

ComponentOne

FlexGrid for WinForms

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
FlexGrid for WinForms Overview 6

Help with WinForms Edition 6

Differences Between the .NET and ActiveX Versions of C1FlexGrid 6-8

Differences Between the .NET and Mobile Versions of FlexGrid for WinForms 8-10

Differences Between FlexGrid for WinForms and True DBGrid for WinForms 10

Key Features 11-12

Feature Comparison Matrix 13-17

FlexGrid for WinForms Quick Start 18

Step 1 of 3: Creating the FlexGrid for WinForms Application 18

Step 2 of 3: Binding C1FlexGrid to a Data Source 18-19

Step 3 of 3: Customizing C1FlexGrid Settings 19-21

Design-Time Support 22

C1FlexGrid Editors 22

C1FlexGrid Column Editor 22-24

C1FlexGrid Style Editor 24-25

Caption Style and Column Style 25-29

C1FlexGrid Smart Tag 29-30

C1FlexGrid Tasks Menu 30-32

Column Tasks Menu 32-34

Using the C1FlexGrid Control 35-37

Rows and Columns 37-38

Column Sizing 38-39

Star Sizing 39-41

Column Footers 41

Cell Selection 41-42

Cell Ranges 42-43

Cell Images 43

Formatting Cells 43

Cell Content 44-45

Cell Appearance 45-47

Conditional Formatting 47-48

Owner-Drawn Cells 48-50

Editing Cells 50-51

Lists and Combos 51-52

FlexGrid for WinForms 1

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Checkboxes 52-53

Value-Mapped Lists 53-56

Cell Buttons 56-57

Masks 57-59

Validation 59-60

Custom Editors 60-61

Creating Custom Editors 61-62

Edit Mode 62-63

Grouping 63-65

Grouping through Code 65-66

Grouping through GroupPanel 66-68

Merging Cells 68-69

Merged Table Headers 69-71

Merged Data Views 71-72

Spilling Text 72-73

Custom Merging 73

Outlining and Summarizing Data 73

Creating Subtotals 73-76

Creating Custom Subtotal 76-78

Creating Custom Trees 78-81

Creating Outlines and Trees with the C1FlexGrid Control 81-82

Loading the Data 82-83

Creating Node Rows 83-86

Outline Tree 86-88

Adding Subtotals 88-91

Using the Subtotal Method 91-92

Outline Maintenance 92-93

Using the Node class 93-94

Saving, Loading, and Printing 94

Saving and Loading Grids to Text Files 94

Saving and Loading Microsoft Excel Files 94

Loading Grids from Databases 95-96

Printing Grids 96-97

C1FlexGrid Filtering 97-98

AllowFiltering Property 98-100

Managing Filters Programmatically 100-101

FlexGrid for WinForms 2

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Applying Filters Programmatically 101-102

Customizing Filter behavior 102-104

Customizing the Filtering UI 104-105

C1FlexGrid Property Groups 105-106

Data Binding 107

Binding to a Data Source 107-109

Storing and Retrieving Data 109-110

FlexGrid for WinForms Samples 111-119

FlexGrid for WinForms Tutorials 120

Edit Tutorial 120-121

Step 1 of 6: Create the C1FlexGrid Control for the Edit Tutorial 121-124

Step 2 of 6: Set Column Types and Formats 124-126

Step 3 of 6: Incorporate Drop-Down Lists 126-129

Step 4 of 6: Add Data Validation 129-131

Step 5 of 6: Add Clipboard Support 131-132

Step 6 of 6: Include Custom Editors 132-135

Outline Tutorial 135

Step 1 of 5: Create the Controls 135-138

Step 2 of 5: Read the Data and Build the Outline 138-143

Step 3 of 5: Add Custom Mouse and Keyboard Handling 143-144

Step 4 of 5: Allow/Prevent Editing 144

Step 5 of 5: Implement ToolTips 145-146

Data Analysis Tutorial 146-147

Step 1 of 4: Create the C1FlexGrid Control for the Data Analysis Tutorial 147

Step 2 of 4: Initialize and Populate the Grid 147-153

Step 3 of 4: Allow Automatic Sorting 153-154

Step 4 of 4: Include Subtotals and Outline Tree 154-156

FlexGrid for WinForms Task-Based Help 157

Accessing the C1FlexGrid Editors 157

Accessing the C1FlexGrid Column Editor 157

Accessing the C1FlexGrid Style Editor 157-158

Adding Pictures and Text to a Cell 158-159

Adding Row Numbers in a Fixed Column 159-161

Adding Three-Dimensional Text to a Header Row 161-162

Adding Three-Dimensional Text to a Header Row Using Built-In Styles 162-164

Changing the Column Order in the Grid 164-165

FlexGrid for WinForms 3

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Filtering by Value 165-166

Filtering by Condition 166-167

Changing the Filter Language 167-168

Clearing a Tree View 168-170

Clearing C1FlexGrid 170

Clearing Content 170-171

Clearing Styles 171-172

Clearing UserData 172

Clearing Content, Styles, and UserData 172-173

Converting Column Letters to Uppercase 173-174

Customizing Appearance Using Visual Styles 174-177

Entering Only Numbers in a Cell 177-178

Formatting Cells 178

Formatting a Cell as Read-Only 178-179

Formatting a Cell with Decimal Content 179-181

Formatting Cells Based on the Contents 181-183

Formatting the Border Style 183

Formatting the Border Style of the Control 183-186

Formatting the Border Style of the Grid 186-191

Freezing Rows and Columns 191-193

Getting the Width of a Partially Visible Column 193-194

Loading and Saving Open XML Files 194-196

Populating an Unbound Grid with Data 196

Populating a Column with Data 196-197

Populating a Range of Cells with Data 197

Populating a Row with Data 197-198

Populating a Single Cell with Data 198

Transposing Data in Grid 198-199

Restricting Grid Editing 199

Disable Editing for the Entire Grid 199-200

Disable Editing for a Specific Column 200

Disable Editing for a Specific Row 200-201

Restricting Sorting for a Specific Column 201

Searching for Entries in a Column 201-202

Searching for Entries in a Grid 202-204

FlexGrid for WinForms 4

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Setting a Cell's Value to Zero When Users Press the Delete Key 204

Setting Rows As Headers 204-207

Setting the Font of a Single Cell 207-209

Setting the Text Delimiting Character in C1FlexGrid 209-210

Sorting Multiple Columns 210-211

Styling and Appearance 211

Setting the Background Color of Columns and Rows 211-214

Undoing a Sort 214-215

Using Password Entries in C1FlexGrid 215-217

Hiding Characters Already Entered 217-218

Word Wrapping in a Header or Fixed Row 218-219

FlexGrid for WinForms Top Tips 220-228

C1FlexGridClassic Control 229

FlexGrid for WinForms 5

Copyright © 2019 GrapeCity, Inc. All rights reserved.

FlexGrid for WinForms Overview
FlexGrid for WinForms incorporates the latest in data-binding technology and integrates
seamlessly with the Microsoft.NET Framework. As a result, you get an easy-to-use, flexible
grid control for creating user-friendly interfaces that display, edit, format, organize,
summarize, and print tabular data.

The FlexGrid for WinForms package consists of two controls:

C1FlexGrid Control

The C1FlexGrid control is a powerful, full-featured grid. It will read and write grids from and
to compressed binary files or text files (compatible with Microsoft® Access and Excel®).
C1FlexGrid provides all the basics plus advanced features such as outline trees, sorting, cell
merging, masked editing, translated combo and image lists, and automatic data
aggregation.

C1FlexGrid can be used in bound mode, where it displays data from any .NET data source,
including ADO.NET and DataObjects for WinForms, or in unbound mode, where the grid
itself manages the data.

Getting Started

To get started, review
the following topics:

Key Features
FlexGrid for
WinForms
Quick Start
FlexGrid for
WinForms
Samples
FlexGrid for
WinForms Top
Tips

C1FlexGridClassic Control

The C1FlexGridClassic control is a control that derives from C1FlexGrid and provides an object model that is
virtually 100% identical to the VSFlexGrid ActiveX control. C1FlexGridClassic was developed to allow easy migration
of existing VSFlexGrid projects.

The source code for C1FlexGridClassic is provided as a sample. You can use it as a reference that shows how to use
the C1FlexGrid control as a base class in the development of custom grid controls.

Help with WinForms Edition

Getting Started
For information on installing ComponentOne Studio WinForms Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WinForms Edition.

Differences Between the .NET and ActiveX Versions of
C1FlexGrid
In the ActiveX product, we supplied several versions of the FlexGrid control (ADO, DAO, unbound, Unicode, and so on). In
the .NET product, there are two versions: C1FlexGrid and C1FlexGridClassic.

C1FlexGrid is not a simple port of the ActiveX control. It is a brand new grid control, written from the ground up in C#, with
the same design principles but with a new object model that is more modern, clean, and powerful than the one in the
ActiveX control. The C1FlexGrid control can be bound to ADO.NET data sources or used in unbound mode.

To keep the highest level of source-code compatibility with existing applications, and to make the learning curve as
smooth as possible for VSFlexGrid users, we also offer the C1FlexGridClassic control.

C1FlexGridClassic is a control that uses C1FlexGrid as a base class and exposes an object model that is virtually identical to
the one in VSFlexGrid. We supply the source code to C1FlexGridClassic so you can see exactly how to use the new object
model. You can also use it as an example and create your own grid using the C1FlexGrid as a base class.

FlexGrid for WinForms 6

Copyright © 2019 GrapeCity, Inc. All rights reserved.

http://help.grapecity.com/componentone/NetHelp/c1studiowinforms/Getting_Started_with_WinForms_Edition.html

If you are writing new applications, you should use the C1FlexGrid control. If you are porting existing applications that use
the VSFlexGrid ActiveX control and want to change as little code as possible, then use the C1FlexGridClassic control.

The following table lists the differences between the .NET and ActiveX versions of C1FlexGrid:

VSFlexGrid (ActiveX) C1FlexGrid (.NET)

Rows, Cols
Collections

The ActiveX control has Rows and Cols properties
that are used to get or set the number of rows and
columns on the grid. In the C1FlexGrid control,
these properties return row and column collections.
The collections have read/write properties that
return the number of elements and fixed elements
in each collection. This is probably the most visible
change between the controls. Using the ActiveX
control, you would write:
Dim r%, c%
c = 1
For r = _flex.FixedRows To _flex.Rows
- 1
 Debug.Print _flex.TextMatrix(r,c)
Next

Using the C1FlexGrid control, this becomes:
Dim r%, c%
c = 1
For r = _flex.Rows.Fixed To
_flex.Rows.Count - 1
 Debug.Print _flex(r,c)
Next

Uses the TextMatrix property. Uses indexers.

Styles In the ActiveX control, you can customize the
appearance of individual
cells or cell ranges using the Cell property. For
example, to give the
second row a red background, you would write:
_flex.Cell(flexcpBackColor, 2, 0, 2,
_flex.Cols-1)
= vbRed

The C1FlexGrid control uses a CellStyle object to
customize cell
appearance. To make the second row red, you would
write:
Dim redStyle As CellStyle = _flex.Styles
.Add("Red")
redStyle.BackColor = Color.Red
_flex.Rows(2).Style = redStyle

But this requires three lines of code instead of one!
What's the
advantage? The main advantage of the new approach
is that the
new style is an object that can be changed or assigned
to new
ranges. For example, if you decide to give the red cells
a white
forecolor and a bold font, you can write:
_flex.Styles("Red").ForeColor =
 Color.White
_flex.Styles("Red").Font =
new Font("Arial", 9, FontStyle.Bold)

This will change the appearance of all cells that use
the "Red" style. The previous approach would require
either (1) clearing all styles and setting everything up
again from scratch or (2) scanning all cells in the grid
to detect which cells are red, then changing those.
CellStyle objects are used consistently throughout the
control, so instead of BackColorFixed and

FlexGrid for WinForms 7

Copyright © 2019 GrapeCity, Inc. All rights reserved.

ForeColorSel you can now write
Styles.Fixed.BackColor and Styles.Highlight.ForeColor.

CellRange The Cell property is one of the most powerful
elements of the VSFlexGrid object model. It allows
you to get or set any property of any cell or cell
range with a single command. However, handling
colors, text, values, and so on. Using a single
property means using Variants, and this prevents
the compiler from catching many subtle problems
in case you make mistakes.

The C1FlexGrid replaces the Cell property with a
CellRange object that exposes type-safe properties
and methods used to access the properties of a cell
range. For example, instead of writing:
_flex.Cell(flexcpPicture, 5, 5, 10, 10)
= theImage

You would write:

Dim rg As CellRange
rg = _flex.GetCellRange(5,5,10,10)

rg.Image = theImage

The new approach has two significant advantages: · It
is type-safe, so if the variable theImage contained a
string instead of an image, you would get a compiler
error instead of a runtime error. · You get command-
completion when writing the code because the types
for each property are known.

Typed
columns

In the ActiveX version, the ColDataType allowed
you to set the type of data that each column
contained. This information was used mainly for
sorting columns that contained dates or numbers.

The .NET version has a Cols[i].DataType property that
determines the type of data the column holds. By
default, the DataType for all columns is "object", which
means you can store anything in any column. You can
set the data type to specific types, however, and the
grid will try to coerce any data stored in the grid to
the proper type. For example:
_flex.Cols[2].DataType = typeof(int);
// Value will be set to 12.
_flex[1, 2] = "12";
// Bad value. Fire the GridError event
and ignore.
_flex[2, 2] = "hello";

This code would assign the integer 12 to cell (1,2). Cell
(2,2) would retain its original value, because the string
"hello" cannot be converted to an integer. If you want
to store values of mixed types in a column, you have
two options:

1. Set the column's DataType property to
"object".

2. Use the SetData method with the coerce
parameter set to False to store a value or
object without checking the data type.

VSFlexGrid (ActiveX) C1FlexGrid (.NET)

FlexGrid for WinForms 8

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Differences Between the .NET and Mobile Versions of FlexGrid for
WinForms
The mobile version of FlexGrid for WinForms allows you to quickly develop Microsoft.NET Compact Framework-based applications for your
mobile devices, such as personal digital assistants (PDAs), mobile phones and more. It provides the C1FlexGrid control, a full-featured grid to
display, edit, format, organize, summarize, and print tabular data, but with a compacted version of the FlexGrid for WinForms object model and
feature set.

The following table lists the differences between the .NET and .NET Compact Framework versions of C1FlexGrid:

C1FlexGrid (.NET) C1FlexGrid (Mobile)

C1FlexGrid
Editors

C1FlexGrid Column Editor N/A

C1FlexGrid Style Editor N/A

Caption Style N/A

Column Style N/A

C1FlexGrid
Smart Tag

C1FlexGrid Tasks Menu About C1FlexGrid is the only option
available on this menu.

Column Tasks Menu N/A

Column
Sizing

At design time, columns can be resized using the Width property which can be set
directly in the grid by clicking and dragging the horizontal double arrow that appears at
the right edge of a column's header, through the C1FlexGrid Column Editor, or
programmatically.

At design time, columns can be
resized using the Width property in
the Properties window or
programmatically.

Data
Binding

You can access the Data Source Configuration Wizard to bind to a data source either
through the Properties window or the C1FlexGrid Tasks menu.

You can access the Data Source
Configuration Wizard to bind to a
data source through the Properties
window.

You can bind to a data source using any data provider supported by the .NET
Framework.

When binding to a data source, you
must use a data provider that is
supported by the .NET Compact
Framework. For example, you can use
the .NET Framework Data Provider for
SQL Server Mobile Edition. See
Binding to a Data Source for more
information.

The DataSource property can be set at design time or run time. The DataSource property can be set at
run time only.

Image
Support

Use the SetCellImage method to add an image to a cell. For example:

To write code in Visual Basic

Visual Basic

C1FlexGrid1.SetCellImage(1,1,Image.FromFile(c:\myimage.bmp"))

To write code in C#

C#

c1FlexGrid1.SetCellImage(1,1,Image.FromFile(@"c:\myimage.bmp"));

Use the SetCellImage method to add
an image to a cell Image.FromFile is
not supported by the .NET Compact
Framework, but you can load and set
the image as in the following example:
Visual Basic

To write code in Visual Basic

Visual Basic

Dim myimage As New
Bitmap("c:\myimage.bmp")
C1FlexGrid1.SetCellImage(1,
1, myimage)

To write code in C#

C#

{ Bitmap myimage = new
Bitmap("c:\\myimage.bmp");

FlexGrid for WinForms 9

Copyright © 2019 GrapeCity, Inc. All rights reserved.

c1FlexGrid1.SetCellImage(1,
1, myimage); }

Note:The Image class is
unrelated to C1FlexGrid. Please
see Microsoft's documentation
for more information.

Custom
Merging

You can use the Custom option in the AllowMerging property. More information is
available on custom merging in the Custom Merging topic.

The Custom option is not available in
the AllowMerging property, but
custom merging can still be
performed in the mobile version of
C1FlexGrid. You can create a new class
that derives from the C1FlexGrid and
override the GetMergedRange virtual
method, providing your own custom
merging logic. See the CustomMerge
samples provided with C1FlexGrid and
on GrapeCity website.

C1FlexGrid (.NET) C1FlexGrid (Mobile)

Differences Between FlexGrid for WinForms and True
DBGrid for WinForms
Many customers ask what the difference is between our grid components. While both are robust, easy-to-use grid
controls that allow you to browse, edit, add, delete, and manipulate tabular data, there are several reasons why you
may want to use one over the other.

Both components can be used in bound or unbound mode, but C1FlexGrid allows you to work more easily in
unbound mode. With C1FlexGrid you can customize trees and take advantage of its cell merging capabilities. You can
also derive from it to create customized grids.

True DBGrid for WinForms is better suited for data binding and, therefore, offers more features in that area,
including split views and built-in hierarchical binding and grouping.

If you plan to use your grids mainly in bound mode and require advanced features such as splits and hierarchical
views, True DBGrid for WinForms is the right choice. However, if you plan to work with your grids in unbound mode
or need to customize the grid beyond what the object model offers, C1FlexGrid is a better choice.

If you have additional questions about FlexGrid for WinForms and True DBGrid for WinForms, please visit our Web
site at https://www.grapecity.com.

FlexGrid for WinForms 10

Copyright © 2019 GrapeCity, Inc. All rights reserved.

http://msdn2.microsoft.com/
https://www.grapecity.com/en/samples/custommerge2
https://www.grapecity.com/

Key Features
Some of the key features of FlexGrid for WinForms that you may find useful include:

Code-free Development

Set up columns and styles at design time with easy-to-use editors accessible from the SmartTag. The column
editor allows you to insert and remove columns, reorder columns, adjust column widths, and more. Modify
existing styles and add custom styles with the style editor. Completely manage your grid without writing any
code!

Enhanced Cell Editing

Use simple text editing, drop-down lists and combo lists, cell buttons, masks, and advanced data validation to
control the editing process. For example, you can use an input mask to provide a template that automatically
validates data as your users type, or choose to prevent users from editing specific columns altogether.

Integrated Printing

Print your grid with a single statement! You have control over paper orientation, margins, and footer text, or
you can show a dialog box to let your users select and set up the printer. Printing events allow you to control
page breaks, add repeating header rows, or add custom elements to each page.

Hierarchical Styles

View data the way that's best for you and your users with powerful properties and methods. For example, you
can summarize data and add aggregate values with the Subtotal method or use the Tree property to display
hierarchical views of the data.

Flexible Data Binding

Use the grid in bound mode, where it displays data from any .NET data source, including ADO.NET and
DataObjects for .NET, or in unbound mode, where the grid itself manages the data.

Enhance Your UI with Microsoft Office 2007 and 2010 Styling

FlexGrid supports Visual Styles that mimic the styles available in Office 2007 and 2010, including Blue, Silver,
and Black.

Child Tables for Displaying Hierarchical Data

When FlexGrid is bound to a hierarchical data source, each master record can be expanded/collapsed to
show/hide the details in child grids, which may in turn contain more details. The result is a "data tree" similar to
the type of grid presented by Microsoft Access when displaying hierarchical data. This is accomplished by
deriving a control (C1FlexDataTree) from the C1FlexGrid control. When bound, the control detects subordinate
data sources and creates additional instances of itself to display child tables.

Make it a Tree

By setting the IsNode property for certain rows you can transform FlexGrid into a TreeView. You get a TreeView
that has all the features of a rich datagrid.

Display Images and Data in Cells

Each grid cell can display images in addition to data. You can even bind grid columns to image lists, an easy
and efficient way to display database information graphically.

Add Special Drawing Effects

FlexGrid for WinForms 11

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Make the grid look the way you want it to by painting special effects such as lines, bitmaps, and icons in
appropriate grid cells. You can also scale images and add transparency.

Assign Field Names to Columns

Refer to columns by name instead of position, if desired. Column keys are automatically assigned to field
names when the grid is data-bound, or you may assign them with code. You can later refer to a column using a
ColIndex(ColKey) syntax, which will retrieve the column you want even if your user has moved it to a different
position on the grid.

Merged Cells

Merge contiguous like-valued cells, making them span multiple rows or columns to enhance appearance or
clarity.

Range Aggregates

Calculate totals, averages, and other statistics for ranges of cells with a single statement!

Multiple File Formats for Saving/Loading Data

Load from and save grid contents to text, .xls, .xlsx (OpenXml format) files, or Open XML files with other
extensions. You can also load grid data from a database using DataReader objects.

