to switch to Code view and create the
Button_Click event handler.

16. Add the following code to the Button_Click event handler, making sure to replace "ProjectName" with the
name of your project:

To write code in Visual Basic

Visual Basic

TrueDBGrid for WinForms 365

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1TrueDBGrid1.PrintInfo.PreviewFormClassName = "ProjectName.PrintForm"
C1TrueDBGrid1.PrintInfo.PrintPreview()

To write code in C#

C#

c1TrueDBGrid1.PrintInfo.PreviewFormClassName = "ProjectName.PrintForm1";
c1TrueDBGrid1.PrintInfo.PrintPreview();

What You've Accomplished
Run the application and notice the application appears with a button and grid displaying data. Click the Preview
button and observe that a customized print preview form appears. The form only includes the Close button and not
the Minimize and Maximize buttons.

TrueDBGrid for WinForms 366

Copyright © 2019 GrapeCity, Inc. All rights reserved.

	Table of Contents
	True DBGrid for WinForms
	Help with WinForms Edition
	Differences Between True DBGrid for WinForms and FlexGrid for WinForms

	Key Features
	True DBGrid for WinForms Quick Start
	Step 1 of 3: Creating a True DBGrid for WinForms Application
	Step 2 of 3: Binding True DBGrid for WinForms to a DataSet
	Step 3 of 3: Customizing True DBGrid for WinForms Settings

	True DBGrid for WinForms Top Tips
	Object Model
	True DBGrid for WinForms Objects and Collections
	C1TrueDBGrid Class
	C1TrueDBDropDown Class
	C1DataColumnCollection Class
	C1DataColumn Object

	C1DisplayColumnCollection Class
	C1DisplayColumn Class

	GroupedColumnCollection Class
	SplitCollection Class
	Split Object

	GridStyleCollection Class
	Style Object

	ValueItems Class
	ValueItemCollection Class
	ValueItem Class

	PrintInfo Class
	PrintPreviewWinSettings Class
	HBar Class
	VBar Class
	GridLines Class
	GridBorders Class
	SelectedRowCollection Class
	SelectedColumnCollection Class
	Working with Objects and Collections
	Working with Collections
	Adding Members
	Removing Members
	Working with the Count Property

	Design-Time Support
	Understanding the Object Model and Property Access
	Accessing Global Grid Properties
	Accessing Split-Specific Properties
	Accessing Column Properties

	Using the Split Collection Editor
	Splits Properties

	Using the C1DisplayColumnCollection Editor
	DisplayColumns Properties

	Using the ValueItemCollection Editor
	Using the C1TrueDBGrid Style Editor
	Using the C1TrueDBGrid Designer
	Accessing the C1TrueDBGrid Designer
	C1TrueDBGrid Designer Elements
	Splits Properties
	C1DataColumn Properties
	DisplayColumns Properties

	C1TrueDBGrid Tasks Menu
	Column Tasks Menu

	C1TrueDBGrid Context Menu

	Run-Time Interaction
	Navigation and Scrolling
	Mouse Interaction
	Clicking the Rightmost Column
	Keyboard Interaction
	Navigation at Row Boundaries
	Navigation at Split Boundaries
	Restricting Cell Navigation

	Selection, Sorting, and Movement
	Selecting Columns
	Moving Columns
	Moving Columns at Run Time

	Sorting Columns
	Selecting Rows
	Selecting a Range of Cells

	Sizing and Splitting
	Sizing Rows
	Sizing Columns

	Database Operations
	Editing Data
	Adding a New Record
	Deleting a Record

	Customized Grid Editors
	Using Custom Editors
	Creating Custom Editors

	Additional User Interaction Features

	Data Binding
	Binding True DBGrid for WinForms to a Data Source
	Preserving the Grid's Layout
	Using Unbound Columns
	Creating Unbound Columns
	Implementing Multiple Unbound Columns
	Updating Unbound Columns
	Editing Unbound Columns