Built-in Data Filtering

Allow users to apply filters to each column on the grid by setting the AllowFiltering property.

Grouping

Allow users to group the data in FlexGrid by combining rows based on column values and perform grouping
using any of the two ways, using FlexGridGroupPanel or through code.

Instant Search Panel

Search the entire grid in one go and locate entries among millions of records instantly by using FlexGrid's
Instant Search Panel.

Show Sparklines

FlexGrid for WinForms supports displaying the Line, Column and Winloss sparklines in FlexGrid columns which
have data of type array, list or ObservableCollection. Apart from this, it also supports extended features of
sparkline such as styling sparklines and displaying X axis, markers etc.

FlexGrid for WinForms 12

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Feature Comparison Matrix
Explore all the features offered by FlexGrid, TrueDBGrid, and MS DataGridView. You can download the matrix in PDF.

Data Binding

Features FlexGrid TrueDBGrid MS DataGridView

Binding Data
Sources

✓ ✓ ✓

Binding Data
Sources with
hierarchical
data relations

With custom code ✓

Unbound
data storage
and
manipulations

✓ ✓ ✓

Data Presentation

Features FlexGrid TrueDBGrid MS DataGridView

Hierarchical
Styles

With custom code ✓

TreeView-
like Styles ✓

✓

MultiLine
Data View

✓

Grouping ✓ ✓

Built-in Drag
And Drop
Grouping

✓ ✓

Horizontal
and Vertical
Interactive
Splits

✓

Child grids
within
master grid
support

✓ ✓

Drop-Down
Objects
Support

✓ ✓

Drop-Down
Multicolumn
Object

✓ ✓

FlexGrid for WinForms 13

Copyright © 2019 GrapeCity, Inc. All rights reserved.

http://prerelease.componentone.com/help/WinForms/FeatureComparisonMatrix_FlexGrid.pdf

support

Drop-Down
Multicolumn
Bindable
and Sortable
Object
support

✓

Data Exchange

Features FlexGrid TrueDBGrid MS DataGridView

Export
Data
(Delimited
Text, XLS
and XLSX)

✓ ✓

Export
Data in
other
formats
(PDF,
HTML,
RTF, JPG
and other)

✓

Load data
from Excel
files

✓ ✓

Enhanced
Printing
data from
grid and
Print
Preview
support

✓ ✓

Cells Manipulations

Features FlexGrid TrueDBGrid MS DataGridView

In-Cell
Objects

✓ ✓ ✓

Enhanced Cell
Editing with
Custom
Editors

✓ ✓

Merging Cells
and Rows

✓ ✓

Customize ✓

FlexGrid for WinForms 14

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Cells Merging

Drag And
Drop
Columns and
rows

✓ ✓

Automatic
Cell Sizing

✓ ✓ ✓

Fixed, Non-
scrolling
Columns

✓ ✓ ✓

Excel-style
Cell Selection

✓ ✓

Customize
each Cell
Rendering

✓

Zooming
Cells

✓ ✓

Run-Time
CellTips

✓ ✓

Data
Manipulations
with Cell
Ranges

✓

Layout and Styling

Features FlexGrid TrueDBGrid MS DataGridView

Visual Styles
Support

✓ ✓ ✓

Dynamic
Support of
38
Decoration
Themes

✓ ✓

Office 2007
and 2010
Styling

✓ ✓

Alternating
Row Colors

✓ ✓ ✓

Customizable
Cell Border
Style

✓ ✓

Add Special
Drawing

✓ ✓

FlexGrid for WinForms 15

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Effects

Data-
Sensitive
Display

✓ ✓

Input and Navigation

Features FlexGrid TrueDBGrid MS DataGridView

Input
Masking

✓ ✓ ✓

Simplify Data
Input

✓ ✓

Automatic
Data
Translation

✓ ✓

Spell
Checking
support

✓ ✓

Customizable
Keyboard
Navigation
and keys
behavior

✓ ✓

Right-To-Left
navigation

✓ ✓ ✓

Touch
Support

✓ ✓ ✓

Clipboard
support

✓ ✓ ✓

Rich Scrolling
Capabilities

✓ ✓

Data Manipulations

Features FlexGrid TrueDBGrid MS DataGridView

Sorting ✓ ✓ ✓

Multi-column Sorting ✓

Built-in Data Filtering ✓ ✓

Extended and Conditional
Filtering

✓ ✓

Customizable filter form ✓

Additional Filter Bar row ✓

Multilanguage Filtering ✓ ✓

FlexGrid for WinForms 16

Copyright © 2019 GrapeCity, Inc. All rights reserved.

AutoSearch ✓

Range Aggregates ✓ ✓

Localization

Features FlexGrid TrueDBGrid MS DataGridView

Right-To-Left support ✓ ✓ ✓

.Net localization support ✓ ✓ ✓

Regional settings support ✓ ✓ ✓

Other Features

Features FlexGrid TrueDBGrid MS DataGridView

Optimize
performance
for displaying
large amount
of data in
bound and
unbound
mode

✓ ✓

Just-In-Time
Data Loading

✓ ✓ ✓

Server-side
Data
Virtualization
with
C1DataSource

✓ ✓ ✓

Automatic
Lookup
Columns with
C1DataSource

✓ ✓

Design-time
extended
support

✓ ✓

Assembly size 1508 K 2108 K Part of
System.Windows.Forms

Pricing $ $ $

FlexGrid for WinForms 17

Copyright © 2019 GrapeCity, Inc. All rights reserved.

FlexGrid for WinForms Quick Start
In this section you will learn how to use the basic C1FlexGrid functionality to create a simple grid application. This
section is not supposed to be a comprehensive tutorial on all features of C1FlexGrid, but rather provide a quick start
and highlight some general approaches to using the product. For more in-depth tutorials, see the FlexGrid for
WinForms Tutorials. Visual Studio 2010 was used in this example; the steps may be slightly different in other versions
of Visual Studio.

Step 1 of 3: Creating the FlexGrid for WinForms Application
The following steps will walk you through creating a simple grid application.

1. Create a new project.
2. Add a C1FlexGrid control to the form.
3. Open the C1FlexGrid Tasks menu. For more information on accessing the C1FlexGrid Tasks menu, see

C1FlexGrid Tasks Menu.
4. In the C1FlexGrid Tasks menu, click Dock in parent container. This sets the grid's Dock property to Fill so

the grid will fill the form.
5. Run the program. A simple grid application will appear.

Congratulations! You have successfully created a simple grid application. In the next topic, you will learn how to bind
the C1FlexGrid control to a data source.

Step 2 of 3: Binding C1FlexGrid to a Data Source
The following steps will walk you through binding a data source to the grid application you created in the Step 1 of 3:
Creating the FlexGrid for WinForms Application topic.

1. Open the C1FlexGrid Tasks menu. For more information on accessing the C1FlexGrid Tasks menu, see
C1FlexGrid Tasks Menu.

2. In the C1FlexGrid Tasks menu, click the Choose Data Source drop-down arrow and select the Add Project
Data Source link from the drop-down box.

3. The Data Source Configuration Wizard appears. Leave the default setting, Database, selected on the Choose
a Data Source Type page, and click Next.

4. On the Choose a Database Model page, leave Dataset selected and click Next.
5. Click the New Connection button to create a new connection or choose one from the drop-down list. When

you click New Connection, the Add Connection dialog box appears.
6. Leave Microsoft Access Database File as the Data source.
7. Click the Browse button under Database file name. In the Select Microsoft Access Database File dialog box,

browse to the C1NWind.mdb database in the Documents\ComponentOne Samples\Common directory.
Select the C1NWind.mdb file and click Open.

8. In the Add Connection dialog box, click the Test Connection button to make sure that you have successfully
connected to the database or server and click OK.

9. Click OK again to close the Add Connection dialog box.
10. Click the Next button to continue. A dialog box will appear asking if you would like to add the data file to your

project and modify the connection string. Since it is not necessary to copy the database to your project, click
No.

11. Save the connection string in the application configuration file by checking the Yes, save the connection as
box and entering a name. Click the Next button to continue.

12. On the Choose Your Database Objects page, expand the Tables node, and select the Products table. Enter
ProductsDS in the DataSet name box and click Finish to exit the wizard.

13. A DataSet and connection string are added to your project. Additionally, Visual Studio automatically creates

FlexGrid for WinForms 18

Copyright © 2019 GrapeCity, Inc. All rights reserved.

the following code to fill the DataSet:

To write code in Visual Basic

Visual Basic

Me.ProductsTableAdapter.Fill(Me.ProductsDS.Products)

To write code in C#

C#

this.productsTableAdapter.Fill(this.productsDS.Products);

Run the program and observe the following:
Notice that the data from the Products table is reflected in the grid.

Congratulations! You have successfully bound the grid application to a data source. In the next topic, you will learn
how to customize format strings, Visual Styles, and built-in styles.

Step 3 of 3: Customizing C1FlexGrid Settings
The following steps will walk you through setting a format string, Visual Style, and built-in styles for the grid.

1. Resize the first column in the grid by dragging the horizontal double arrow that appears at the right edge of
the first column's header to the left until the UnitPrice column is visible:

FlexGrid for WinForms 19

Copyright © 2019 GrapeCity, Inc. All rights reserved.

2. Click the UnitPrice column to open the Column Tasks menu.

3. Click the ellipsis button next to the Format String text box to open the Format String dialog box.
4. In the Format String dialog box, select Currency under Format type and click OK.
5. In the Properties window, locate the VisualStyle property and set it to Office2007Blue.
6. Open the C1FlexGrid Tasks menu. The Column Tasks menu will appear since we last edited a column using

the Tasks menu. Select C1FlexGrid Tasks to return to the C1FlexGrid Tasks menu.
7. On the C1FlexGrid Tasks menu, select Styles to open the C1FlexGrid Style Editor.
8. In the C1FlexGrid Style Editor under Built-In Styles, select Fixed.
9. Expand the Font node in the right pane and set the Bold property to True.

10. Set the ForeColor property to CornflowerBlue on the Web tab and click OK to close the dialog box.

Run the program and observe the following:
The grid application displays a the Products table using a format string, Visual Style, and built-in styles.

FlexGrid for WinForms 20

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You have successfully set the format string, Visual Style, and built-in styles for the grid. This concludes the Quick Start.

FlexGrid for WinForms 21

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Design-Time Support
You can easily configure FlexGrid for WinForms at design time using the property grid, menus, and designers in
Visual Studio. The following sections describe how to use C1FlexGrid's design-time environment to configure the
C1FlexGrid control.

C1FlexGrid Editors
There two are design-time editors that allow you to control the layout and appearance of C1FlexGrid, C1FlexGrid
Column Editor and C1FlexGrid Style Editor. Additionally, Caption Style and Column Style are two design-time
editors that allow you to change the appearance of a specific caption or column.

C1FlexGrid Column Editor
If you prefer, you can set up the grid columns at design time instead of writing code to do it. The designer can be
accessed in one of three ways:

Select the grid in Design view, go to the Properties window and click the ellipsis button (…) next to the Cols
property.
Right-click the control and select Designer from the context menu.
Click on the smart tag () in the upper right corner of the grid and select Designer from the C1FlexGrid
Tasks menu.

This will bring up the Column Editor shown below:

In bound mode, the editor can be used to select which fields in the DataSource should be displayed, their order,
column captions, widths, and alignment. In unbound mode, the editor is also used to select column data types.

FlexGrid for WinForms 22

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The editor allows you to perform the following actions:

Reorder Columns: You can move columns to new positions by dragging them by the header cells with the
mouse.
Adjust Column Widths: You can adjust column widths with the mouse, by dragging the right edge of the
header cells with the mouse. You can also select multiple columns by SHIFT-clicking the header cells, and then
set all column widths at once using the property window. Setting the column width to –1 restores the default
width.
Set Column Properties: Whenever one or more columns are selected, you can see and edit their properties in
the property grid on the left of the editor.
Insert or Remove Columns: Use the toolbar to insert columns before or after the selection (useful mostly in
unbound mode), or to remove columns.
Use the Toolbar to Perform Common Tasks: The table below describes the function of the buttons on the
toolbar:

Button Description

Font: Sets the selected font in the drop-down list.

Font Size: Sets the selected font size in the drop-down list.

Font Formatting: Applies bold, italics or underline to the font.

Justification: Sets the font alignment to left, center, right or
general.

Alignment: Aligns column content to the top, center, or bottom.
These buttons only affect the scrollable area of the grid. To set the
alignment for the header columns, select the columns and set the
TextAlignFixed property.

BackColor: Sets the backcolor of the selected column.

ForeColor: Sets the forecolor of the selected column.

Apply to Fixed Rows: Applies the settings to fixed rows.

Help: Displays or hides the description for the selected property.

Undo: Cancels all changes and reverts the grid columns to their
original state.

AutoResize: Determines whether the grid should automatically
resize all columns to fit their contents when the grid is bound to a
data source.

Reload from Datasource: Resets all columns with information

FlexGrid for WinForms 23

Copyright © 2019 GrapeCity, Inc. All rights reserved.

from the current DataSource. This button is useful when the grid is
bound to a data source and you want to start editing from scratch.
The button is disabled when the grid is not bound to a data source.

Selected Column: Selects the current column from the drop-down
list.

Insert Column: Inserts columns to the left or right of the selection.

Delete Column: Removes the selected column.

Column Width: Sets the column width of all selected columns to
the same width, wider or narrower.

Toggle Visibility: Displays or hides a column.

Unhide All Columns: Makes all columns visible.

Show Hidden Columns: Shows hidden columns. If you change the
Visible property of a column to False, it will be hidden, and
therefore you won't be able to select it with the mouse. Use this
button to show all hidden columns so you can select and edit
them.

Determines whether the properties for the selected columns
should be displayed in categorized or alphabetical order.

Button Description

C1FlexGrid Style Editor
If you prefer, you can set up styles at design time instead of writing code to do it. The C1FlexGrid Style Editor can be
accessed in one of three ways:

Select the grid, go to the Properties window and click the ellipsis button next to the Styles property.
Right-click the grid and select Styles from the context menu.
Click on the smart tag () in the upper right corner of the grid and select Styles from the C1FlexGrid Tasks
menu.

The grid will display the C1FlexGrid Style Editor dialog box.

The style editor lets you modify existing styles and add new custom ones, which may later be assigned to cells, rows,
and columns.

Use the Add button to add a custom style. You can see how your new style appears in the preview area above the
style properties.

FlexGrid for WinForms 24

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The Remove button removes the selected custom style. You can rename custom styles by selecting them on the list
and typing the new name. The Clear button removes all custom styles and restores the built-in styles to their default
values.

The AutoFormat button brings up a secondary dialog box that allows you to select a complete set of predefined
styles. Here's what the AutoFormat dialog box looks like:

FlexGrid for WinForms 25

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Caption Style and Column Style
The Caption Style editor and the Column Style editor for a selected column allow you to specify the properties for
the caption text and column text, respectively, as well as alignment, background, and borders.

The Caption Style and Column Style editors can only be accessed in the Column Tasks menu. For more information
on the Column Tasks menu, see Column Tasks Menu.

The Caption Style and Column Style editors have four tabs: Text, Alignment, Background, and Borders. The
Preview area allows you to view your settings before applying them to the grid.

Text
The Text tab sets the font and formatting of the caption.

The following options are available in the Font area:

Name: Choose a font name.
Size: Choose a font size.
Color: Choose a font color.
Direction: Choose from Normal, Up or Down.
Font Effects: Use the buttons to toggle bold, italic, and underline on or off.

FlexGrid for WinForms 26

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The following options are available in the Formatting area:

Format: Click the ellipsis button to open the Format String dialog box. For more details on the Format String
dialog box, see Cell Content.
Input Mask: Click the ellipsis button to open the Input Mask dialog box. For more details on the Input Mask
dialog box, see Masks.
Effect: Choose from Flat, Raised, or Inset. For more details on the text effect options, see the TextEffectEnum
Enumeration.
Trimming: Choose from None, Character, Word, EllipsisCharacter, EllipsisWord, or EllipsisPath to set how
long strings are trimmed to fit the cell.
Word Wrap: Check the box to enable word wrapping for the caption.

Alignment
The Alignment tab sets the alignment of both text and images in the caption.

The following options are available in the Text Alignment area:

Horizontal: Click the buttons to toggle between Align Left, Align Center, Align Right, and Align General.
Vertical: Click the buttons to toggle between Align Top, Align Middle, and Align Bottom.
The following options are available in the Image Alignment area:
Clip: Click the buttons to toggle between image alignment in the cell or Scale, Tile, Stretch, TileStretch, or
Hide the image. For more details on the image alignment options, see the ImageAlignEnum Enumeration.

FlexGrid for WinForms 27

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Show Sample Image: Check the Show Sample Image box to display a sample image in the Preview area.
The following options are available in the Display area:
Text/Image Spacing: Increase or decrease this value to increase or decrease the amount of space between the
text and the image.
Display: Choose from TextOnly, ImageOnly, Overlay, Stack, or None. For more details on the display options,
see the DisplayEnum Enumeration.

Background
The Background tab sets the background color and background image.

The following option is available in the Background Color area:

Color: Choose a color for the background of the cell.

The following options are available in the Background Image area:

Image: Click the Select button to select an image or the Clear button to remove an image.
Layout: Toggle between Scale, Tile, Stretch, TileStretch, or Hide.

Borders

FlexGrid for WinForms 28

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The Borders tab sets the borders and margins.

The following options are available in the Borders area:

Style: Choose from None, Flat, Double, Raised, Inset, Groove, Fillet, or Dotted. For details on the different
border style options, see the C1.Win.C1FlexGrid.BorderStyleEnum Enumeration.
Width: Increase or decrease the value to increase or decrease the width of the border.
Color: Choose a color for the border.
Direction: Choose from Both, Horizontal, or Vertical. For details on the different border direction options, see
the BorderDirEnum Enumeration.

The following options are available in the Margins area:

Left: Increase or decrease the value to increase or decrease the left margin.
Top: Increase or decrease the value to increase or decrease the top margin.
Right: Increase or decrease the value to increase or decrease the right margin.
Bottom: Increase or decrease the value to increase or decrease the bottom margin.

C1FlexGrid Smart Tag
A smart tag () represents a short-cut Tasks menu that provides the most commonly used properties in each control.

There are two Tasks menus available through the smart tag in C1FlexGrid: C1FlexGrid Tasks Menu and Column Tasks

FlexGrid for WinForms 29

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Menu.

C1FlexGrid Tasks Menu
In the C1FlexGrid Tasks menu, you can quickly access the C1FlexGrid Column Editor and the C1FlexGrid Style
Editor, as well as set the following properties: AllowAddNew, AllowDelete, AllowEditing, and AllowDragging.

To access the C1FlexGrid Tasks menu, click on the smart tag () in the upper right corner of the grid. This will open
the C1FlexGrid Tasks menu.

Choose Data Source
Clicking the drop-down arrow in the Choose Data Source box opens a list of available data sources and allows you to
add a new data source. To add a new data source to the project, click Add Project Data Source to open the Data
Source Configuration Wizard.

For more information on how to add a new data source to the project, see Binding to a Data Source.

Enable Adding Rows
Selecting the Enable Adding Rows check box sets the AllowAddNew property to True, and allows adding new rows
to the grid. The default is unchecked.

Enable Deleting Rows
Selecting the Enable Deleting Rows check box sets the AllowDelete property to True, and allows deleting rows in the
grid. The default is unchecked.

Enable Editing

FlexGrid for WinForms 30

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Selecting the Enable Editing check box sets the AllowEditing property to True, and allows editing in the grid. The
default is checked.

Enable Column Reordering
Selecting the Enable Column Reordering check box sets the AllowDragging property to Columns, and allows
dragging of columns in the grid. The default is checked.

Enable Column Filtering
Selecting the Enable Column Filtering check box sets the AllowFiltering property to Columns, and allows filtering of
columns in the grid. The options available for filtering are listed in the drop-down - Default, ByValue, ByCondition, and
Custom. Condition filters allow you to specify conditions such as 'value > 10'. Value filters allow you to select values
that should be displayed from a list of values present in the data source. Custom filters allow you to define your own
filters through code.

Display Hidden Columns
Selecting the Display Hidden Columns check box sets the Visible property to True for hidden columns and displays
them. The default is unchecked.

Designer
Clicking Designer opens the C1FlexGrid Column Editor.

For more information on how to edit columns with the C1FlexGrid Column Editor, see C1FlexGrid Column Editor.

Styles
Clicking Styles opens the C1FlexGrid Style Editor.

FlexGrid for WinForms 31

Copyright © 2019 GrapeCity, Inc. All rights reserved.

For more information on how to customize cell appearance with the C1FlexGrid Style Editor, see C1FlexGrid Style
Editor.

Column Tasks
Clicking Column Tasks opens the Column Tasks menu. For details on the Column Tasks menu, see Column Tasks
Menu.

About C1FlexGrid
Clicking About C1FlexGrid displays a dialog box, which is helpful in finding the version number of C1FlexGrid.

Dock in parent container/Undock in parent container
Clicking Dock in parent container sets the Dock property for C1FlexGrid to Fill.

If C1FlexGrid is docked in the parent container, the option to undock C1FlexGrid from the parent container will be
available. Clicking Undock in parent container sets the Dock property for C1FlexGrid to None.

Column Tasks Menu

FlexGrid for WinForms 32

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The Column Tasks menu allows you to set the column caption, data field, data type, edit mask, format string, and
combo list for a column, as well as set the following properties: AllowSorting, AllowEditing, AllowResizing,
AllowDragging, AllowMerging, and Visible.

To access the Column Tasks menu, either click on a column in the grid or select Column Tasks from the C1FlexGrid
Tasks menu.

Column Caption
Entering a caption into the Column Caption box set the Caption property for the column.

Data Field
Clicking the drop-down arrow in the Data Field box opens a list of available fields in the data source.

Data Type
Clicking the drop-down arrow in the Data Type box opens a list of available data types.

Edit Mask
Clicking the ellipsis button in the Edit Mask box opens the Input Mask dialog box.

Format String
Clicking the ellipsis button in the Format String box opens the Format String dialog box.

Combo List
Clicking the ellipsis button in the Combo List box opens the Combo List dialog box.

Allow Sorting
Selecting the Allow Sorting check box sets the AllowSorting property to True, and allows sorting in the column. The
default is checked.

Allow Editing
Selecting the Allow Editing check box sets the AllowEditing property to True, and allows editing in the column. The
default is checked.

Allow Resizing
Selecting the Allow Resizing check box sets the AllowResizing property to True, and allows resizing the column. The
default is checked.

Allow Dragging

FlexGrid for WinForms 33

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Selecting the Allow Dragging check box sets the AllowDragging property to True, and allows dragging columns in
the grid. The default is checked.

Allow Merging
Selecting the Allow Merging check box sets the AllowMerging property to True, and allows merging in the column.
The default is unchecked.

Allow Filtering
Selecting an option from the drop-down lets you specify the filter type along each column. The available filter options
are filter by value, by condition, customized, or none.

Visible
Selecting the Visible check box sets the Visible property to True, and allows the column to be visible in the grid. The
default is checked.

Caption Style
Clicking Caption Style opens the Caption Style editor for the selected column, which allows you to specify the
properties for the caption text, including alignment, background, and borders.

Column Style
Clicking Column Style opens the Column Style editor for the selected column, which allows you to specify properties
for the column, including text, alignment, background, and borders.

C1FlexGrid Tasks
Clicking C1FlexGrid Tasks returns you to the C1FlexGrid Tasks menu. For details on the C1FlexGrid Tasks menu, see
C1FlexGrid Tasks Menu.

Dock in parent container/Undock in parent container
Clicking Dock in parent container sets the Dock property for C1FlexGrid to Fill.

If C1FlexGrid is docked in the parent container, the option to undock C1FlexGrid from the parent container will be
available. Clicking Undock in parent container sets the Dock property for C1FlexGrid to None.

FlexGrid for WinForms 34

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Using the C1FlexGrid Control
The C1FlexGrid control allows you to display, edit, group and summarize data in a grid format. The grid can be bound
to a data source or it can manage its own data.

The C1FlexGrid control has a rich object model with the following elements:

FlexGrid for WinForms 35

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The following topics walk you through the main features in the C1FlexGrid control:

Rows and Columns

Describes how to set up the grid dimensions and layout.

Cell Selection

Describes the concepts of "current cell" and "selection".

FlexGrid for WinForms 36

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Cell Ranges

Describes how to work with a group of cells as a single unit.

Cell Images

Describes how to display images in a cell.

Formatting Cells

Describes how to customize the appearance of the grid by formatting numbers, dates, and Boolean values, or by
changing fonts, colors, alignment, and pictures for individual cells or ranges.

Editing Cells

Describes how to implement simple text editing, drop-down lists and combo lists, cell buttons, editing masks, and
data validation.

Merging Cells

Describes how to change the grid display so that cells with similar contents are merged, creating "grouped" views that
highlight relationships in the data.

Outlining and Summarizing Data

Describes how to add subtotals to grids and how to build outline trees.

Saving, Loading, and Printing

Describes how you can save the contents or formatting of a grid and re-load it later, or exchange grid data with other
applications such as Microsoft Access and Excel. This section also shows how you can print grids.

C1FlexGrid Property Groups

Presents a map of the main C1FlexGrid properties cross-referenced by function.

Rows and Columns
A C1FlexGrid control consists of rows and columns. The collections of rows and columns is exposed by the Rows and
Cols properties.

When the grid is bound to a data source, the number of rows and columns is determined by how much data is
available in the data source. In unbound mode, you can set them to arbitrary values using the Count property in the
collections. For example, the code below sets the grid dimensions to 500 rows by 10 columns:

To write code in Visual Basic

Visual Basic

_flex.Rows.Count = 500
_flex.Cols.Count = 10

To write code in C#

C#

_flex.Rows.Count = 500;
_flex.Cols.Count = 10;

There are two basic types of rows and columns: fixed and scrollable. (The counts returned by the Count property
include fixed and scrollable cells.) Fixed rows remain on the top of the grid when the user scrolls the grid vertically,
and fixed columns remain on the left of the grid when the user scrolls the grid horizontally.

FlexGrid for WinForms 37

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Fixed cells are useful for displaying row and column header information.

You can set the number of fixed rows and columns using the Fixed property in the Rows and Cols collections. For
example, the code below creates a grid with two fixed rows and no fixed columns:

To write code in Visual Basic

Visual Basic

_flex.Rows.Fixed = 1
_flex.Cols.Fixed = 0

To write code in C#

C#

_flex.Rows.Fixed = 1;
_flex.Cols.Fixed = 0;

The Rows and Cols collections also contain methods for inserting, deleting, and moving rows and columns on the
grid. You can use their Item property (an indexer) to access individual elements (rows and columns) in each collection.

If you prefer, you can set up the grid columns at design time instead of writing code to do it using the C1FlexGrid
Column Editor. For details on editing columns using the C1FlexGrid Column Editor, see C1FlexGrid Column Editor.

Column Sizing
The width of a column is determined by its Width property. At design time, the Width property can be set directly in
the grid or through the C1FlexGrid Column Editor. In the grid, clicking and dragging the horizontal double arrow
that appears at the right edge of a column's header allows the column to be resized.

FlexGrid for WinForms 38

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The dotted vertical line indicates how the grid will be resized. Dragging the pointer to the left makes the column
smaller; dragging it to the right makes the column larger. The column's Width property will be adjusted when the
resize operation is complete.

In the C1FlexGrid Column Editor or in code, specify the value of the Width property for a column. For details on the
C1FlexGrid Column Editor, see C1FlexGrid Column Editor. The following code sets the Width property of Column1 to
10:

To write code in Visual Basic

Visual Basic

_flex.Cols(1).Width = 10

To write code in C#

C#

_flex.Cols(1).Width = 10

To prevent resizing a specific column, set the AllowResizing property for the column to False either in the Column
Tasks menu or C1FlexGrid Column Editor, or in code. For details on the Column Tasks menu, see Column Tasks
Menu. The following code sets the AllowResizing property for Column1 to False:

To write code in Visual Basic

Visual Basic

_flex.Cols(1).AllowResizing = False

To write code in C#

C#

_flex.Cols(1).AllowResizing = False

FlexGrid for WinForms 39

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Star Sizing
Star-sizing is a powerful and flexible feature that allows you to specify how the total width of a grid has to be
distributed among columns. It allows you to extend any set of columns and specify how the space should be
distributed among them. FlexGrid allows you to specify the sizing for its columns through StarWidth property of
the Column class.

For example, if you have a grid with six columns and heir StarWidth property is set to “*”, “2*”, “4*”, “*”, “*”, and “*”,
which fill the entire width of the FlexGrid control. The second column will have twice the width of the first and last
three columns in the grid and the third column will be four times wider than the first and last three columns in the
grid. Also, if you resize the form to make the grid wider, the columns resize automatically to keep the provided
proportions.

Moreover, if you want to restrict the columns from getting too narrow or wide, FlexGrid provides MinWidth
and MaxWidth properties to limit the star sizing.

The following image shows FlexGrid with the column widths set through star sizing.

The following code illustrates the use of StarWidth property to specify star sizing for the columns.

c1FlexGrid1.Cols(1).StarWidth = "*"
c1FlexGrid1.Cols(2).StarWidth = "2*"
c1FlexGrid1.Cols(3).StarWidth = "4*"
c1FlexGrid1.Cols(4).StarWidth = "*"
c1FlexGrid1.Cols(5).StarWidth = "*"
c1FlexGrid1.Cols(6).StarWidth = "*"

Visual Basic

FlexGrid for WinForms 40

Copyright © 2019 GrapeCity, Inc. All rights reserved.

'Setting the MinWidth property to prevent the column from getting too
narrow
c1FlexGrid1.Cols(1).MinWidth = 80

C#

c1FlexGrid1.Cols[1].StarWidth = "*";
c1FlexGrid1.Cols[2].StarWidth = "2*";
c1FlexGrid1.Cols[3].StarWidth = "4*";
c1FlexGrid1.Cols[4].StarWidth = "*";
c1FlexGrid1.Cols[5].StarWidth = "*";
c1FlexGrid1.Cols[6].StarWidth = "*";

//Setting the MinWidth property to prevent the column from getting too narrow
c1FlexGrid1.Cols[1].MinWidth = 80;

Column Footers
Column footer is basically the bottom cell of a column which displays additional information applying to the complete
column. You can display a column footer in the FlexGrid control through Footers property of the C1FlexGrid class. You
can also choose to let the footer scroll along with the rows or fix it at the bottom of the grid using Fixed property of
the Footer class. Furthermore, you can display information in the footer by accessing the FooterDescription collection
using Descriptions property of the Footer class and adding information to it. This information can contain text with
aggregates wherein text can be added to the description using Caption property of the FooterDescription class. On
the other hand, to add aggregated content on data displayed in a column through aggregate functions, you first need
to access the AggregateDefinition collection using Aggregates property of the FooterDescription class. Then, you can
set an aggregate for a cell using Aggregate property of the AggregateDefinition class. This property accepts the value
from the AggregateEnum enumeration that specifies the type of aggregate function.

The following code adds a column footer at the bottom of the FlexGrid control displaying text with aggregate content:

c1FlexGrid1.Footers.Descriptions.Add(new FooterDescription() { Caption =
"Total" })
c1FlexGrid1.Footers.Descriptions[0].Aggregates.Add(new
AggregateDefinition()
 { Column = 4, Aggregate = AggregateEnum.Sum })

C#

c1FlexGrid1.Footers.Descriptions.Add(new FooterDescription() { Caption = "Total" });
c1FlexGrid1.Footers.Descriptions[0].Aggregates.Add(new AggregateDefinition()
{ Column = 4, Aggregate = AggregateEnum.Sum });

Visual Basic

Cell Selection
The grid has a cursor cell, which displays a focus rectangle while the grid is active. The user may move the cursor with the keyboard or the mouse, and
edit the contents of the cell if the grid is editable.

FlexGrid for WinForms 41

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Notice that the Office Visual Styles also indicate the location of the cursor cell by highlighting the row and column headers of the cursor cell's position. For
more information about setting the Visual Style, see Customizing Appearance Using Visual Styles.

You can get or set the current cell in code using the Row and Col properties. Setting either of these properties to –1 hides the cursor.

The grid supports extended selections, rectangular ranges of cells defined by two opposing corners: the cursor cell and the cell selection cell.

Notice that the Office Visual Styles also indicate the location of the extended selection by highlighting the row and column headers of the selected cells.
For more information about setting the Visual Style, see Customizing Appearance Using Visual Styles.

You can get or set the selection cell in code using the RowSel and ColSel properties, or by using the Select method.

Note: When the cursor cell changes, the selection is automatically reset. To create extended selections in code, either set Row and Col before
RowSel and ColSel, or use the Select method.

The appearance of the selection is controlled by the following properties:

FocusRect determines the type of focus rectangle that is drawn to indicate the cursor cell.
HighLight determines when the selection should be highlighted (always, when the control has the focus, or never).
HighLight and Focus are cell styles that determine the appearance of the selection (font, color, and border).

The type of selection available is determined by the SelectionMode property. By default, the grid supports regular range selections. You can modify this
behavior to prevent extended selections, to select by row, by column, or in listbox mode (listbox mode allows you to select individual rows).

When using the listbox selection mode, you can get or set the selection status for individual rows using the Selected property. You can also retrieve a
collection of selected rows using the Selected property. For example, the code below selects all rows that satisfy a condition:

To write code in Visual Basic

Visual Basic

'Selects all rows with more than 8000 sales in the Sales column.
_flex.SelectionMode = C1.Win.C1FlexGrid.SelectionModeEnum.ListBox
Dim index As Integer
For index = _flex.Rows.Fixed To _flex.Rows.Count - 1
 If Val(_flex(index, "Sales")) > 80000 Then
 _flex.Rows(index).Selected = True
 End If
Next

Console.WriteLine("There are now {0} rows selected", _flex.Rows.Selected.Count)

To write code in C#

C#

// Selects all rows with more than 8000 sales in the Sales column.
_flex.SelectionMode = SelectionModeEnum.ListBox;
for (int index = _flex.Rows.Fixed ; index < _flex.Rows.Count; index++)
{
 if
(Microsoft.VisualBasic.Conversion.Val(System.Runtime.CompilerServices.RuntimeHelpers.GetObjectValue(_flex[index,
"Sales"])) > 80000)
 {
 _flex.Rows[index].Selected = true;
 }
}

Console.WriteLine("There are now {0} rows selected", _flex.Rows.Selected.Count);

FlexGrid for WinForms 42

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Cell Ranges
CellRange objects allow you to work on arbitrary groups of cells as a single unit. For example, the code below creates
a CellRange object, clears the data in the range, and assigns it a custom style:

To write code in Visual Basic

Visual Basic

Dim rg As CellRange = _flex.GetCellRange(3, 3, 10, 10)
rg.Data = Nothing
rg.Style = _flex.Styles("MyRangeStyle")

To write code in C#

C#

CellRange rg = _flex.GetCellRange(3, 3, 10, 10);
rg.Data = null;
rg.Style = _flex.Styles["MyRangeStyle"];

The CellRange object has a StyleNew property that retrieves the range style, if one exists, or creates a new one,
assigns it to the range, and returns it. This property is convenient in situations where you don't need full-fledged
control over formatting. For example, if all you want to do is give the range a red background, you can write:

To write code in Visual Basic

Visual Basic

Dim rg As CellRange = _flex.GetCellRange(3, 3, 10, 10)
rg.StyleNew.BackColor = Color.Red

To write code in C#

C#

CellRange rg = _flex.GetCellRange(3, 3, 10, 10);
rg.StyleNew.BackColor = Color.Red;

Cell Images
Each grid cell can display images in addition to the data stored in the cell. This can be done in two ways:

You can assign an Image object to a cell using the SetCellImage method. This method allows you to assign
arbitrary images to each cell, and is useful if the images are not related to the data in the cell. For example, you
may want to use a picture as an indicator that the data in the cell is invalid.
You can assign an ImageMap to the column and the grid will automatically map the cell data into a
corresponding image. This method is useful in situations where the image contains a representation of the
data. For example, the images may contain icons that represent product types.

Formatting Cells
One of the main strengths of the C1FlexGrid control is the ability to customize almost every aspect of the appearance
of the entire grid and individual cells.

FlexGrid for WinForms 43

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Cell Content
To control how the content of the cells is formatted, set the Format property to a format string similar to the ones you
use with the String.Format method in the .NET framework. For example, the code below shows short dates on
column one and currency values on column two:

To write code in Visual Basic

Visual Basic

' Short date.
_flex.Cols(1).Format = "d"

' Currency.
_flex.Cols(2).Format = "c"

To write code in C#

C#

// Short date.
_flex.Cols[1].Format = "d";

// Currency.
_flex.Cols[2].Format = "c";

The formatting of cell content can also be set at design time using the Format String dialog box.

The Format String dialog box can be accessed through the Column Tasks menu or through the C1FlexGrid Column
Editor.

In the Column Tasks menu, click the ellipsis button in the Format String box.
In the C1FlexGrid Column Editor, locate the Format property in the left pane, and click the ellipsis button
next to it.

Note: The Format String dialog box is column specific and will only change the Format property of the selected
column.

You can also use custom formats like the ones used in the Visual Basic Format function (for example, "#,###", and so
on).

Retrieving Cell Data
You can retrieve the raw grid data using the indexers or the GetData method. To retrieve the formatted data, use the
GetDataDisplay method instead. For example:

To write code in Visual Basic

Visual Basic

' Short date.
_flex.Cols(1).Format = "d"

' Currency.
_flex.Cols(2).Format = "c"

FlexGrid for WinForms 44

Copyright © 2019 GrapeCity, Inc. All rights reserved.

_flex(1, 2) = 10000
Console.WriteLine("Raw value: {0}", _flex(1, 2))
Console.WriteLine("Display value: {0}", _flex.GetDataDisplay(1, 2))

' Raw value: 10000
' Display value: $10,000.00

To write code in C#

C#

// Short date.
_flex.Cols[1].Format = "d";

// Currency.
_flex.Cols[2].Format = "c";

_flex[1, 2] = 10000;
Console.WriteLine("Raw value: {0}", _flex[1, 2]);
Console.WriteLine("Display value: {0}", _flex.GetDataDisplay(1, 2));

// Raw value: 10000
// Display value: $10,000.00

Cell Appearance
The appearance of the cells (alignment, font, colors, borders, and so on) is handled with CellStyle objects. The grid has
a Styles property that holds the collection of styles used to format the grid. This collection has some built-in members
that define the appearance of grid elements, such as fixed and scrollable cells, selection, focus cell, and so on. You can
change these styles to modify the way the grid looks, and you can also create your own custom styles and assign
them to cells, rows, or columns.

Changing the built-in styles is the simplest way to change the appearance of the grid. For example, the code below
displays the selection as bold green characters over a red background:

To write code in Visual Basic

Visual Basic

Dim cs As CellStyle = _flex.Styles.Highlight
cs.Font = New Font(_flex.Font, FontStyle.Bold)
cs.ForeColor = Color.Green
cs.BackColor = Color.Red

To write code in C#

C#

CellStyle cs = _flex.Styles.Highlight;
cs.Font = new Font(_flex.Font, FontStyle.Bold);
cs.ForeColor = Color.Green;
cs.BackColor = Color.Red;

FlexGrid for WinForms 45

Copyright © 2019 GrapeCity, Inc. All rights reserved.

You can also create your own styles and assign them to cells, rows and columns. For example, the code below creates
a custom cell style and assigns it to every fifth row:

To write code in Visual Basic

Visual Basic

Dim cs As CellStyle = _flex.Styles.Add("Fifth")
cs.BackColor = Color.Gray
Dim idex%
For idex = _flex.Rows.Fixed To _flex.Rows.Count - 1 Step 5
 _flex.Rows(idex).Style = cs
Next

To write code in C#

C#

CellStyle cs = _flex.Styles.Add("Fifth");
cs.BackColor = Color.Gray;
for (int index = _flex.Rows.Fixed ; index <= _flex.Rows.Count - 1; index += 5)
{
 _flex.Rows[index].Style = cs;
}

Here's an example that shows how you can create custom styles and assign them to columns, rows, and cell ranges:

To write code in Visual Basic

Visual Basic

' Create a new custom style
Dim s As CellStyle = _flex.Styles.Add("MyStyle")
s.BackColor = Color.Red
s.ForeColor = Color.White

' Assign the new style to a column.
_flex.Cols(3).Style = _flex.Styles("MyStyle")

' Assign the new style to a row.
_flex.Rows(3).Style = _flex.Styles("MyStyle")

' Assign the new style to a cell range.
Dim rg As CellRange = _flex.GetCellRange(4, 4, 6, 6)
rg.Style = _flex.Styles("MyStyle")

To write code in C#

C#

// Create a new custom style.
CellStyle s = _flex.Styles.Add("MyStyle");
s.BackColor = Color.Red;
s.ForeColor = Color.White;

FlexGrid for WinForms 46

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// Assign the new style to a column.
_flex.Cols[3].Style = _flex.Styles["MyStyle"];

// Assign the new style to a row.
_flex.Rows[3].Style = _flex.Styles["MyStyle"];

// Assign the new style to a cell range.
CellRange rg = _flex.GetCellRange(4,4,6,6);
rg.Style = _flex.Styles["MyStyle"];

If you prefer, you can set up styles at design time using the C1FlexGrid Style Editor instead of writing code to do it.
For details on customizing cell appearance with the C1FlexGrid Style Editor, see C1FlexGrid Style Editor.