	Creating an Unbound Grid
	Adding New Rows to an Unbound Grid

	Customizing the Grid's Appearance
	Visual Styles
	Captions, Headers, and Footers
	Column and Grid Captions
	Column Footers
	Multiple-Line Headers and Footers
	Split Captions

	Three-Dimensional vs. Flat Display
	Borders and Dividing Lines
	Unpopulated Regions
	The Rightmost Column
	Unused Data Rows

	Highlighting the Current Row or Cell
	Row Height and Word Wrap
	Adjusting the Height of All Grid Rows
	Enabling Wordwrap in Cells

	Alternating Row Colors
	Horizontal and Vertical Alignment

	Data Presentation Techniques
	Text Formatting
	Numeric Field Formatting
	Predefined Numeric Options
	Custom Number Formatting

	Input Validation with Built-In Formatting
	Formatting with an Input Mask
	Formatting with a Custom Event Handler

	Automatic Data Translation with ValueItems
	What are ValueItems?
	Specifying Text-to-Text Translations
	Specifying Text-to-Picture Translations
	Displaying Both Text and Pictures in a Cell
	Displaying Boolean Values as Check Boxes
	Displaying Allowable Values as Radio Buttons

	Context-Sensitive Help with CellTips
	Scroll Tracking and ScrollTips
	Data-Sensitive Cell Merging
	Formatting Merged Cells

	Column Grouping
	Column Grouping with the GroupIntervalEnum Enumeration
	Group Rows by Year
	Group Rows by the First Character of the Value
	Group Rows by Date Value (Outlook-Style)
	Group Rows by Custom Setting

	Expanding and Collapsing Grouped Rows

	Data Display
	Hierarchical Data Display
	Drop-Down Hierarchical Data Display
	Form Data Display
	Inverted Data Display
	Multiple Line Data Display
	Implications of Multiple-Line Mode

	Multiple Line Fixed Data Display

	Owner-Drawn Cells
	Filtering Data in DataSets
	Manually Filtering Data
	Adding a Watermark to the Filter Bar
	Filtering the Grid with Multiple Criteria
	Adding a Filter Drop-Down List
	Condition Filtering
	Custom Filtering

	How to Use Splits
	Referencing Splits and their Properties
	Split Properties Common to C1TrueDBGrid
	Split-Only Properties Not Supported by C1TrueDBGrid

	Split Matrix Notation
	Creating and Removing Splits
	Working with Columns in Splits
	Sizing and Scaling Splits
	Creating and Resizing Splits through User Interaction
	Vertical Scrolling and Split Groups
	Horizontal Scrolling and Fixed Columns
	Navigation Across Splits

	How to Use Styles
	Built-In Named Styles
	Named Style Defaults
	Named Style Inheritance
	Modifying Named Styles

	Working with Style Properties
	Modifying a Style Property Directly
	Named Styles vs. Anonymous Styles
	Anonymous Style Inheritance
	Example 1 of 10: Inheriting from Containing Splits
	Example 2 of 10: Affecting Only Data Cells in the First Split
	Example 3 of 10: Affecting All Elements Only in the First Split
	Example 4 of 10: Affecting Only Data Cells in the First Column of the First Split
	Example 5 of 10: Affecting All Elements Only in the First Column of the First Split
	Example 6 of 10: Changing the BackColor of the Style Property
	Example 7 of 10: Changing Only the Data Cells in the First Split
	Example 8 of 10: Changing Only the Data Cells in the First Column of the First Split
	Example 9 of 10: Setting the Alignment of C1DisplayColumn Objects
	Example 10 of 10: Setting the Alignment for Column Headers

	Applying Styles to Cells
	Specifying Cell Status Values
	Applying Cell Styles by Status
	Applying Cell Styles by Contents
	Applying Cell Styles by Custom Criteria
	Cell Style Evaluation Order

	Applying Pictures to Grid Elements
	Displaying Background Pictures
	Displaying Foreground Pictures

	Cell Editing Techniques
	How Cell Editing Works
	Initiating Cell Editing
	Color and Wordwrap
	Determining Modification Status
	Determining Cell Contents
	Terminating Cell Editing