Conditional Formatting
To format cells based on their contents, you can use the CellChanged event to select a style for the cell based on its
contents. For example, the code below creates a new style for large currency values and applies it to cells based on
their contents:

To write code in Visual Basic

Visual Basic

Dim cs As C1.Win.C1FlexGrid.CellStyle

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 ' Create a custom style for large values.
 cs = _flex.Styles.Add("LargeValue")
 cs.Font = New Font(Font, FontStyle.Italic)
 cs.BackColor = Color.Gold
End Sub

 ' Format cells based on their content.
Private Sub _flex_CellChanged(ByVal sender As Object, ByVal e As RowColEventArgs)
Handles _flex.CellChanged

 ' Mark currency values > 50,000 as LargeValues (reset others by setting their
Style to Nothing).
 Dim cs As CellStyle
 If _flex(e.Row, e.Col).ToString >= 50000 Then
 cs = _flex.Styles("LargeValue")
 _flex.SetCellStyle(e.Row, e.Col, cs)
 End If
End Sub

To write code in C#

C#

CellStyle cs;

FlexGrid for WinForms 47

Copyright © 2019 GrapeCity, Inc. All rights reserved.

private void Form1_Load(object sender, EventArgs e)
{

 // Create a custom style for large values.
 cs = _flex.Styles.Add("LargeValue");
 cs.Font = new Font(Font, FontStyle.Italic);
 cs.BackColor = Color.Gold;
}

 // Format cells based on their content.
private void _flex_CellChanged(object sender, RowColEventArgs e)
{
 // Mark currency values > 50,000 as LargeValues reset others by setting their
Style to null).

 if (Microsoft.VisualBasic.CompilerServices.Conversions.ToDouble(_flex[e.Row,
e.Col].ToString()) >= 50000)
 {
 cs = _flex.Styles["LargeValue"];
 _flex.SetCellStyle(e.Row, e.Col, cs);
 }
}

Owner-Drawn Cells
Even though the CellStyle objects offer a lot of control over the cell appearance (back and foreground colors,
alignment, font, margins, borders, and so on), sometimes that is not enough. You may want to use a gradient
background, or draw some custom graphics directly into a cell. In these cases, you can use the DrawMode property
and the OwnerDrawCell event to gain total control over how each cell is drawn.

The DrawMode property determines whether or not the OwnerDrawCell event is fired. The event allows you to
override every visual aspect of the cell. The parameters in the OwnerDrawCell event allow you to change the data that
is displayed, the style used to display the data, or to take over completely and draw whatever you want into the cell.

You can change the text and image that will be shown in the cell by setting the e.Text and e.Image parameters in the
event handler. You can also change the style that will be used to display the cell by setting the e.Style property.

Note that you should not modify the properties of the Style parameter because that might affect other cells. Instead,
assign a new CellStyle object to the Style parameter. For example, instead of setting e.Style.ForeColor = Color.Red,
assign a whole new style to the parameter using e.Style = _flex.Styles["RedStyle"].

You can also use your own drawing code to draw into the cell, and even combine your custom code with calls to the
e.DrawCell method. For example, you could paint the cell background using GDI calls and then call e.DrawCell to
display the cell borders and content.

Note:For an example of advanced Owner-Draw Cells, see the RtfGrid sample on GrapeCity website .

The code below shows an example. It uses a gradient brush to paint the background of the selected cells. First, the
code sets the DrawMode property, declares a LinearGradientBrush object and updates the brush whenever the grid
is resized:

To write code in Visual Basic

Visual Basic

FlexGrid for WinForms 48

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/samples/rtfgrid-1

Dim m_GradientBrush As System.Drawing.Drawing2D.LinearGradientBrush

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 ' Brush to use with owner-draw cells.
 m_GradientBrush = New
System.Drawing.Drawing2D.LinearGradientBrush(ClientRectangle, Color.SteelBlue,
Color.White, 45)

 ' Use owner-draw to add gradients.
 _flex.DrawMode = C1.Win.C1FlexGrid.DrawModeEnum.OwnerDraw
End Sub

Private Sub _flex_Resize(ByVal sender As Object, ByVal e As System.EventArgs) Handles
_flex.Resize

 ' Update gradient brush when the control is resized.
 m_GradientBrush = New
System.Drawing.Drawing2D.LinearGradientBrush(ClientRectangle, Color.SteelBlue,
Color.White, 45)
End Sub

To write code in C#

C#

System.Drawing.Drawing2D.LinearGradientBrush m_GradientBrush;

private void Form1_Load(object sender, EventArgs e)
{

 // Brush to use with owner-draw cells.
 m_GradientBrush = new
System.Drawing.Drawing2D.LinearGradientBrush(ClientRectangle, Color.SteelBlue,
Color.White, 45);

 // Use owner-draw to add gradients.
 _flex.DrawMode = DrawModeEnum.OwnerDraw;
}

private void _flex_Resize(object sender, System.EventArgs e)
{

 // Update gradient brush when the control is resized.
 m_GradientBrush = new
System.Drawing.Drawing2D.LinearGradientBrush(ClientRectangle, Color.SteelBlue,
Color.White, 45);
}

The second step is handling the OwnerDrawCell event and using the custom brush for painting the cell background. In
this example, the foreground is handled by the grid itself, using the DrawCell method in the event argument:

FlexGrid for WinForms 49

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Private Sub _flex_OwnerDrawCell(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs) Handles _flex.OwnerDrawCell

 ' Draw the selected cell background using gradient brush.
 If _flex.Selection.Contains(e.Row, e.Col) Then

 ' Draw the background.
 e.Graphics.FillRectangle(m_GradientBrush, e.Bounds)

 ' Let the grid draw the content.
 e.DrawCell(C1.Win.C1FlexGrid.DrawCellFlags.Content)

 ' We're done drawing this cell.
 e.Handled = True
 End If
End Sub

To write code in C#

C#

private void _flex_OwnerDrawCell(object sender, OwnerDrawCellEventArgs e)
{
 // Draw the selected cell background using gradient brush.
 if (_flex.Selection.Contains(e.Row, e.Col))
 {
 // Draw the background.
 e.Graphics.FillRectangle(m_GradientBrush, e.Bounds);

 // Let the grid draw the content.
 e.DrawCell(DrawCellFlags.Content);

 // We' re done drawing this cell.
 e.Handled = true;
 }
}

Editing Cells
By default, the C1FlexGrid control allows users to edit cells by typing into them. You can prevent users from editing
the grid by setting the AllowEditing property to False. You can also prevent users from editing specific columns by
settings the AllowEditing property to False. (When the grid is bound to a data source, it detects which columns are
editable and automatically sets the AllowEditing property.)

To start editing a cell, the user can:

Start typing into the cell. This replaces the contents of the cell.
Press F2 or Enter. This puts the grid in edit mode and puts the current cell contents in the editor.
Double-click a cell. This has the same effect as pressing F2, but the cursor appears where the cell is clicked.

FlexGrid for WinForms 50

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The basic editing mode allows users to type values into the cells. If the column being edited has a specific data type,
values entered by the user are converted into the proper data type automatically. If the user types a value that cannot
be converted into the proper data type, the grid fires a GridError event and ignores the edits.

The basic editing is sufficient for many applications, but the C1FlexGrid has properties and events that allow you to
control the editing process and provide selection lists, editing buttons, and advanced validation control.

Starting with version 2.5, the C1FlexGrid also has built-in support for external editors. This allows you to use any
control as a grid editor (for example, you can now use the C1Input controls as grid editors).

These features are described in the following topics.

Lists and Combos
In many applications, cells have a well-defined list of possible values. In these cases, you can let users select the value
from a drop-down list. To do this, build a string containing all the choices separated by pipe characters (for example,
"True|False|Don't know") and assign it to the ComboList property. Each column may have a different list. Setting the
ComboList property causes the grid to display a drop-down box next to the cell. The user can click the box (or press
F2) to display the list of choices available for that cell.

Another common situation is where cells have a list of common values, but users should be allowed to type
something else as well. This can be accomplished with drop-down combos, a combination of text box and drop-
down list. To create combos, just start the choice list with a pipe character (for example "|True|False|Don't know"), then
assign it to the ComboList property as before.

For example, the code below would cause the grid to display a drop-down combolist containing color names on
column one, and a drop-down combo on column two. When editing column one, the user must pick a value from the
list. When editing column two, the user can pick a value or type in something else:

To write code in Visual Basic

Visual Basic

' Drop-down list.
_flex.Cols(1).ComboList = "Red|Green|Blue|Red|White"

' Drop-down combo.
_flex.Cols(2).ComboList = "|Red|Green|Blue|Red|White"

To write code in C#

C#

// Drop-down list.
_flex.Cols[1].ComboList = "Red|Green|Blue|Red|White";

// Drop-down combo.
_flex.Cols[2].ComboList = "|Red|Green|Blue|Red|White";

The ComboList property can also be set at design time using the Combo List dialog box. The Combo List dialog box
allows you to choose if you want the list to appear as a Dropdown List, Dropdown Combo, Ellipsis Button, or
TextBox and Ellipsis Button.

FlexGrid for WinForms 51

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The Combo List dialog box can be accessed through the Column Tasks menu or through the C1FlexGrid Column
Editor.

In the Column Tasks menu, click the ellipsis button in the Combo List box.
In the C1FlexGrid Column Editor, locate the ComboList property in the left pane, and click the ellipsis button
next to it.

Note: The Combo List dialog box is column specific and will only change the ComboList property of the
selected column.

In some cases, cells in the same column may need different lists. For example, a property list may show properties on
the first column and their values on the second. The values depend on the property, so valid choices change from one
row to the next. In these cases, you should trap the BeforeEdit event and set the ComboList property to the
appropriate list for the current cell. The ComboList property applies to the whole grid.

The built-in ComboBox provides an auto-search feature by default. As the user types a value, the selection will move
to the next match. You can disable this feature using the EditOptions property and control the time before the grid
resets the auto-search buffer using the AutoSearchDelay property.

The built-in ComboBox also has an auto-cycle feature like the editors in the Visual Studio Properties window. When
you double-click a cell that has a list associated with it, the grid will automatically select the next value. You can also
disable this feature using the EditOptions property.

Checkboxes
By default, the grid displays values in Boolean columns as checkboxes (the type of the column is determined by the
DataType property of the Column object). If you don't want Boolean values displayed as checkboxes, set the column's
Format property to a string containing the values that should be displayed for True and False values. For example:

To write code in Visual Basic

Visual Basic

_flex.Cols["bools"].Format = "Yes;No"

To write code in C#

FlexGrid for WinForms 52

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

_flex.Cols["bools"].Format = "Yes;No";

In unbound mode, you can use the GetCellCheck and SetCellCheck properties to add checkboxes to any cells. The
checkboxes will be displayed along with any text in the cell, and you can set their position using the column's
ImageAlign property.

There are two types of check boxes: Boolean and tri-state. Boolean check boxes toggle between the
CheckEnum.Checked and CheckEnum.Unchecked states. Tri-state check boxes cycle through the settings
CheckEnum.TSChecked and CheckEnum.TSUnchecked and CheckEnum.TSGrayed.

If the cell has a check box and the AllowEditing property is set to True, the user can change the state of the check
boxes by clicking them with the mouse or by pressing the SPACE bar or ENTER keys.

By default, toggling the value of checkbox with the mouse or keyboard will toggle all selected checkboxes. You can
disable this feature using the EditOptions property.

Value-Mapped Lists
The ComboList property described above ensures that cell values are selected from a list. The value selected by the
user is converted into the appropriate type for the column and stored in the grid, exactly as if the user had typed the
value.

In many cases, cells can assume values from well-defined lists, but you want to display a user-friendly version of the
actual value. For example, if a column contains product codes, you may want to store the code but display the
product name instead.

This is accomplished with the DataMap property. This property contains a reference to an IDictionary object that
establishes the mapping between what is stored in the grid and what is visible to the user (the IDictionary interface is
defined in the System.Collections namespace, and is implemented by the Hashtable class among others).

For example, the code below creates a data map that contains color values and their names. The colors are stored in
the grid, and their names are displayed to the user:

To write code in Visual Basic

Visual Basic

Dim dtMap As Hashtable = New Hashtable()
dtMap.Add(Color.Red, "Apple")
dtMap.Add(Color.Green, "Forest")
dtMap.Add(Color.Blue, "Sky")
dtMap.Add(Color.Black, "Coal")
dtMap.Add(Color.White, "Snow")
_flex.Cols(1).DataType = GetType(Color)
_flex.Cols(1).DataMap = dtMap

To write code in C#

C#

System.Collections.Hashtable dtMap = new System.Collections.Hashtable();
dtMap.Add(Color.Red, "Apple");
dtMap.Add(Color.Green, "Forest");
dtMap.Add(Color.Blue, "Sky");
dtMap.Add(Color.Black, "Coal");
dtMap.Add(Color.White, "Snow");

FlexGrid for WinForms 53

Copyright © 2019 GrapeCity, Inc. All rights reserved.

_flex.Cols[1].DataType = typeof(Color);
_flex.Cols[1].DataMap = dtMap;

Any class that implements IDictionary can be used as a DataMap. For example, Hashtable, ListDictionary, and
SortedList all provide valid data maps. The difference is that when they are used in editable columns, the order of the
items in the drop down list will depend on the class.

The SortedList class sorts items by key, Hashtable uses an arbitrary order, and ListDictionary keeps the order in
which items were added to the list. Because of this, ListDictionary is usually the best choice for DataMaps.

Note that the keys in the data map must be of the same type as the cells being edited. For example, if a column
contains short integers (Int16), then any data maps associated with the column should have short integer keys. Using
regular integers (Int32) as keys would not work.

The example below shows the difference:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 ' Sorts by key.
 Dim sl As New SortedList()
 sl.Add("0", "Zero")
 sl.Add("1", "One")
 sl.Add("2", "Two")
 sl.Add("3", "Three")

 ' Keeps Add order.
 Dim ld As New Specialized.ListDictionary()
 ld.Add(0, "Zero")
 ld.Add(1, "One")
 ld.Add(2, "Two")
 ld.Add(3, "Three")

 ' Arbitrary order.
 Dim ht As New Hashtable()
 ht.Add(0, "Zero")
 ht.Add(1, "One")
 ht.Add(2, "Two")
 ht.Add(3, "Three")

 _flex.Cols(1).DataMap = sl
 _flex.Cols(1).Caption = "SortedList"
 _flex.Cols(2).DataMap = ld
 _flex.Cols(2).Caption = "ListDictionary"
 _flex.Cols(3).DataMap = ht
 _flex.Cols(3).Caption = "HashTable"
End Sub

To write code in C#

C#

FlexGrid for WinForms 54

Copyright © 2019 GrapeCity, Inc. All rights reserved.

private void Form1_Load(object sender, System.EventArgs e);
{
 // Sorts by key.
 System.Collections.SortedList sl = new System.Collections.SortedList();
 sl.Add("0", "Zero");
 sl.Add("1", "One");
 sl.Add("2", "Two");
 sl.Add("3", "Three");

 // Keeps Add order.
 System.Collections.Specialized.ListDictionary ld = new
System.Collections.Specialized.ListDictionary();
 ld.Add(0, "Zero");
 ld.Add(1, "One");
 ld.Add(2, "Two");
 ld.Add(3, "Three");

 // Arbitrary order.
 System.Collections.Hashtable ht = new System.Collections.Hashtable();
 ht.Add(0, "Zero");
 ht.Add(1, "One");
 ht.Add(2, "Two");
 ht.Add(3, "Three");

 _flex.Cols[1].DataMap = sl;
 _flex.Cols[1].Caption = "SortedList";
 _flex.Cols[2].DataMap = ld;
 _flex.Cols[2].Caption = "ListDictionary";
 _flex.Cols[3].DataMap = ht;
 _flex.Cols[3].Caption = "HashTable";
}

Also, if the column's DataType property is set to an enumeration, the grid will automatically build and use a data map
with the names of each value in the enumeration. For example, the following code creates an enumeration containing
countries. The country values are stored in the grid, and their names are displayed to the user:

To write code in Visual Basic

Visual Basic

Private Enum Countries
 NewYork
 Chicago
 NewOrleans
 London
 Paris
End Enum

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 _flex.Cols(1).DataType = GetType(Countries)
End Sub

FlexGrid for WinForms 55

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

private enum Countries
{
 NewYork,
 Chicago,
 NewOrleans,
 London,
 Paris
}

private void Form1_Load(object sender, EventArgs e)
{
 _flex.Cols[1].DataType = typeof(Countries);
}

Cell Buttons
Certain types of cells may require sophisticated editors other than text boxes or drop-down lists. For example, if a
column contains file names or a color, it should be edited with a dialog box.

In these cases, you should set the ComboList property to an ellipsis ("…"). The control will display a button next to the
cell and will fire the CellButtonClick event when the user clicks on it. You can trap the event, show the dialog box, and
update the cell' s contents with the user's selection.

If you add a pipe character before the ellipsis, then the user will also be allowed to edit the cell contents by typing
into the cell.

By default, the cell buttons display the ellipsis. You can assign pictures to the cell buttons using the CellButtonImage
property.

The example below shows how you can use cell buttons to display a color picker dialog box for choosing a color in a
column.

To write code in Visual Basic

Visual Basic

' Set up color column.
Dim c As C1.Win.C1FlexGrid.Column = _flex.Cols(1)
c.DataType = GetType(Color)

' Show cell button.
c.ComboList = "..."

To write code in C#

C#

// Set up color column.
Column c = _flex.Cols[1];
c.DataType = typeof(Color);

// Show cell button.

FlexGrid for WinForms 56

Copyright © 2019 GrapeCity, Inc. All rights reserved.

c.ComboList = "...";

This code sets up the column so the user can click a button and select a color from a dialog box. The next step is the
code that handles clicks on the cell button:

To write code in Visual Basic

Visual Basic

Private Sub _flex_CellButtonClick(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.RowColEventArgs) Handles _flex.CellButtonClick

 ' Create color picker dialog.
 Dim clrDlg As New ColorDialog()

 ' Initialize the dialog.
 If _flex(e.Row, e.Col) Is GetType(Color) Then
 clrDlg.Color = _flex(e.Row, e.Col)
 End If

 ' Get new color from dialog and assign it to the cell.
 If clrDlg.ShowDialog() = Windows.Forms.DialogResult.OK Then
 _flex(e.Row, e.Col) = clrDlg.Color
 End If
End Sub

To write code in C#

C#

private void _flex_CellButtonClick(object sender, RowColEventArgs e)
{
 // Create color picker dialog.
 ColorDialog clrDlg = new ColorDialog();

 // Initialize the dialog.
 if (_flex[e.Row, e.Col] == typeof(Color))
 {
 clrDlg.Color = (Color)_flex[e.Row, e.Col];
 }

 // Get new color from dialog and assign it to the cell.
 if (clrDlg.ShowDialog() == DialogResult.OK)
 {
 _flex[e.Row, e.Col] = clrDlg.Color;
 }
}

Masks
The C1FlexGrid control also supports masked editing. This type of editing uses an input mask to provide a template
and automatically validate the input as the user types. The mask is specified by the EditMask property, which can be

FlexGrid for WinForms 57

Copyright © 2019 GrapeCity, Inc. All rights reserved.

used with regular text fields and with drop-down combo fields.

Mask strings have two types of characters: literal characters, which become part of the input, and template characters,
which serve as placeholders for characters belonging to specific categories (for example, digits or alphabetic). For
example, the code below assigns a "(999) 999-9999" editing mask to column one, which holds phone numbers (the
digit "9" is a placeholder that stands for any digit):

To write code in Visual Basic

Visual Basic

' Set up a phone number edit mask.
_flex.Cols(1).EditMask = "(999) 999-9999"

To write code in C#

C#

// Set up a phone number edit mask.
_flex.Cols[1].EditMask = "(999) 999-9999";

Setting the EditMask property to a non-empty string causes it to use the built-in masked editor, even if the column
contains date/time values (usually, a DateTimePicker control is used to edit these columns). This is especially
convenient if you have DateTime columns that hold times only (not dates). In these cases, you can set the following
properties to use a masked editor instead of the DateTimePicker control:

To write code in Visual Basic

Visual Basic

_flex.Cols(1).DataType = GetType(DateTime)
_flex.Cols(1).Format = "hh:mm tt"
_flex.Cols(1).EditMask = "99:99 LL"

To write code in C#

C#

_flex.Cols[1].DataType = typeof(DateTime);
_flex.Cols[1].Format = "hh:mm tt";
_flex.Cols[1].EditMask = "99:99 LL";

The EditMask property can also be set at design time using the Input Mask dialog box.

FlexGrid for WinForms 58

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The Input Mask dialog box can be accessed through the Column Tasks menu or through the C1FlexGrid Column
Editor.

In the Column Tasks menu, click the ellipsis button in the Edit Mask box.
In the C1FlexGrid Column Editor, locate the EditMask property in the left pane, and click the ellipsis button
next to it.

Note: The Input Mask dialog box is column specific and will only change the EditMask property of the selected
column.

For details on the syntax used to build the mask strings, see the EditMask property in the control reference section.

If different cells in the same column need different masks, trap the BeforeEdit event and set the EditMask property to
an appropriate value for the current cell.

Validation
In many cases, edit masks alone are not enough to ensure that the data enters by the user was valid. For example, a
mask won't let you specify a range of possible values, or validate the current cell based on the contents of another
cell.

In these cases, trap the ValidateEdit event and see if the value contained in the Editor.Text property is a valid entry
for the current cell (at this point, the cell still has the original value in it). If the input is invalid, set the Cancel
parameter to True and the grid will remain in edit mode until the user types a valid entry.

For example, the code below validates input into a currency column to ensure that values entered are between 1,000
and 10,000:

To write code in Visual Basic

Visual Basic

Private Sub _flex_ValidateEdit(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.ValidateEditEventArgs) Handles _flex.ValidateEdit

FlexGrid for WinForms 59

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 ' Validate amounts.
 If _flex.Cols(e.Col).DataType Is GetType(Decimal) Then
 Try
 Dim dec As Decimal = Decimal.Parse(_flex.Editor.Text())
 If (dec < 1000) Or (dec > 10000) Then
 MessageBox.Show("Value must be between 1,000 and 10,000")
 e.Cancel = True
 End If
 Catch
 MessageBox.Show("Value not recognized as a Currency")
 e.Cancel = True
 End Try
 End If
End Sub

To write code in C#

C#

private void _flex_ValidateEdit(object sender, ValidateEditEventArgs e)
{

 // Validate amounts.
 if (_flex.Cols[e.Col].DataType == typeof(Decimal))
 {
 try
 {
 Decimal dec = Decimal.Parse(_flex.Editor.Text);
 if (dec < 1000 || dec > 10000)
 {
 MessageBox.Show("Value must be between 1,000 and 10,000");
 e.Cancel = true;
 }
 }
 catch
 {
 MessageBox.Show("Value not recognized as a Currency");
 e.Cancel = true;
 }
 }
}

Custom Editors
The built-in editors provide a lot of flexibility and power, but in some cases you may want to use external controls as
specialized editors. For example, you may want to use the C1NumericInput control that provides a drop-down
calculator for entering numbers, or an editor for selecting from multi-column lists, or a specialized control that you
wrote to edit your business objects.

Any control that derives from the base Control class can be used as a basic grid editor. Controls that implement the
IC1EmbeddedEditor interface (defined in C1.Common.dll) can provide better integration with the grid and more

FlexGrid for WinForms 60

Copyright © 2019 GrapeCity, Inc. All rights reserved.

advanced features. For details on the IC1EmbeddedEditor interface, see the Editor property.

To use a control as a custom editor, all you have to do is associate an instance of the control with a grid column or a
style using its Editor property. You can do this in the designer (using the Column Editor) or in code. After that, the
control will be automatically used by the grid.

To define custom editors at design time, add an instance of the editor control to the form, then select Designer from
the C1FlexGrid Tasks menu to open the C1FlexGrid Column Editor. Select the columns that should use the custom
editor and set their Editor properties to the name of the new editor control.

For example, to use a NumericUpDown control as a grid editor, follow these steps:

1. Add a C1FlexGrid control to the form.
2. Add a NumericUpDown control to the form and set its BorderStyle property to None.
3. Select Designer from the C1FlexGrid Tasks menu. For more information on accessing the C1FlexGrid Column

Editor, see Accessing the C1FlexGrid Column Editor.
4. In the C1FlexGrid Column Editor, select the first scrollable grid column and set its Editor property to

NumericUpDown1.

Run the project and edit some values in the first column. Notice how the grid positions and initializes the
NumericUpDown control so you can edit cell values. When you are done editing a cell, click a different cell or press
the TAB key to move to the next one. Notice how the new value is applied to the cell.

You can also assign custom editors to the grid using code:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 ' Create the custom editor.
 Dim editor as New NumericUpDown()
 editor.BorderStyle = BorderStyle.None

 ' Assign the custom editor to the grid.
 _flex.Cols(1).Editor = editor
End Sub

To write code in C#

C#

private void Form1_Load(object sender, System.EventArgs e)
{
 // Create the custom editor.
 NumericUpDown editor = new NumericUpDown();
 editor.BorderStyle = BorderStyle.None;

 // Assign the custom editor to the grid.
 _flex.Cols[1].Editor = editor;
}

Creating Custom Editors

FlexGrid for WinForms 61

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Any control that derives from the Control base class can be used as a grid editor. This is possible because the grid
knows enough about the base class to access properties such as Text and Bounds, and events such as Leave and
TextChanged. In many cases this level of support is adequate.

In some cases, however, you may want to use controls that do not follow the base class that closely. For example, a
DateTimePicker control has a Value property that should be used to retrieve the edited value instead of Text. In
these cases, you can implement one or more methods in the IC1EmbeddedEditor interface to override the default
behavior. For example, all controls in the C1Input library support IC1EmbeddedEditor and therefore integrate closely
with C1FlexGrid (and also C1TrueDBGrid).

The IC1EmbeddedEditor interface is fairly simple, and because the grid binds to it using late binding, you don't even
have to implement all its members. Only implement the ones that make sense to your editor control.

The interface does provide enough flexibility to allow virtually any control to be used as a grid editor. You can even
use UITypeEditor classes as grid editors. To do this, you need a wrapper class that:

1. Derives from Control (UITypeEditor doesn't).
2. Implements the IC1EmbeddedEditor interface.
3. Encapsulates the appropriate UITypeEditor.

We provide source code for this wrapper class in the CustomEditors sample.

Using the UITypeEditor wrapper class, you can use any UITypeEditors with the C1FlexGrid. .NET provides several
UITypeEditors for editing colors, fonts, file names, and so on. You can also write your own UITypeEditors, in some
cases that is easier than writing a control.

Note: For an example of using built-in, custom, and UITypeEditor editors with C1FlexGrid, see the
CustomEditors sample on GrapeCity website.

Edit Mode
You can determine whether the grid is in edit mode by reading the value of the Editor property. If this property
returns null, the grid is not in edit mode. Otherwise, the grid is in edit mode and the property returns a reference to
the control that is being used to edit the cell (the control may be a TextBox, a ComboBox, or other type of control).

You can put the grid in edit mode programmatically using the StartEditing method, and finish editing using
the FinishEditing method.

You can also set PreserveEditMode to retain edit mode of cells in a grid on navigation, using arrow or tab keys.

You can control the editing process further by handling the editing events fired by the grid. In the process of editing a
cell, the grid fires the following sequence of events:

Event Description

BeforeEdit This event fires whenever an editable cell is selected. It allows you to
prevent the cell from being edited by setting the event's Cancel parameter
to True. You can also modify the ComboList property so the appropriate
drop-down button gets painted in the cell. Note that the user might not
actually start editing after this, he could simply move the selection to a
different cell or control.

StartEdit This event is similar to BeforeEdit, except the user has actually typed a key
or clicked the dropdown button in the cell and really is about to start
editing. You can still cancel the editing at this point. Note that the Editor
property is still null at this point, because the control hasn't yet determined
the type of editor that should be used. You can assign custom editors to the
Editor property at this point.

FlexGrid for WinForms 62

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/samples/customeditors

SetupEditor This event fires after the editor control has been created and configured to
edit the cell, but before it is displayed. You can change the editor properties
at this point (for example, set the maximum length or password character to
be used in a TextBox editor). You can also attach your own event handlers
to the editor.

ValidateEdit This event fires when the user is done editing, before the editor value gets
copied back into the grid. You can examine the original value by retrieving it
from the grid (the event provides the coordinates of the cell). You can
examine the new value about to be assigned to the grid through the Editor
properties (for example, Editor.Text). If the new value is not valid for the
cell, set the Cancel parameter to True and the grid will remain in edit mode.
If instead of keeping the cell in edit mode you would rather restore the
original value and leave edit mode, set Cancel to True and then call the
FinishEditing method.

AfterEdit This event fires after the new value has been applied to the cell and the
editor has been deactivated. You can use this event to update anything that
depends on the cell value (for example, subtotals or sorting).

Event Description

Grouping
Grouping refers to combining rows based on column values. When grouping is applied to a grid, it automatically sorts
the data, splits it into groups, and adds collapsible group rows above or below each group. In FlexGrid, these group
rows are added above each group, by default. In case, you want to add them below every group, you can
use SubtotalPosition property of C1FlexGrid class, which accepts values from SubtotalPositionEnum enumeration.

As grid is grouped on the basis of column values, it displays grouped columns by default. However, you can remove
those columns from view by setting HideGroupedColumns property of C1FlexGrid class to true. Also, by default the
group row displays a string of "{name}:{value}" format, where name refers to the grouped column and value is one of
the unique values in the column. However, this can be altered using GroupHeaderFormat property of C1FlexGrid
class, which sets format string for the groups. The group header string is displayed in the first column of the group
row. In case there is large content in the group header, it might get clipped because of the column width. This can be
resolved using AllowMerging property of C1FlexGrid class. You can set the AllowMerging property
to AllowMergingEnum.Nodes so that the group header content can spill into the adjacent empty cells.

FlexGrid also allows you to aggregate the data and display the aggregated values on group rows for one or more
columns. It provides Aggregate property of the Column class that can be set on columns to show their aggregate
values (like sum or average) on the group header rows.

Sort grouped columns

FlexGrid allows you to sort columns by clicking their headers with the mouse through AllowSorting property of
C1FlexGrid class. Sorting grouped columns will sort the groups and alter the order in which the groups are displayed.
The sorting will be based on the value used to create the group. Sorting ungrouped columns will sort values within
each group only. For example, if the user clicked the “Product Name” column header on the grid, the groups remain
unchanged but the rows are sorted based on the alphabetical sorting applied to the products.

Customize the appearance of outline tree

FlexGrid lets you customize the appearance of the outline tree that shows the grouping in FlexGrid by setting the
Tree.Style property of FlexGrid. For example, set it to TreeStyleFlags.Leaf to show the group header text.

FlexGrid for WinForms 63

Copyright © 2019 GrapeCity, Inc. All rights reserved.

All these features can be combined to perform grouping in a better way. In FlexGrid, grouping can be performed
using any of the following two ways:

Dynamic grouping: Allows grouping without UI interaction, i.e., through code.
FlexGridGroupPanel control: Allows you to perform grouping through UI interaction without using any code.

The following image shows the FlexGrid control with grouped data based on its column values.

The following code shows grouping in FlexGrid:

'Add group
flex.GroupDescriptions = new GroupDescription[] {new
GroupDescription("CustomerID")}

'Showing aggregate(sum) on the group header rows
Dim col = flex.Cols("Freight")
col.Aggregate = AggregateEnum.Sum
col.Format = "N2"

'Setting grid's AllowMerging property to Nodes so that the group header
' content can spill into adjacent empty cells
flex.AllowMerging = AllowMergingEnum.Nodes

'Setting HideGroupedColumns property to true in order to hide the
grouped columns
flex.HideGroupedColumns = True

Visual Basic

FlexGrid for WinForms 64

Copyright © 2019 GrapeCity, Inc. All rights reserved.

'Customizing the string which is displayed on the group headers
flex.GroupHeaderFormat = "{name}:{value}"

'Customizing the appearance of the outline tree
flex.Tree.Style = TreeStyleFlags.CompleteLeaf

//Add group
flex.GroupDescriptions = new GroupDescription[] {new
GroupDescription("CustomerID")};

//Showing aggregate(sum) on the group header rows
var col = flex.Cols["Freight"];
col.Aggregate = AggregateEnum.Sum;
col.Format = "N2";

//Setting grid's AllowMerging property to Nodes so that the group header
content can //spill into adjacent empty cells
flex.AllowMerging = AllowMergingEnum.Nodes;

//Setting HideGroupedColumns property to true in order to hide the
grouped columns
flex.HideGroupedColumns = true;

//Customizing the string which is displayed on the group headers
flex.GroupHeaderFormat = "{name}:{value}";

//Customizing the appearance of the outline tree
flex.Tree.Style = TreeStyleFlags.CompleteLeaf;

C#

Grouping through Code
FlexGrid supports grouping through code. It provides GroupDescriptions property to describe how data source items
are grouped in the grid. This property accepts the instance of any collection which implements
IList<GroupDescription> interface (e.g. List<GroupDesciption>) as its value. The items of the collection describe
grouping using a property name as the criterion.

The following code shows grouping in FlexGrid:

'Add group
flex.GroupDescriptions = new GroupDescription[] {new
GroupDescription("CustomerID")}

//Add group
flex.GroupDescriptions = new GroupDescription[] {new
GroupDescription("CustomerID")};

Visual Basic

C#

FlexGrid for WinForms 65

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Grouping through GroupPanel
FlexGridGroupPanel control is an extension to FlexGrid control which is used to create groups in FlexGrid at runtime. To show
grouping in FlexGrid at runtime, bind the grid to be grouped with the FlexGridGroupPanel control using the FlexGrid property
of the C1FlexGridGroupPanel class.

On adding the FlexGridGroupPanel control to the form, it displays a message “Drag a column here to group by that column”.
However, you can add custom message in this area by setting Text property of the C1FlexGridGroupPanel class. The class
also provides the AutoSize property which when set to true, resizes the group panel automatically according to the message
content.

At runtime, user needs to drag a column to the FlexGridGroupPanel to perform grouping in FlexGrid based on that column.
This creates a group element inside FlexGridGroupPanel representing dragged column. The group element contains the
column’s caption and a clear button. You can hide the clear button by setting ShowClearButton property of the
C1FlexGridGroupPanel class to false.

When you want to group the data by multiple columns, order of the dragged columns determines the order in which
grouping will be done. Once grouping is performed, group headers get created for each group. You can also set the
maximum number of groups allowed within FlexGrid using MaxGroups property of C1FlexGridGroupPanel class. By default,
all the created groups appear in the expanded state. To change this setting, you can set the AutoExpandAllGroups of
C1FlexGridGroupPanel class to false.

The following code illustrates the properties of FlexGridGroupPanel:

Dim flexGroupPanel As C1FlexGridGroupPanel = New C1FlexGridGroupPanel()
flexGroupPanel.Bounds = New System.Drawing.Rectangle(100, 10, 500, 130)
this.Controls.Add(flexGroupPanel)
'Setting C1FlexGridGroupPanel's general properties
flexGroupPanel.FlexGrid = _flex
flexGroupPanel.Text = "Drag the columns here.."
flexGroupPanel.MaxGroups = 5
flexGroupPanel.AutoSize = False
flexGroupPanel.AutoExpandAllGroups = True

C#

C1FlexGridGroupPanel flexGroupPanel = new C1FlexGridGroupPanel();
flexGroupPanel.Bounds = new System.Drawing.Rectangle(100, 10, 500, 130);
this.Controls.Add(flexGroupPanel);
//Setting C1FlexGridGroupPanel's general properties
flexGroupPanel.FlexGrid = _flex;
flexGroupPanel.Text = "Drag the columns here..";
flexGroupPanel.MaxGroups = 5;
flexGroupPanel.AutoSize = false;
flexGroupPanel.AutoExpandAllGroups = true;

Customize FlexGridGroupPanel ContextMenuStrip

FlexGridGroupPanel have embedded context menu with the following options:

Full Expand: Expands all the groups in the grid
Full Collapse: Collapses all the groups in the grid
Clear Grouping: Clears all the created groups in the grid

When a group element is available in FlexGridGroupPanel, clicking on it opens up a context menu with the following options:

Expand: Expands the groups associated with the group element
Collapse: Collapses the groups associated with the group element

Visual Basic

FlexGrid for WinForms 66

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Clear: Clears the groups associated with the group element

However, the context menu can be customized using ContextMenuStrip property of the C1FlexGridGroupPanel class. This
customized menu is displayed for both, FlexGridGroupPanel as well as group element.

The following code

toolStripMenuItem1.Click += ContextMenuStripItems_Click
toolStripMenuItem2.Click += ContextMenuStripItems_Click
toolStripMenuItem3.Click += ContextMenuStripItems_Click
toolStripMenuItem4.Click += ContextMenuStripItems_Click
flexGroupPanel.ContextMenuStrip =contextMenuStrip1
contextMenuStrip1.BackColor = System.Drawing.Color.Aqua
contextMenuStrip1.Dock = DockStyle.Top

C#

//Adding custom ContextMenuStrip
toolStripMenuItem1.Click += ContextMenuStripItems_Click;
toolStripMenuItem2.Click += ContextMenuStripItems_Click;
toolStripMenuItem3.Click += ContextMenuStripItems_Click;
toolStripMenuItem4.Click += ContextMenuStripItems_Click;
flexGroupPanel.ContextMenuStrip =contextMenuStrip1;
contextMenuStrip1.BackColor = System.Drawing.Color.Aqua;
contextMenuStrip1.Dock = DockStyle.Top;

FlexGridGroupPanel Styling

FlexGridGroupPanel allows you to customize its appearance using BackColor, BorderStyle and BorderColor properties of the
C1FlexGridGroupPanel class. It also provides Styles property to customize the appearance of FlexGridGroupPanel, group
element, and clear button element.

The overall appearance of FlexGridGroupPanel can be changed using the properties exposed by the GroupPanelCommonStyle
class. The appearance of the group element can be changed using properties exposed by the GroupStyle class and the
appearance of the clear button element can be changed using properties exposed by the ClearButtonStyle class.

'Styling the FlexGridGroupPanel
flexGroupPanel.BackColor = System.Drawing.Color.Orange
flexGroupPanel.BorderStyle = BorderStyle.FixedSingle
flexGroupPanel.BorderColor = System.Drawing.Color.Green

'Setting the style for the FlexGridGroupPanel when it is disabled
flexGroupPanel.Enabled = false
flexGroupPanel.Styles.Common.Disabled.BackColor = System.Drawing.Color.Red
flexGroupPanel.Styles.Common.Disabled.ForeColor = System.Drawing.Color.Green

'Styling the C1FlexGridGroupPanel with the help of Styles property
flexGroupPanel.Styles.Common.Font = new System.Drawing.Font("Arial", 8,
System.Drawing.FontStyle.Bold)

'Styling the group element
flexGroupPanel.Styles.Group.BackColor = System.Drawing.Color.Green
flexGroupPanel.Styles.Group.ForeColor = System.Drawing.Color.Yellow
flexGroupPanel.Styles.Group.Border = 2
flexGroupPanel.Styles.Group.BorderColor = System.Drawing.Color.Black

Visual Basic

Visual Basic

FlexGrid for WinForms 67

Copyright © 2019 GrapeCity, Inc. All rights reserved.

'Setting the style for the group element when mouse is hovered over it
flexGroupPanel.Styles.Group.Hot.BackColor = System.Drawing.Color.Green
flexGroupPanel.Styles.Group.Hot.Border = 2
flexGroupPanel.Styles.Group.Hot.BorderColor = System.Drawing.Color.Black

'Styling the Clear button element
flexGroupPanel.Styles.ClearButton.BackColor = System.Drawing.Color.Yellow
flexGroupPanel.Styles.ClearButton.Image =
System.Drawing.Image.FromFile("..\\..\\CloseIcon.png")
flexGroupPanel.Styles.ClearButton.Hot.BackColor = System.Drawing.Color.Red
flexGroupPanel.Styles.ClearButton.Hot.BorderColor = System.Drawing.Color.Blue

//Styling the FlexGridGroupPanel
flexGroupPanel.BackColor = System.Drawing.Color.Orange;
flexGroupPanel.BorderStyle = BorderStyle.FixedSingle;
flexGroupPanel.BorderColor = System.Drawing.Color.Green;

//Setting the style for the FlexGridGroupPanel when it is disabled
flexGroupPanel.Enabled = false;
flexGroupPanel.Styles.Common.Disabled.BackColor = System.Drawing.Color.Red;
flexGroupPanel.Styles.Common.Disabled.ForeColor = System.Drawing.Color.Green;

//Styling the C1FlexGridGroupPanel with the help of Styles property
flexGroupPanel.Styles.Common.Font = new System.Drawing.Font("Arial", 8,
System.Drawing.FontStyle.Bold);

//Styling the group element
flexGroupPanel.Styles.Group.BackColor = System.Drawing.Color.Green;
flexGroupPanel.Styles.Group.ForeColor = System.Drawing.Color.Yellow;
flexGroupPanel.Styles.Group.Border = 2;
flexGroupPanel.Styles.Group.BorderColor = System.Drawing.Color.Black;

//Setting the style for the group element when mouse is hovered over it
flexGroupPanel.Styles.Group.Hot.BackColor = System.Drawing.Color.Green;
flexGroupPanel.Styles.Group.Hot.Border = 2;
flexGroupPanel.Styles.Group.Hot.BorderColor = System.Drawing.Color.Black;

//Styling the Clear button element
flexGroupPanel.Styles.ClearButton.BackColor = System.Drawing.Color.Yellow;
flexGroupPanel.Styles.ClearButton.Image =
System.Drawing.Image.FromFile("..\\..\\CloseIcon.png");
flexGroupPanel.Styles.ClearButton.Hot.BackColor = System.Drawing.Color.Red;
flexGroupPanel.Styles.ClearButton.Hot.BorderColor =
System.Drawing.Color.Blue;

C#

Merging Cells
The C1FlexGrid control allows you to merge cells, making them span multiple rows or columns. This capability can be
used to enhance the appearance and clarity of the data displayed on the grid. The effect of these settings is similar to
the HTML <ROWSPAN> and <COLSPAN> tags.

To enable cell merging, you must do two things:

FlexGrid for WinForms 68

Copyright © 2019 GrapeCity, Inc. All rights reserved.

1. Set the grid's AllowMerging property to a value other than None. (The effect of each setting is explained in the
reference section.)

2. If you want to merge columns, set the AllowMerging property to True for each column that you would like to
merge. If you want to merge rows, set the AllowMerging property to True for each row that you would like to
merge

Merging will occur if adjacent cells contain the same non-empty string. There is no method to force a pair of cells to
merge. The merging is done automatically based on the cell contents. This makes it easy to provide merged views of
sorted data, where values in adjacent rows present repeated data.

Cell merging has several possible uses. For example, you can use it to create merged table headers, merged data
views, or grids where the text spills into adjacent columns.

Merged Table Headers
To create merged table headers, you must start by setting the grid' s AllowMerging property to FixedOnly. Then,
designate the rows and columns that you want to merge by setting the row and column' s AllowMerging properties.
Finally, assign the text to the header cells so that the cells you want to merge have the same contents.