	Handling Editing Events
	Standard Keystroke Events
	Column Editing Events
	Changing Cell Contents with a Single Keystroke

	Working with Text
	Limiting the Size of Data Entry Fields
	Providing a Drop-Down Edit Control for Long Fields
	Selecting and Replacing Text

	Input Masking
	Specifying an Input Mask for a Column
	Using an Input Mask for Formatting
	Controlling How Masked Input is Updated

	In-Cell Buttons
	Enabling the In-Cell Button
	Rendering Cells as Command Buttons
	Detecting In-Cell Button Clicks
	Customizing the In-Cell Button Bitmap

	Drop-Down Controls
	Using the Built-In Combo Box
	Detecting Built-In Combo Box Selections
	Using the C1TrueDBDropDown Control
	Automatic Data Translation with C1TrueDBDropDown
	Using an Arbitrary Drop-Down Control
	Using the Built-In Column Button

	True DBGrid for WinForms Samples
	True DBGrid for WinForms Tutorials
	Tutorial 1: Binding True DBGrid to a DataSet
	Tutorial 2: Using True DBGrid for WinForms with SQL Query Results
	Tutorial 3: Linking Multiple True DBGrid Controls
	Tutorial 4: Interacting with Code and Other Bound Controls
	Tutorial 5: Selecting Multiple Rows Using Bookmarks
	Tutorial 6: Defining Unbound Columns in a Bound Grid
	Tutorial 7: Displaying Translated Data with the Built-In Combo
	Tutorial 8: Attaching a Drop-Down Control to a Grid Cell
	Tutorial 9: Attaching an Arbitrary Drop-Down Control to a Grid Cell
	Tutorial 10: Enhancing the User Interface with In-Cell Bitmaps
	Tutorial 11: Using Styles to Highlight Related Data
	Tutorial 12: Displaying Rows in Alternating Colors
	Tutorial 13: Implementing Drag-and-Drop Functionality
	Tutorial 14: Creating a Grid with Fixed, Nonscrolling Columns
	Tutorial 15: Using PrintInfo and Print Preview
	Tutorial 16: Using the Hierarchical Display
	Tutorial 17: Creating a Grouping Display
	Tutorial 18: Using Value Translation
	Tutorial 19: Using Range Selection
	Tutorial 20: Displaying Multiple Data Views
	Tutorial 21: Adding a Filter Bar
	Tutorial 22: Borders, Scroll Tracking, and Scroll Tips

	True DBGrid for WinForms Task-Based Help
	Adding a New Row to C1TrueDBGrid
	Selecting a Row
	Accessing the Values of the Selected Rows in the Grid

	Controlling Grid Interaction
	Disabling Column Sorting
	Locking a Cell from Being Edited
	Freezing Columns
	Restricting Editing in Specific Columns

	Setting the Grid's Appearance
	Adding a Gradient Fill to a Column
	Formatting Rows by Specific Criteria
	Hiding the Record Selectors Column
	Highlighting the Row of the Selected Cell
	Disabling Selected Highlight
	Placing an Image in a Column Header
	Setting Multiple Height Values for Rows
	Setting the Background Color of a Row
	Setting the Column's Caption Height
	Setting the Font Style of a Column
	Aligning the Column Headers

	Moving the Focus in Code
	Adding Custom Error Checking to C1TrueDBGrid
	Changing the Column Order in the Grid
	Resizing Columns During Grid Resizing
	Exporting Grid Data
	Exporting To All Available File Types
	Exporting to Delimited Text
	Exporting to Excel
	Exporting to HTML
	Exporting to PDF
	Exporting to RTF

	Getting the DataRow for a Row Index After Sorting or Filtering
	Modifying the ConnectionString
	Moving to the AddNew Row
	Saving the Layout of the Grid
	Searching for Entries in a Column
	Setting Default Values for New Rows
	Displaying a Column Total in the Footer
	Displaying the Current Column and Row
	Displaying the Date and Time in a Column
	Programmatically Entering Edit Mode
	Changing the Filter Language
	Creating a Custom Print Preview