The code below shows an example:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 Dim i%

 ' Initialize the control.
 _flex.Styles.Normal.WordWrap = True
 _flex.Cols.Count = 9
 _flex.Rows.Fixed = 2
 _flex.AllowMerging = C1.Win.C1FlexGrid.AllowMergingEnum.FixedOnly

 ' Create row headers.
 _flex.Rows(0).AllowMerging = True

 ' Merge the four cells with same contents.
 Dim rng As C1.Win.C1FlexGrid.CellRange = _flex.GetCellRange(0, 1, 0, 4)
 rng.Data = "North"

 ' Merge the four cells with same contents.
 rng = _flex.GetCellRange(0, 5, 0, 8)
 rng.Data = "South"
 For i = 1 To 4
 _flex(1, i) = "Qtr " & i
 _flex(1, i + 4) = "Qtr " & i
 Next

 ' Create the column header.
 _flex.Cols(0).AllowMerging = True

FlexGrid for WinForms 69

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 ' Merge the two cells with same contents.
 rng = _flex.GetCellRange(0, 0, 1, 0)
 rng.Data = "Sales by Product"

 ' Align and autosize the cells.
 _flex.Styles.Fixed.TextAlign = C1.Win.C1FlexGrid.TextAlignEnum.CenterCenter
 _flex.AutoSizeCols(1, _flex.Cols.Count - 1, 10)
End Sub

To write code in C#

C#

private void Form1_Load(System.object sender, System.EventArgs e)
{
 int i;

 // Initialize the control.
 _flex.Styles.Normal.WordWrap = true;
 _flex.Cols.Count = 9;
 _flex.Rows.Fixed = 2;
 _flex.AllowMerging = C1.Win.C1FlexGrid.AllowMergingEnum.FixedOnly;

 // Create row headers.
 _flex.Rows[0].AllowMerging = true;

 // Merge the four cells with same contents.
 C1.Win.C1FlexGrid.CellRange rng = _flex.GetCellRange(0, 1, 0, 4);
 rng.Data = "North";

 // Merge the four cells with same contents.
 rng = _flex.GetCellRange(0, 5, 0, 8);
 rng.Data = "South";
 for (i = 1 ; i <= 4; i++)
 {
 _flex[1, i] = "Qtr " + i;
 _flex[1, i + 4] = "Qtr " + i;
 }

 // Create the column header.
 _flex.Cols[0].AllowMerging = true;

 // Merge the two cells with same contents.
 rng = _flex.GetCellRange(0, 0, 1, 0);
 rng.Data = "Sales by Product";

 // Align and autosize the cells.
 _flex.Styles.Fixed.TextAlign = C1.Win.C1FlexGrid.TextAlignEnum.CenterCenter;
 _flex.AutoSizeCols(1, _flex.Cols.Count - 1, 10);
}

This is the result:

FlexGrid for WinForms 70

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Merged Data Views
Cell merging works the same way when the grid is bound to a data source. The code below shows an example for a
grid bound to a data source at design time. For more information on binding to a data source, see Binding to a Data
Source.

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 Dim i%

 ' Set up cell merging.
 _flex.AllowMerging = C1.Win.C1FlexGrid.AllowMergingEnum.RestrictCols
 For i = _flex.Cols.Fixed To _flex.Cols.Count - 1
 _flex.Cols(i).AllowMerging = True
 Next
End Sub

To write code in C#

C#

private void Form1_Load(System.object sender, System.EventArgs e)
{
 int i;

 // Set up cell merging.
 _flex.AllowMerging = C1.Win.C1FlexGrid.AllowMergingEnum.RestrictCols;
 for (int i = _flex.Cols.Fixed; i <= _flex.Cols.Count - 1; i++)
 {
 _flex.Cols(i).AllowMerging = true;
 }
}

This is the result:

FlexGrid for WinForms 71

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Notice how merging the cells has the effect of visually grouping the data and making the information on the table
easier to understand.

Note: For an example of displaying merged data views with C1FlexGrid, see the CellMerging sample on
GrapeCity website.

Spilling Text
The AllowMerging property has two settings that operate differently from the others that do not require you to set
the AllowMerging property on specific rows and columns.

Spill Setting
The Spill setting causes text that is too long to fit in a cell to spill into empty adjacent cells. The resulting behavior is
similar to the one in Microsoft Excel. If you type a long entry into a cell and the adjacent cell is empty, the entry will
spill to occupy as much room as needed.

For example, the picture below shows what a grid might look like when AllowMerging is set to Spill and the user
types entries of varying lengths:

Nodes Setting
The Nodes setting is similar to Spill but only applies to outline nodes. This setting is useful when data is organized
into groups, and the node rows contain information in a format different from the data rows.

FlexGrid for WinForms 72

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/samples/cellmerging

For example, the picture below shows what a grid might look like when the data is grouped and summarized using
the Subtotal method, and then AllowMerging is set to Nodes:

This image is similar to the one in the Creating Subtotals topic. The difference is that the subtotal rows (nodes) now
spill onto empty adjacent cells, improving the appearance of the grid.

Custom Merging
You can customize the default merging behavior in two ways:

Assign a custom IComparer class to the CustomComparer property.

By default, the grid will merge adjacent cells that contain the same non-null value. String comparisons are
case-sensitive and blanks are included.

If you wanted the grid to merge cells using a case-insensitive comparison and trimming blanks, you could write
a custom class that implements IComparer and assign it to the CustomComparer property.

Write a new class that derives from the C1FlexGrid and override the GetMergedRange virtual method,
providing your own custom merging logic.

Note: For samples that show how to implement custom merging logic, see the CustomMerge,
CustomMerge2, CustomMerge3, and CustomMerge4 samples on GrapeCity website.

Outlining and Summarizing Data
The C1FlexGrid control has methods and properties that allow you to summarize data and display it in a hierarchical
manner. To summarize data and add aggregate values, use the Subtotal method. To display hierarchical views of the
data, use the Tree property.

Creating Subtotals
The C1FlexGrid.Subtotal method adds subtotal rows that contain aggregate data for the regular (non-subtotal) rows.

FlexGrid for WinForms 73

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/samples/?display_limit=all

Subtotal supports hierarchical aggregates. For example, if your grid contains sales data, you may Subtotal to get
aggregate sales figures by Product, Region, and Salesperson. The code below illustrates this:

To write code in Visual Basic

Visual Basic

Private Sub ShowTotals()

 ' Show OutlineBar on column 0.
 _flex.Tree.Column = 0
 _flex.Tree.Style = TreeStyleFlags.Simple

 ' Clear existing subtotals.
 _flex.Subtotal(AggregateEnum.Clear)

 ' Get a Grand total (use -1 instead of column index).
 _flex.Subtotal(AggregateEnum.Sum, -1, -1, 3, "Grand Total")

 ' Total per Product (column 0).
 _flex.Subtotal(AggregateEnum.Sum, 0, 0, 3, "Total {0}")

 ' Total per Region (column 1).
 _flex.Subtotal(AggregateEnum.Sum, 1, 1, 3, "Total {0}")

 ' Size column widths based on content.
 _flex.AutoSizeCols()
End Sub

To write code in C#

C#

private void ShowTotals()
{
 // Show OutlineBar on column 0.
 _flex.Tree.Column = 0;
 _flex.Tree.Style = TreeStyleFlags.Simple;

 // Clear existing subtotals.
 _flex.Subtotal(AggregateEnum.Clear);

 // Get a Grand total (use -1 instead of column index).
 _flex.Subtotal(AggregateEnum.Sum, -1, -1, 3, "Grand Total");

 // Total per Product (column 0).
 _flex.Subtotal(AggregateEnum.Sum, 0, 0, 3, "Total {0}");

 // Total per Region (column 1).
 _flex.Subtotal(AggregateEnum.Sum, 1, 1, 3, "Total {0}");

 // Size column widths based on content.
 _flex.AutoSizeCols();

FlexGrid for WinForms 74

Copyright © 2019 GrapeCity, Inc. All rights reserved.

}

When the C1FlexGrid.Subtotal method adds rows with the aggregate information, it automatically assigns subtotal
styles to the new rows (there are built-in styles for 5 levels of subtotals). You can customize the appearance of the
subtotal rows by changing the properties of the outline styles in the designer with the Style Editor or with code. For
example:

To write code in Visual Basic

Visual Basic

' Set styles for subtotals.
Dim cs As C1.Win.C1FlexGrid.CellStyle
cs = _flex.Styles(C1.Win.C1FlexGrid.CellStyleEnum.GrandTotal)
cs.BackColor = Color.Black
cs.ForeColor = Color.White
cs.Font = New Font(Font, FontStyle.Bold)

cs = _flex.Styles(C1.Win.C1FlexGrid.CellStyleEnum.Subtotal0)
cs.BackColor = Color.DarkRed
cs.ForeColor = Color.White
cs.Font = New Font(Font, FontStyle.Bold)

cs = _flex.Styles(C1.Win.C1FlexGrid.CellStyleEnum.Subtotal1)
cs.BackColor = Color.DarkBlue
cs.ForeColor = Color.White

To write code in C#

C#

// Set styles for subtotals.
CellStyle cs;
cs = _flex.Styles[CellStyleEnum.GrandTotal];
cs.BackColor = Color.Black;
cs.ForeColor = Color.White;
cs.Font = new Font(Font, FontStyle.Bold);

cs = _flex.Styles[CellStyleEnum.Subtotal0];
cs.BackColor = Color.DarkRed;
cs.ForeColor = Color.White;
cs.Font = new Font(Font, FontStyle.Bold);

cs = _flex.Styles[CellStyleEnum.Subtotal1];
cs.BackColor = Color.DarkBlue;
cs.ForeColor = Color.White;

After executing this code, the grid would look like this:

FlexGrid for WinForms 75

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The Grand Total row contains the total sales for all products, regions, and sales personnel. It was created using a –1
for the groupOn parameter in the call to the C1FlexGrid.Subtotal method. The other subtotals show total sales by
product and region. They were created using a values 0 and 1 for the groupOn parameter.

For information on grouping, please refer Grouping.

You may also calculate aggregates other than sums (for example, averages or percentages), and calculate several
aggregates for each row (for example, gross and net sales).

Subtotal rows created by the Subtotal method differ from regular rows in three aspects:

1. Subtotal rows can be automatically removed by invoking the Subtotal method with the flexSTClear parameter.
This is useful to provide dynamic views of the data, where the user may move columns and re-sort the data,
making it necessary to recalculate the subtotals.

2. Subtotal rows can be used as nodes in an outline, allowing you to collapse and expand groups of rows to
present an overview of the data or to reveal its details. To see the outline tree, you need to set the Column and
Tree.Style properties to define the position and appearance of the outline tree.

3. Subtotal rows can be treated as nodes in a tree. You can get a Node object for any subtotal row through the
Node property.

4. When the grid is bound to a data source, the subtotal rows do not correspond to actual data. If you move the
cursor in the data source, subtotal rows will be skipped in the grid.

The outline tree allows users to collapse and expand sections of the grid by clicking on the nodes. You can use outline
trees to display many types of information, not only aggregates. The next topic shows how you can create a custom
outline tree to display directory information.

Creating Custom Subtotal
FlexGrid can display subtotals on grouped rows using Subtotal method. In addition, it allows you to create custom
subtotal using custom expressions as subtotals in groups along with aggregates. You can create custom group
expressions for a column using GroupExpressions property of the Column class.

The following image shows the calculated subtotal in group:

FlexGrid for WinForms 76

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The following code can be used to use custom expressions as subtotals for creating custom subtotals. In this example,
we have used a list of employees as a data source for the FlexGrid control.

Dim grps As List(Of GroupDescription) = New List(Of GroupDescription)()
Dim grp As GroupDescription = New GroupDescription("Department",
ListSortDirection.Descending, True)
grps.Add(grp)
c1FlexGrid1.GroupDescriptions = grps

Dim column = c1FlexGrid1.Cols.Add()
column.Name = "Expression"
column.DataType = GetType(Object)
column.Caption = "Expression"
column.AllowEditing = False
column.Expression = "[ID] * [Age]"

'GroupExpression implementation
c1FlexGrid1.Cols("ID").GroupExpression = "=Count([ID])"
c1FlexGrid1.Cols("Age").GroupExpression = "=Average([Age])"
c1FlexGrid1.Cols("JoiningDate").GroupExpression = "=Now()"
c1FlexGrid1.Cols("Expression").GroupExpression =
"=iif(10<5,Sum([Age]),Count([Age]))"

List<GroupDescription> grps = new List<GroupDescription>();
GroupDescription grp = new GroupDescription("Department",
ListSortDirection.Descending, true);
grps.Add(grp);
c1FlexGrid1.GroupDescriptions = grps;

var column = c1FlexGrid1.Cols.Add();
column.Name = "Expression";
column.DataType = typeof(object);
column.Caption = "Expression";
column.AllowEditing = false;

Visual Basic

C#

FlexGrid for WinForms 77

Copyright © 2019 GrapeCity, Inc. All rights reserved.

column.Expression = "[ID] * [Age]";

//GroupExpression implementation
c1FlexGrid1.Cols["ID"].GroupExpression = "=Count([ID])";
c1FlexGrid1.Cols["Age"].GroupExpression = "=Average([Age])";
c1FlexGrid1.Cols["JoiningDate"].GroupExpression = "=Now()";
c1FlexGrid1.Cols["Expression"].GroupExpression =
"=iif(10<5,Sum([Age]),Count([Age]))";

Creating Custom Trees
To create outline trees without using the Subtotal method, you need to follow these steps:

1. Add rows to the grid.
2. Turn some rows into outline nodes by setting their IsNode property to True.
3. Get the Node object for each node row and set its Level property to define the node' s position in the tree

hierarchy. Higher values mean the node is deeper (more indented) into the outline tree.

For example, the code below creates a directory tree:

To write code in Visual Basic

Visual Basic

' add these Imports statements at the top of the for.
Imports System.IO
Imports C1.Win.C1FlexGrid

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 ' Initialize grid layout.
 _flex.Cols.Fixed = 0
 _flex.Cols.Count = 1
 _flex.Rows.Count = 1
 _flex.ExtendLastCol = True
 _flex.Styles.Normal.TextAlign = TextAlignEnum.LeftCenter
 _flex.Styles.Normal.Border.Style = BorderStyleEnum.None

 ' Show outline tree.
 _flex.Tree.Column = 0
 _flex.Tree.Style = TreeStyleFlags.SimpleLeaf
 _flex.Tree.LineColor = Color.DarkBlue

 ' Populate the grid.
 AddDirectory("c:\", 0)
End Sub

To write code in C#

C#

// add these using statements at the top of the for.

FlexGrid for WinForms 78

Copyright © 2019 GrapeCity, Inc. All rights reserved.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.IO;
using C1.Win.C1FlexGrid;

private void Form1_Load(object sender, EventArgs e)
{

 // Initialize grid layout.
 _flex.Cols.Fixed = 0;
 _flex.Cols.Count = 1;
 _flex.Rows.Count = 1;
 _flex.ExtendLastCol = true;
 _flex.Styles.Normal.TextAlign = TextAlignEnum.LeftCenter;
 _flex.Styles.Normal.Border.Style = BorderStyleEnum.None;

 // Initialize outline tree.
 _flex.Tree.Column = 0;
 _flex.Tree.Style = TreeStyleFlags.SimpleLeaf;
 _flex.Tree.LineColor = Color.DarkBlue;

 // Populate the grid.
 AddDirectory(@"c:\\", 0);
}

The code above initializes the grid layout and calls the AddDirectory routine that does the job of populating the grid
and setting up the tree structure:

To write code in Visual Basic

Visual Basic

Private Sub AddDirectory(ByVal dir As String, ByVal level As Integer)

 ' Add this directory.
 Dim thisDir As String
 thisDir = Path.GetFileName(dir)
 If thisDir.Length = 0 Then thisDir = dir
 _flex.AddItem(thisDir)

 ' Make this new row a node.
 Dim row As Row
 row = _flex.Rows(_flex.Rows.Count - 1)
 row.IsNode = True

 ' Set the node level.
 Dim nd As Node
 nd = row.Node

FlexGrid for WinForms 79

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 nd.Level = level

 ' Add files in this directory.
 Dim file As String, cnt As Integer, r As Row
 cnt = 0
 For Each file In Directory.GetFiles(dir)
 _flex.AddItem(Path.GetFileName(file).ToLower())
 r = _flex.Rows(_flex.Rows.Count – 1)
 r.IsNode = True
 r.Node.Level = level + 1
 cnt = cnt + 1
 If cnt > 10 Then Exit For
 Next

 ' Add subdirectories (up to level 4).
 If level <= 4 Then
 Dim subdir As String
 cnt = 0
 For Each subdir In Directory.GetDirectories(dir)
 AddDirectory(subdir, level + 1)
 cnt = cnt + 1
 If cnt > 10 Then Exit For
 Next
 End If
End Sub

To write code in C#

C#

private void AddDirectory(string dir, int level)
{
 // add this director.
 string thisDir = Path.GetFileName(dir);
 if (thisDir.Length == 0) { thisDir = dir; }
 _flex.AddItem(thisDir);
 //make this new row a node
 Row row = _flex.Rows[_flex.Rows.Count - 1];
 row.IsNode = true;
 //set node level
 Node nd = row.Node;
 nd.Level = level;
 // add files in this director.
 int cnt = 0;
 Row r;

 foreach (string file in Directory.GetFiles(dir))
 {
 _flex.AddItem(Path.GetFileName(file).ToLower());
 //mark the row without child row as node
 r = _flex.Rows[_flex.Rows.Count - 1];
 r.IsNode = true;

FlexGrid for WinForms 80

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 r.Node.Level = level + 1;
 cnt = cnt + 1;
 if (cnt > 10) break;
 }

 // add subdirectories (up to level 4.
 if (level <= 4)
 {
 cnt = 0;
 foreach (string subdir in Directory.GetDirectories(dir))
 {
 AddDirectory(subdir, level + 1);
 cnt = cnt + 1;
 if (cnt > 10) break;
 }
 }
}

AddDirectory is a recursive routine that traverses the current directory and all its subdirectories. In this example, the
tree size is limited to four directory levels in order to save time. In a real application, the routine should be changed to
populate tree branches only when they are expanded (see the FlexGrid for WinForms Tutorials).

This code creates a grid that looks like this:

Creating Outlines and Trees with the C1FlexGrid Control
One of the unique and popular features of the C1FlexGrid control is the ability to add hierarchical grouping to regular
unstructured data.

To achieve this, the C1FlexGrid introduces the concept of Node rows. Node rows do not contain regular data. Instead,
they act as headers under which similar data is grouped, exactly like nodes in a regular TreeView control. Like nodes
in a TreeView control, node rows can be collapsed and expanded, hiding or showing the data they contain. Also like

FlexGrid for WinForms 81

Copyright © 2019 GrapeCity, Inc. All rights reserved.

nodes in a TreeView control, node rows have a Level property that defines the node hierarchy. Lower level nodes
contain higher level nodes.

For example, suppose you had a grid showing customer name, country, city, and sales amounts. This typical grid
would normally look like this:

All the information is there, but it's hard to see the total sales for each country or customer. You could use the
C1FlexGrid's outlining features to group the data by country (level 0), then by city within each country (level 1), then
by customer within each city (level 2). Here is the same grid with after adding the outline:

This grid shows the same information as the previous one (it is bound to the same data source), but it adds a tree
where each node contains a summary of the data below it. Nodes can be collapsed to show only the summary, or
expanded to show the detail. Note that each node row can show summaries for more than one column (in this case,
total units sold and total amount).

In this article, we will walk you through the process of turning a regular grid into a richer outline grid.

Loading the Data
Loading data into an outline grid is exactly the same as loading it into a regular grid. If your data source is available at
design time, you can use the Visual Studio Property Window to set the grid's DataSource property and bind the grid
to the data without writing any code.

If the data source is not available at design time, you can set the grid's DataSource property in code. The data
binding code typically looks like this:

To write code in C#

FlexGrid for WinForms 82

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

public Form1()
{
 InitializeComponent();

 // get data
 var fields = @"
 Country,
 City,
 SalesPerson,
 Quantity,
 ExtendedPrice";
 var sql = string.Format("SELECT {0} FROM Invoices ORDER BY {0}", fields);
 var da = new OleDbDataAdapter(sql, GetConnectionString());
 da.Fill(_dt);

 // bind grid to data
 this._flex.DataSource = _dt;

 // format ExtendedPrice column
 _flex.Cols["ExtendedPrice"].Format = "n2";
}

The code uses an OleDbDataAdapter to fill a DataTable with data, thenand then assigns the DataTable to the grid's
DataSource property.

After running this code, you would get the "regular grid" shown in the first image. To turn this regular grid into the
outline grid shown in the second image, we need to insert the node rows that make up the outline.

Creating Node Rows
Node rows are almost identical to regular rows, except for the following:

Node rows are not data bound. When the grid is bound to a data source, each regular row corresponds to an
item in the data source. Node rows do not. Instead, they exist to group regular rows that contain similar data.
Node rows can be collapsed or expanded. When a node row is collapsed, all its data and child nodes are
hidden. If the outline tree is visible, users can collapse and expand nodes using the mouse or the keyboard. If
the outline tree is not visible, then nodes can only be expanded or collapsed using code.

To determine whether a row is a node or not, you can use the IsNode property:

To write code in C#

C#

var row = _flex.Rows[rowIndex];
if (row.IsNode)
{
 // row is a nod.
 var node = row.Node;
 DoSomethingWithTheNode(node);
}
else

FlexGrid for WinForms 83

Copyright © 2019 GrapeCity, Inc. All rights reserved.

{
 // this row is not a nod.
}

Node rows can be created in three ways:

1. Use the Rows.InsertNode method. This will insert a new node row at a specified index. Once the node row has
been created, you can use it like you would any other row (set the data for each column, apply styles, etc.). This
is the 'low-level' way of inserting totals and building outlines. It gives the most control and flexibility and is
demonstrated below.

2. Use the Subtotal method. This method scans the entire grid and automatically inserts node rows with optional
subtotals at locations where the grid data changes. This is the 'high-level' way of inserting totals and building
outlines. It requires very little code, but makes some assumptions about how the data is structured on the grid
and what the outline should look like.

3. If the grid is unbound, then you can turn regular rows into node rows by setting the IsNode property to true.
Note that this only works when the grid is unbound. Trying to turn a regular data bound row into a node will
cause the grid to throw an exception.

The code below shows how you could implement a GroupBy method that inserts node rows grouping identical values
on a given column.

To write code in C#

C#

// group on a given column inserting nodes of a given leve.
void GroupBy(string columnName, int level)
{
 object current = null;
 for (int r = _flex.Rows.Fixed; r < _flex.Rows.Count; r++)
 {
 if (!_flex.Rows[r].IsNode)
 {
 var value = _flex[r, columnName];
 if (!object.Equals(value, current))
 {
 // value changed: insert nod.
 _flex.Rows.InsertNode(r, level);

 // show group name in first scrollable colum.
 _flex[r, _flex.Cols.Fixed] = value;

 // update current valu.
 current = value;
 }
 }
 }
}

The code scans all the columns, skipping existing node rows (so it can be called to add several levels of nodes), and
keeps track of the current value for the column being grouped on. When the current value changes, a node row is
inserted showing the new group name in the first scrollable column.

Back to our example, you could use this method to create a two-level outline by calling:

FlexGrid for WinForms 84

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

void _btnGroupCountryCity_Click(object sender, EventArgs e)
{
 GroupBy("Country", 0);
 GroupBy("City", 1);
}

Very simple, but there are some caveats. First, the method assumes that the data is sorted according to the outline
structure. In this example, if the data were sorted by SalesPerson instead of by Country, the outline would have
several level-0 nodes for each country, which probably is not what you want.

Also, the GroupBy method may insert may rows, which would cause the grid to flicker. To avoid this, you would
normally set the Redraw property to false before making the updates and set it back to true when done.

To handle these issues, the code that creates the outline should be re-written as follows:

To write code in C#

C#

void _btnGroupCountryCity_Click(object sender, EventArgs e)
{
 // suspend redrawing while updatin.
 using (new DeferRefresh(_flex))
 {
 // restore original sort (by Country, City, etc..
 ResetBinding();

 // group by Country, Cit.
 GroupBy("Country", 0);
 GroupBy("City", 1);
 }
}

The DeferRefresh class is a simple utility that sets the grid's Redraw property to false and restores its original value
when it is disposed. This ensures that Redraw is properly restored even when exceptions happen during the updates.
Here is the implementation of the DeferRefresh class:

To write code in C#

C#

// Utility class used to encapsulate grid lengthy operations in a Redraw block.
// This avoids flicker and ensures the Redraw property is reset properly in case.
// an exception is thrown during the operation.
class DeferRefresh : IDisposable
{
 C1FlexGrid _grid;
 bool _redraw;
 public DeferRefresh(C1FlexGrid grid)
 {
 _grid = grid;
 _redraw = grid.Redraw;

FlexGrid for WinForms 85

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 grid.Redraw = false;
 }
 public void Dispose()
 {
 _grid.Redraw = _redraw;
 }
}

The BindGrid method ensures that the grid is sorted in the order required by our outline structure. In our example,
the sort order is by Country, City, and SalesPerson. The code looks like this:

To write code in C#

C#

// unbind and re-bind grid in order to reset everythin.
void ResetBinding()
{
 // unbind gri.
 _flex.DataSource = null;

 // reset any custom sortin.
 _dt.DefaultView.Sort = string.Empty;

 // re-bind gri.
 _flex.DataSource = _dt;

 // format ExtendedPrice colum.
 _flex.Cols["ExtendedPrice"].Format = "n2";

 // auto-size the columns to fit their conten.
 _flex.AutoSizeCols();
}

If you run this code now, you will notice that the node rows are created as expected, but the outline tree is not visible,
so you can't expand and collapse the nodes. The outline tree is described in the next section.

Outline Tree
The outline tree is very similar to the one you see in a regular TreeView control. It shows an indented structure with
collapse/expand icons next to each node row so the user can expand and collapse the outline to see the desired level
of detail.

The outline tree can be displayed in any column, defined by the Tree.Column property. By default, this property is set
to -1, which causes the tree not to be displayed at all. To show the outline tree in the example given above, you would
use this code:

To write code in C#

C#

void _btnTreeCountryCity_Click(object sender, EventArgs e)
{
 using (new DeferRefresh(_flex))

FlexGrid for WinForms 86

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 {
 // group by country and city as before
 _btnGroupCountryCity_Click(this, EventArgs.Empty);

 // show outline tree
 _flex.Tree.Column = 0;

 // autosize to accommodate tree
 _flex.AutoSizeCol(_flex.Tree.Column);

 // collapse detail nodes
 _flex.Tree.Show(1);
 }
}

The code calls the previous method to build the outline, thenand then sets the Tree.Column property to zero in order
to show the outline tree in the first column. It also calls the C1FlexGrid.AutoSizeCol method to ensure that the column
is wide enough to accommodate the outline tree. Finally, it calls the Tree.Show method to display all level-0 nodes
(cities in this case) and hide all the detail.

The Tree property returns a reference to a GridTree object that exposes several methods and properties used to
customize the outline tree. The main ones are listed below:

Column: Gets or sets the index of the column that contains the outline tree. Setting this property to -1 causes
the outline tree to be hidden from the users.
Indent: Gets or sets the indent, in pixels, between adjacent node levels. Higher indent levels cause the tree to
become wider.
Style: Gets or sets the type of outline tree to display. Use this property to determine whether the tree should
include a button bar at the top to allow users to collapse/expand the entire tree, whether lines and/or symbols
should be displayed, and whether lines should be displayed connecting the tree to data rows as well as node
rows.
LineColor: Gets or sets the color of the tree's connecting lines.
LineStyle: Gets or sets the style of the tree's connecting lines.

For example, by changing the code above to include these two lines:

To write code in C#

C#

// show outline tree
_flex.Tree.Column = 0;
_flex.Tree.Style = TreeStyleFlags.CompleteLeaf;
_flex.Tree.LineColor = Color.White;
_flex.Tree.Indent = 30;

The outline tree would change as follows:

FlexGrid for WinForms 87

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Notice the buttons labeled "1", "2", and "*" on the top left cell. Clicking these buttons would cause the entire tree to
collapse or expand to the corresponding level. Also notice the much wider indentation and the lines connecting the
tree to regular rows ("Anne Dodsworth") as well as to node rows.

Adding Subtotals
So far we have covered the creation of node rows and outline trees. To make the outlines really useful, however, the
node rows should include summary information for the data they contain.

If you create an outline tree using the Subtotal method, then the subtotals are added automatically. This will be
described in a later section.

If you created the outline tree using the Rows.InsertNode method as described above, then you should use the
Aggregate method to calculate the subtotals for each group of rows and insert the result directly into the node rows.

The C1FlexGrid.Subtotal method listed below shows how to do this:

To write code in C#

C#

// add subtotals to each node at a given level
void AddSubtotals(int level, string colName)
{
 // get column we are going to total on
 int colIndex = _flex.Cols.IndexOf(colName);

 // scan rows looking for nodes at the right level
 for (int r = _flex.Rows.Fixed; r < _flex.Rows.Count; r++)
 {
 if (_flex.Rows[r].IsNode)
 {
 var node = _flex.Rows[r].Node;
 if (node.Level == level)
 {
 // found a node, calculate the sum of extended price
 var range = node.GetCellRange();
 var sum = _flex.Aggregate(AggregateEnum.Sum,
 range.r1, colIndex, range.r2, colIndex,
 AggregateFlags.ExcludeNodes);

 // show the sum on the grid

FlexGrid for WinForms 88

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // (will use the column format automatically)
 _flex[r, colIndex] = sum;
 }
 }
 }
}

The AddSubtotals method scans the grid rows looking for node rows. When a node row of the desired level is found,
the method uses the GetCellRange method to retrieve the node's child rows. Then it uses the C1FlexGrid.Aggregate
method to calculate the sum of the values on the target column over the entire range. The call to Aggregate includes
the ExcludeNodes flag to avoid double-counting existing nodes. Once the subtotal has been calculated, it is assigned
to the node row's cell with the usual _flex[row, col] indexer.

Note that this does not affect the data source in any way, since node rows are not bound to the data.

Note also that the method can be used to add multiple totals to each node row. In this example, we will add totals for
the Quantity and ExtendedPrice columns. In addition to sums, you could add other aggregates such as average,
maximum, minimum, etc.

We can now use this method to create a complete outline, with node rows, outline tree, and subtotals:

To write code in C#

C#

void _btnTreeCountryCity_Click(object sender, EventArgs e)
{
 using (new DeferRefresh(_flex))
 {
 // restore original sort (by Country, City, SalesPerson)
 ResetBinding();

 // group by Country, City
 GroupBy("Country", 0); // group by country (level 0)
 GroupBy("City", 1); // group by city (level 1)

 // add totals per Country, City
 AddSubtotals(0, "ExtendedPrice"); // extended price per country (level 0)
 AddSubtotals(0, "Quantity"); // quantity per country (level 0)
 AddSubtotals(1, "ExtendedPrice"); // extended price per city (level 1)
 AddSubtotals(1, "Quantity"); // quantity per city (level 1)

 // show outline tree
 _flex.Tree.Column = 0;
 _flex.AutoSizeCol(_flex.Tree.Column);
 _flex.Tree.Show(1);
 }
}

If you run the project now, you will see a tree with node rows that show the total quantity and amount sold for each
country and city. This is very nice, but there is a little problem. If you expand any of the node rows, you will see a lot of
duplicate values. All rows under a given city node have the same country and city:>

FlexGrid for WinForms 89

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This is correct, but it is also a waste of screen real estate. Eliminating these duplicate values is easy; all you have to do
is set the Width of the columns that are being grouped on to zero. When you do that, however, you should
remember to set the grid's AllowMerging property to Nodes, so the text assigned to the node rows will spill into the
visible columns. (Another option would be to assign the node text to the first visible column, but merging is usually a
better solution because it allows you to use longer text for the node rows).

Here is the revised code and the final result:

To write code in C#

C#

void _btnTreeCountryCity_Click(object sender, EventArgs e)
{
 using (new DeferRefresh(_flex))
 {
 // restore original sort (by Country, City, SalesPerson)
 ResetBinding();

 // group by Country, City
 GroupBy("Country", 0); // group by country (level 0)
 GroupBy("City", 1); // group by city (level 1)

 // hide columns that we grouped on
 // (they only have duplicate values which already appear on the tree nodes)
 // (but don't make them invisible, that would also hide the node text)
 _flex.Cols["Country"].Width = 0;
 _flex.Cols["City"].Width = 0;

 // allow node content to spill onto next cell
 _flex.AllowMerging = AllowMergingEnum.Nodes;

 // add totals per Country, City
 AddTotals(0, "ExtendedPrice"); // extended price per country (level 0)
 AddTotals(0, "Quantity"); // quantity per country (level 0)
 AddTotals(1, "ExtendedPrice"); // extended price per city (level 1)

FlexGrid for WinForms 90

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 AddTotals(1, "Quantity"); // quantity per city (level 1)

 // show outline tree
 _flex.Tree.Column = 0;
 _flex.AutoSizeCol(_flex.Tree.Column);
 _flex.Tree.Show(1);
 }
}

The Country and City columns are now invisible, but their values still appear in the node rows. Collapsing the tree
shows totals for each country and city.

Using the Subtotal Method
We mentioned earlier that you could also create trees using the C1FlexGrid's Subtotal method. TheSubtotal method
performs the same tasks as the GroupBy and AddSubtotals methods described above, except it does both things in
a single step and is therefore a little more efficient.

The code below shows how you can use the Subtotal method to accomplish the same thing we did before, only a
little faster and without using any helper methods:

To write code in C#

C#

void _btnTreeCountryCity_Click(object sender, EventArgs e)
{
 using (new DeferRefresh(_flex))
 {
 // restore original sort (by Country, City, SalesPerson)
 ResetBinding();

 // group and total by country and city
 _flex.Subtotal(AggregateEnum.Sum, 0, "Country", "ExtendedPrice");
 _flex.Subtotal(AggregateEnum.Sum, 0, "Country", "Quantity");

FlexGrid for WinForms 91

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 _flex.Subtotal(AggregateEnum.Sum, 1, "City", "ExtendedPrice");
 _flex.Subtotal(AggregateEnum.Sum, 1, "City", "Quantity");

 // hide columns that we grouped on
 // (they only have duplicate values which already appear on the tree nodes)
 // (but don't make them invisible, that would also hide the node text)
 _flex.Cols["Country"].Width = 0;
 _flex.Cols["City"].Width = 0;
 _flex.AllowMerging = AllowMergingEnum.Nodes;

 // show outline tree
 _flex.Tree.Column = 0;
 _flex.AutoSizeCol(_flex.Tree.Column);
 _flex.Tree.Show(1);
 }
}

The Subtotal method is very convenient and flexible. It has a number of overloads that allow you to specify which
columns should be grouped on and totaled on by index or by name, whether to include a caption in the node rows
that it inserts, how to perform the grouping, and so on. The summary below describes the overloads available:

1. Subtotal(AggregateEnum aggType)

This version of the method takes only one aggregate type as a parameter. It is useful only for removing existing
subtotals before inserting new ones. In this case, the aggType parameter is set to AggregateEnum.Clear.

2. Subtotal(AggregateEnum aggType, int groupBy, int totalOn)

Subtotal(AggregateEnum aggType, string groupBy, string totalOn)

These are the most commonly used overloads. The parameters are the type of aggregate to insert and the
columns to group by and total on. The columns may be referenced by index or by name. The latter is the one
we used in the example above.

3. Subtotal(AggregateEnum aggType, int groupBy, int totalOn, string caption)

Subtotal(AggregateEnum aggType, string groupBy, string totalOn, string caption)

These overloads add an extra caption parameter. The caption parameter determines the text that is added to
the new node rows to identify the value being grouped on. By default, the value being grouped on is shown, so
if you are grouping by country, the node rows would show "Argentina", "Brazil", and so on. If you set the
caption parameter to a string such as "Country: {0}", then the node rows would show "Country: Argentina"
instead.

4. Subtotal(AggregateEnum aggType, int groupFrom, int groupTo, int totalOn, string caption)

Subtotal(AggregateEnum aggType, string groupFrom, string groupTo, string totalOn, string caption)

These overloads separate the groupBy parameter into two: groupFrom and groupTo. By default, the Subtotal
method inserts a node row whenever the value of the groupBy or any previous column changes.

For example, if you a row has the same value in the "City" column as the previous row, but a different value in
the "Country" column, then the Subtotal method assumes the rows should be in different groups and inserts a
new node row even though the value of the groupBy column is the same. These aggregates let you override
that behavior and specify the range of columns that should be considered when identifying a group.

FlexGrid for WinForms 92

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Outline Maintenance
So far we have discussed how to create outlines with trees and totals using the high-level Subtotal method as well as
lower-level Rows.InsertNode and Aggregate methods.

At this point, it is important to remember that the outline tree is created based on the data, but is not bound to it in
any way, and is not automatically maintained when there are changes to the grid or to the data.

If the user modifies a value in the "ExtendedPrice" column, for example, the subtotals will not be automatically
updated. If the user sorts the grid, the data will be refreshed and the subtotals will disappear.

There are two common ways to maintain the outlines:

1. Prevent the user from making any changes that would invalidate the outline. This is the easiest option. You
would set the grid's AllowEditing, AllowDragging, and AllowSorting properties to false and prevent any
changes that would affect the outline.

2. Update the outline when there are changes to the data or to the grid. You would attach handlers to the
grid's AfterDataRefresh, AfterSort, and AfterEdit events and re-generate the outline appropriately.

Option 2 is usually more interesting since it provides a quick and simple tool for dynamic data analysis. This approach
is illustrated by the Analyze sample provided with the C1FlexGrid. The sample creates an initial outline and allows
users to reorder the columns. When the column order changes, the sample automatically re-sorts the data and re-
creates the outline. The user can easily create simple reports showing sales by country, by product, by salesperson,
and so on.

Using the Node class
The Node class provides a number of methods and properties that can be used to create and manage outline trees.
Many of these methods and properties are based on the standard TreeView object model, so they should be familiar
to most developers.

To obtain a Node object, you can either:

Use the return value of the Rows.InsertNode method:

var node = _flex.Rows.InsertNode(index, level);

Or you can retrieve the node for an existing row using the row's Node property:

var node = _flex.Rows[index].IsNode
 ? _flex.Rows[index].Node
 : null;

Either way, once you have a Node object you can manipulate it using the following properties and methods:

Level: Gets or sets the node level in the outline tree.
Data: Gets or sets the value in the cell defined by Node.Row and the Tree.Column.
Image: Gets or sets the image in the cell defined by Node.Row and the Tree.Column.
Checked: Gets or sets the check state of the cell defined by Node.Row and the Tree.Column.
Collapsed/Expanded: Gets or sets the node's collapsed/expanded state.

You can also explore the outline structure using the following methods:

GetCellRange(): Gets a CellRange object that described the range of rows that belong to this node.
Children: Gets the number of child nodes under this node.
Nodes: Gets a node array containing this node's child nodes.

FlexGrid for WinForms 93

Copyright © 2019 GrapeCity, Inc. All rights reserved.

GetNode: Gets the node that has a given relationship to this node (parent, first child, next sibling, and so on).

The discussion above focused on bound scenarios, where the grid is attached to a data source that provides the data.
You can also create trees and outlines in unbound scenarios. Things are actually somewhat simpler in this case, since
you can turn any row into a node row by setting its IsNode property to true.

If the grid is unbound, it owns all the data that is displayed, and you do things that are not possible when a data
source owns the data. For example, you can move nodes around the tree using the Move method as shown by the
TreeNode sample provided with the C1FlexGrid.

Using nodes in an unbound grid is very similar to using nodes in a regular TreeView control.

Saving, Loading, and Printing
The C1FlexGrid control has methods that allow you to save, load, and print grids.

Saving and Loading Grids to Text Files
The SaveGrid method saves the grid contents to a text file. The method has parameters that control the type of
delimiter to use (for example, commas, tabs, custom delimiters), whether to save the fixed cells or only the scrollable
cells, and the type of encoding to used (for example, ASCII or Unicode). The resulting text files can later be loaded
back into the control, or into other applications that support comma or tab-delimited files (for example, Microsoft
Excel).

The LoadGrid method loads data from text files. You can load text files created with the SaveGrid method or with
other applications.

The format of the text files is fairly simple. Cell contents are saved as formatted strings (exactly as they are displayed
on the screen). If the cell text contains quote characters or cell separator characters, the cell is enclosed in quotes. Any
quote characters contained in the cell text are doubled. This is the also the convention used in Microsoft Excel text
files.

Text files do not contain pictures or formatting information.

The SaveGrid method has a flags parameter that allows you to specify whether you want to save the entire grid or
only certain parts (scrollable, visible, or selected).

Saving and Loading Microsoft Excel Files
Starting with version 2.5, you can use the SaveGrid and LoadGrid methods to save and load Microsoft Excel files (.xls)
as well as text files. This allows you to save formatting information in addition to the data.

To save and load Excel files using the SaveGrid and LoadGrid methods, simply set the format parameter to
FileFormatEnum.Excel and call the methods as usual. You don't need to have Microsoft Excel installed on your
computer.

Excel files contain "workbooks", which are made up of "worksheets". The SaveGrid and LoadGrid methods always save
books with a single sheet, and load the first sheet from existing books. If you want additional control over which
sheets to load or save, use the SaveExcel, LoadExcel, and LoadExcelSheetNames methods instead. The process of
saving and loading Excel files will convert most data types and formatting information, including row and column
dimensions, fonts, colors, formats, and cell alignment. However, not all formatting elements can be converted. For
example, the grid will load the values in Excel cells, but it will not load the underlying formulas. Other features such as
frozen and merged cells, images, data maps, and cell borders are not translated either.

Note: If you use any of the extension methods (such as SaveExcel, SaveGrid, LoadExcel, LoadGrid), FileFlags and
FileFlagEnum enumerations, then add reference to C1.Win.C1FlexGrid.ImportExport.dll.4.

FlexGrid for WinForms 94

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Loading Grids from Databases
You can also load grid data from a database. This is different from data binding, which keeps a live connection
between one or more controls and the underlying data source. To load data from a database, you can use
DataReader objects, as shown below:

To write code in Visual Basic

Visual Basic

Private Sub _btnData_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles _btnData.Click

 ' Prepare DataReader.
 Dim strConn As String = "data source=MYMACHINE;initial catalog=Northwind;"
 Dim myConn As New SqlClient.SqlConnection(strConn)
 Dim myCMD As New SqlClient.SqlCommand("SELECT * FROM Employees", myConn)
 myConn.Open()
 Dim myReader As SqlClient.SqlDataReader = myCMD.ExecuteReader()

 ' Build the grid structure from the DB schema.
 Dim dt As DataTable = myReader.GetSchemaTable()
 _flex.Cols.Count = 1
 Dim dr As DataRow
 For Each dr In dt.Rows
 Dim c As C1.Win.C1FlexGrid.Column = _flex.Cols.Add()
 c.Caption =(c.Name <= CStr(dr("ColumnName")))
 c.DataType = CType(dr("DataType"), Type)
 Next dr

 ' Populate the grid.
 _flex.Rows.Count = 1
 Dim row As Integer = 1
 Dim cols As Integer = dt.Columns.Count
 Dim v As Object() = CType(Array.CreateInstance(GetType(Object), cols), Object())
 While myReader.Read()
 myReader.GetValues(v)
 _flex.AddItem(v, row + 1, 1)
 End While

 ' Cleanup.
 _flex.AutoSizeCols()
 myReader.Close()
 myConn.Close()
End Sub

To write code in C#

C#

private void _btnData_Click(object sender, System.EventArgs e)
{

FlexGrid for WinForms 95

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // Prepare DataReader.
 string strConn = "data source=MYMACHINE;initial catalog=Northwind;";
 System.Data.SqlClient.SqlConnection myConn = new
System.Data.SqlClient.SqlConnection(strConn);
 System.Data.SqlClient.SqlCommand myCMD = new
System.Data.SqlClient.SqlCommand("SELECT * FROM Employees", myConn);
 myConn.Open();
 System.Data.SqlClient.SqlDataReader myReader = myCMD.ExecuteReader();

 // Build the grid structure from the DB schema.
 DataTable dt = myReader.GetSchemaTable();
 _flex.Cols.Count = 1;
 foreach (DataRow dr in dt.Rows)
 {
 Column c = _flex.Cols.Add();
 c.Caption = c.Name = (string)dr["ColumnName"];
 c.DataType = (Type)dr["DataType"];
 }

 // Populate the grid.
 _flex.Rows.Count = 1;
 int row = 1;
 int cols = dt.Columns.Count;
 object[] v = (object[])Array.CreateInstance(typeof(object), cols);
 while (myReader.Read())
 {
 myReader.GetValues(v);
 _flex.AddItem(v, row++, 1);
 }

 // Cleanup.
 _flex.AutoSizeCols();
 myReader.Close();
 myConn.Close();
}

Printing Grids
Use the PrintGrid method to print the contents of the grid. The method has parameters that allow you to select the
scaling mode, whether to display print/preview dialog boxes, set headers and footers, and so on.

The PrintParameters property exposes additional printing properties such as the font to use for headers and footers,
and a .NET Framework PrintDocument object that can be used to select the printer, paper size and orientation,
margins, and so on.

The code below uses the PrintParameters property to set up the page orientation, margins, header and footer fonts.
Then it calls the PrintGrid method to display a print preview dialog window:

To write code in Visual Basic

Visual Basic

' Get the grid's PrintDocument object.

FlexGrid for WinForms 96

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Dim pd As Printing.PrintDocument
pd = _flex.PrintParameters.PrintDocument()

' Set up the page (landscape, 1.5" left margin).
With pd.DefaultPageSettings
 .Landscape = True
 .Margins.Left = 150
End With

' Set up the header and footer fonts.
_flex.PrintParameters.HeaderFont = New Font("Arial Black", 14, FontStyle.Bold)
_flex.PrintParameters.FooterFont = New Font("Arial Narrow", 8, FontStyle.Italic)

' Preview the grid.
_flex.PrintGrid("C1FlexGrid", C1.Win.C1FlexGrid.PrintGridFlags.FitToPageWidth +
C1.Win.C1FlexGrid.PrintGridFlags.ShowPreviewDialog, "C1FlexGrid" + Chr(9) + Chr(9) +
Format(DateTime.Now, "d"), Chr(9) + Chr(9) + "Page {0} of {1}")

To write code in C#

C#

// Get the grid' s PrintDocument object.
System.Drawing.Printing.PrintDocument pd = _flex.PrintParameters.PrintDocument;

// Set up the page (landscape, 1.5" left margin).
pd.DefaultPageSettings.Landscape = true;
pd.DefaultPageSettings.Margins.Left = 150;

// Set up the header and footer fonts.
_flex.PrintParameters.HeaderFont = new Font("Arial Black", 14, FontStyle.Bold);
_flex.PrintParameters.FooterFont = new Font("Arial Narrow", 8, FontStyle.Italic);

// Preview the grid.
_flex.PrintGrid("C1FlexGrid", PrintGridFlags.FitToPageWidth |
PrintGridFlags.ShowPreviewDialog, "C1FlexGrid\t\t" +
Microsoft.VisualBasic.Strings.Format(DateTime.Now, "d"), "\t\tPage {0} of {1}");

C1FlexGrid Filtering
Data filtering in grids is usually of two types:

Header-Based Filter: A filter icon appears over each column that has a filter applied to it. Users may see and
edit the filters by clicking the filter icon. This is the mechanism used by Windows 7/Vista and by the C1FlexGrid
control. The main benefits of this type of filter are: (1) the user can see which columns are being filtered, (2) the
filtering does not require extra real estate on the screen, and (3) this type of filter allows for better filter editors
and easier customization.
Filter Row: A filter row remains always visible and allows users to type values or expressions directly into the
row. The main benefit of this type of filter is that users can always see which columns are being filtered and
what the current filter criteria are. The main disadvantage is that the filter takes up some real estate and may
interfere with the regular grid operation. Although filter rows are not built into the C1FlexGrid control,

FlexGrid for WinForms 97

Copyright © 2019 GrapeCity, Inc. All rights reserved.

implementing them is relatively easy. We provide a FilterRow sample that shows how to do it.

The code samples presented below were mostly taken from two new samples included with the product:
ColumnFilters and CustomFilters. Please refer to the samples for complete projects that show the features in action.

AllowFiltering property
To implement the header-based filters, the C1FlexGrid control follows the same pattern used to implement column
moving and sizing. The grid has a new AllowFiltering property that controls filtering at a control level, and the grid's
Column object also has an AllowFiltering property that controls filtering at the column level.

To enable simple filtering scenarios, users simply set the grid's AllowFiltering property to True. They can then disable
or customize the filtering behavior for specific columns by changing the value of the column's AllowFiltering property.
The column's AllowFiltering property may be set to one of the following values:

Default: The grid automatically creates a filter of type ColumnFilter. This filter combines a ValueFilter and a
ConditionFilter, both described below.
ByValue: The grid automatically creates a filter of type ValueFilter. This filter contains a list of values that
should be displayed. Any values not present on the list are hidden from the end user.
ByCondition: The grid automatically creates a filter of type ConditionFilter. This filter specifies two conditions
such as "greater than" or "contains". The conditions may be combined with an AND or an OR operator.
Custom: The grid does not create a filter automatically. The developer is expected to instantiate a filter and
explicitly assign it to the column's Filter property.
None: The column cannot be filtered.

By default, the C1FlexGrid control localizes the column filter editor to use the language specified by the
CurrentUICulture setting. However, you can use the Language property to override the default and specify the
language that should be used when the grid displays the column filter editor.

Value Filter
The ValueFilter is conceptually very simple. It contains a list of values, and only the values listed are displayed on the
grid. If the list is set to null, the filter is de-activated and all values are displayed. This type of filter is recommended for
filtering columns that contain discrete values such as names or enumerations.

The ValueFilter editor consists of a list of values with checkboxes. Users may check or uncheck all values at once.
Navigating long lists is easy with the advanced built-in keyboard navigation. The editor implements a flexible search
buffer that allows users to locate values by typing any part of the value. For example, typing "Hilton" will select the
next value that contains "Hilton", including "New York Hilton", "Prince Edward Hilton", or "Paris Hilton". Also, typing
ctrl+Up or ctrl+Down will navigate to the next or previous checked item.

Values are displayed on the list using the Format currently assigned to the column.

Note: When you set filters on more than one column of the grid, the ValueFilter editor only displays the values
available for filtering after the previous filters are set.

This image shows the ValueFilter editor.

FlexGrid for WinForms 98

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Condition Filter
The ConditionFilter is more flexible. Instead of selecting specific values, it allows users to specify up to two conditions
using operators such as "greater than", "starts with", or "contains". This type of filter is recommended for filtering
columns that contain "continuous" values such as numeric or date/time values.

This image shows the ConditionFilter editor.

Columns that have filters applied display the filter icon on their headers even when the mouse is not over them. You
can see this in the images, where the ProductName and Quantity column headers show the filter icon.

FlexGrid for WinForms 99

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The built-in filters support automatic localization in the following languages: English, Spanish, French, Italian,
Portuguese, German, Dutch, Russian, Japanese, Greek, Danish, Finnish, Norwegian, Swedish, Arabic, Polish, Chinese
(Traditional: Tawain, Hong Kong, Macao; Simplified: PRC, Singapore), Turkish, Persian (Farsi), Korean, and Hebrew. The
localization is built-in and does not require satellite dlls.

Custom Filters
Custom filters may be created to handle specialized values. For example, custom filters would be recommended to
filter on colors, geographic, or custom data types.

To create a custom filter, the developer must create two classes:

Filter: This class must implement the IC1ColumnFilter interface, which specifies methods used to apply the
filter to a specific value, to reset the filter, and to return an editor to be used for viewing and editing the filter's
parameters.
Filter Editor: This class must inherit from Control and must implement the IC1ColumnFilterEditor interface,
which specifies methods used to initialize the editor and to apply changes to the filter.

The CustomFilters sample contains implementations of three custom filters used for filtering values of type Color,
DateTime, and string.

Managing filters programmatically
As we mentioned earlier in this document, setting the grid's AllowFiltering property to True is enough to enable
column filtering on all columns. In many cases however, you may want finer control over filtering. This can be achieved
by modifying the AllowFiltering and Filter properties on individual columns.

For example, the code below enables filtering but restricts the filtering to columns of type string:

To write code in C#

C#

// bind and configure grid
_flex.DataSource = dtProducts;
_flex.Cols["UnitPrice"].Format = "#,###.00";

// enable filtering
_flex.AllowFiltering = true;

// restrict filtering to columns of type 'string'
foreach (Column c in _flex.Cols)
{
 c.AllowFiltering = c.DataType == typeof(string)
 ? AllowFiltering.Default
 : AllowFiltering.None;
}

You can customize the filtering process further by creating filters and assigning them to columns, or by retrieving
existing filters and modifying their properties. For example, the code below creates a ConditionFilter, configures it to
select all items that start with the letter "C", and then assigns the new filter to the "ProductName" column:

To write code in C#

C#

FlexGrid for WinForms 100

Copyright © 2019 GrapeCity, Inc. All rights reserved.

// create a new ConditionFilter
var filter = new ConditionFilter();

// configure filter to select items that start with "C"
filter.Condition1.Operator = ConditionOperator.BeginsWith;
filter.Condition1.Parameter = "C";

// assign new filter to column "ProductName"
_flexCustom.Cols["ProductName"].Filter = filter;

Applying filters programmatically
Filters are applied when the user edits them, and also when they are applied to a column. They are not automatically
applied when the data changes. To apply the filters to the data currently loaded on the grid, call the grid's ApplyFilters
method.

For example, the code below enables an ApplyFilter button when the user edits the data on the grid. Clicking the
ApplyFilter button applies the filter and disables the button until the next change.

To write code in C#

C#

public Form1()
{
 InitializeComponent();

 // get some data
 var da = new OleDbDataAdapter("select * from products", GetConnectionString());
 var dtProducts = new DataTable();
 da.Fill(dtProducts);

 // bind the grid to the data
 _flex.DataSource = dtProducts;

 // enable filtering
 _flex.AllowFiltering = true;

 // monitor changes to enable ApplyFilter button
 _flex.AfterEdit += _flex_AfterEdit;
}

The code above binds the grid to a data source, enables filtering by setting the AllowFiltering property to True, and
connects an event handler to the AfterEdit event. The event handler implementation follows:

To write code in C#

C#

void _flex_AfterEdit(object sender, C1.Win.C1FlexGrid.RowColEventArgs e)
{
 foreach (C1.Win.C1FlexGrid.Column c in _flex.Cols)
 {
 if (c.ActiveFilter != null)

FlexGrid for WinForms 101

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 {
 _btnApplyFilters.Enabled = true;
 break;
 }
 }
}

This code scans all columns to determine whether a filter is defined for any column. If an active filter is detected, the
code enables the button that applies the filter to the current data. When the button is clicked, the following event
handler executes:

To write code in C#

C#

private void _btnApplyFilters_Click(object sender, EventArgs e)
{
 _flex.ApplyFilters();
 _btnApplyFilters.Enabled = false;
}

The code simply applies all the active filters and disables the button until the next change.

If instead of requiring a button click you simply wanted to apply the filter after every edit, you could call the
ApplyFilter directly from the AfterEdit event handler, as shown below:

To write code in C#

C#

void _flex_AfterEdit(object sender, C1.Win.C1FlexGrid.RowColEventArgs e)
{
 _flex.ApplyFilters();
}

Customizing filter behavior
When filters are applied, the grid hides rows by setting their Visible property to False. But the grid also fires
BeforeFilter and AfterFilter events that allow you to customize the filtering behavior. For example, assume that instead
of showing and hiding rows you wanted to apply different styles to indicate whether the the rows pass the filter or
not. This can be accomplished easily using this code:

To write code in C#

C#

public Form1()
{
 InitializeComponent();

 // configure grid
 _flex.AllowFiltering = true;
 _flex.DataSource = dtInvoices;

 // create style for rows excluded by the filter

FlexGrid for WinForms 102

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 var cs = _flexStyles.Styles.Add("filteredOut");
 cs.BackColor = Color.LightSalmon;
 cs.ForeColor = Color.DarkOrange;

 // connect handlers for the before and after filter events
 _flex.BeforeFilter += _flex_BeforeFilter;
 _flex.AfterFilter += _flex_AfterFilter;
}

The code creates a custom style that will be used to show rows that did not pass the filter (instead of making them
invisible). Next, the code attaches handlers for the BeforeFilter and AfterFilter events. The event handlers are listed
below:

To write code in C#

C#

// suspend painting before filter is applied
void _flex_BeforeFilter(object sender, CancelEventArgs e)
{
 _flexStyles.BeginUpdate();
}

// apply styles after the filter has been applied
void _flexStyles_AfterFilter(object sender, EventArgs e)
{
 // get style used to show filtered out rows
 var cs = _flex.Styles["filteredOut"];

 // apply style to all rows
 for (int r = _flexStyles.Rows.Fixed; r < _flexStyles.Rows.Count; r++)
 {
 var row = _flexStyles.Rows[r];
 if (row.Visible)
 {
 // normal row, reset style
 row.Style = null;
 }
 else
 {
 // filtered row, make visible and apply style
 row.Visible = true;
 row.Style = cs;
 }
 }

 // resume updates
 _flexStyles.EndUpdate();
}

The BeforeFilter event handler calls the new BeginUpdate method to prevent the grid from repainting itself until we
are done applying the custom style to the rows that are filtered out. The BeginUpdate and EndUpdate methods
replace the Redraw property which has been deprecated.

FlexGrid for WinForms 103

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The AfterFilter event handler starts by retrieving the style we created to show the rows that have been filtered out. It
then scans the rows on the grid and applies the new style to all rows that have the Visible property set to False. These
are the rows that were hidden by the filter. Once this is done, the code calls EndUpdate to restore grid updating.

Customizing the Filtering UI
We believe the default filtering behavior and UI will address the vast majority of scenarios that involve column
filtering. However, you can use the column filter classes independently, implementing your own custom user interface.

For example, the code below shows how you can use the ConditionFilter class to implement an iTunes-style search
box for the C1FlexGrid. This type of search allows users to type in a value and automatically filters the grid rows to
show the rows that contain the search string in any column.

To implement the iTunes-style search, we start with a text box that contains the text that will be used as a filter
parameter. We also define a timer that will apply the filter a few milliseconds after the users stops typing into the text
box:

To write code in C#

C#

public Form1()
{
 InitializeComponent();

 // configure timer to apply the filter 1/2 second after the
 // user stops typing into the search box
 _timer.Interval = 500;
 _timer.Tick += t_Tick;

 // monitor changes to the search box
 _txtSearch.TextChanged += _txtSearch_TextChanged;
}

// re-start timer when the text in the search box changes
void _txtSearch_TextChanged(object sender, EventArgs e)
{
 _timer.Stop();
 _timer.Start();
}

Now that the timer is configured, all we need to do is create and apply the filter when the timer ticks:

To write code in C#

C#

// apply filter when the timer ticks
void t_Tick(object sender, EventArgs e)
{
 // done for now...
 _timer.Stop();

 // configure filter
 var filter = new C1.Win.C1FlexGrid.ConditionFilter();

FlexGrid for WinForms 104

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 filter.Condition1.Operator = C1.Win.C1FlexGrid.ConditionOperator.Contains;
 filter.Condition1.Parameter = _txtSearch.Text;

 // apply filter
 _flex.BeginUpdate();
 for (int r = _flex.Rows.Fixed; r < _flex.Rows.Count; r++)
 {
 bool visible = false;
 for (int c = _flex.Cols.Fixed; c < _flex.Cols.Count; c++)
 {
 if (filter.Apply(_flex[r, c]))
 {
 visible = true;
 break;
 }
 }
 _flex.Rows[r].Visible = visible;
 }
 _flex.EndUpdate();
}

C1FlexGrid Property Groups
The C1FlexGrid control has a rich set of properties, methods, and events. You do not have to know all of them in order
to use the control effectively.

The reference below shows the most important properties, methods, and events grouped by usage type. Some
elements appear in more than one group. Select specific elements below for more details.

1. Grid Layout

Rows, Cols, AutoSizeCols, ScrollBars

2. Cursor and Selection

SelectionMode, Select, ShowCell, Row, Col, RowSel, ColSel, MouseRow, MouseCol, BeforeRowColChange,
AfterRowColChange, BeforeSelChange, AfterSelChange, KeyActionTab, KeyActionEnter

3. Editing

AllowEditing, ComboList, EditMask, BeforeEdit, StartEdit, ValidateEdit, AfterEdit, StartEditing, FinishEditing,
Editor, CellButtonClick, KeyDownEdit, KeyPressEdit, KeyUpEdit, ChangeEdit

4. Getting and Setting Values

Item (indexer), GetData, GetDataDisplay, SetData, GetCellRange, GetCellImage, SetCellImage, Clip, FindRow,
Aggregate, CellChanged

5. User Interface

AllowEditing, AllowMerging, AllowResizing, AllowDragging, AllowSorting, BeforeSort, AfterSort, AutoSearch,
AutoSearchDelay, BeforeDragColumn, AfterDragColumn, BeforeDragRow, AfterDragRow, BeforeResizeColumn,
AfterResizeColumn, BeforeResizeRow, AfterResizeRow, ShowScrollTip

6. Outlining and Summarizing

FlexGrid for WinForms 105

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Subtotal, Tree, IsNode, Level, Collapsed, BeforeCollapse, AfterCollapse

7. Merging Cells

AllowMerging

8. Data Binding

DataSource, DataMember, AfterDataRefresh, AutoResize, GridError

9. Saving, Loading, and Printing Grids

LoadGrid, SaveGrid, LoadExcel, SaveExcel, ClipSeparators, PrintGrid

10. OLE Drag Drop

DragMode, DropMode, BeforeMouseDown

11. Filtering

FlexGrid for WinForms 106

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Data Binding
Data binding is a process that allows one or more data consumers to be connected to a data provider in a
synchronized manner. If you move the cursor on a data-bound grid, other controls connected to the same data source
will change to reflect the new current record. If you edit a value on a data-bound grid, other controls connected to the
same data source will change to reflect the new value.

C1FlexGrid supports data binding to ADO.NET data source objects such as DataTable, DataView, DataSet, and
DataViewManager.

C1FlexGrid also supports data binding to DataObjects for WinForms components such as C1ExpressTable,
C1ExpressView, C1ExpressConnection, C1DataView, C1DataTableSource and C1DataSet.

To bind the grid to a data source, assign the data source object to the grid's DataSource property. If the data source
object contains more than one table, you must also set the DataMember property a string that specifies which table
should be used.

Alternatively, you can assign both properties simultaneously with a single call to the SetDataBinding method.

When you assign a new data source to the grid, it will automatically refresh its columns to bind to the columns
available in the data source. You can then customize the columns by moving, hiding, or deleting them. You can also
set column properties such as their Width, EditMask and Format.

For an example of reordering the grid columns after binding to a data source, see the ColumnOrder sample on
GrapeCity website

For details about creating ADO.NET data source objects, please refer to the .NET Framework documentation.

For details about using DataObjects for WinForms, see the DataObjects for WinForms documentation included in
ComponentOne Studio Enterprise and ComponentOne Studio WinForms Edition.

Binding to a Data Source
Without writing a line of code, you can easily bind C1FlexGrid to a data source using the Data Source Configuration
Wizard in Visual Studio. There are two ways to access the wizard, either through the DataSource property in the
Properties window or the Choose Data Source box in the C1FlexGrid Tasks menu. For more information on the
C1FlexGrid Tasks menu, see C1FlexGrid Tasks Menu.

Clicking the drop-down arrow next to either the DataSource property in the Properties window or the Choose Data
Source box in the C1FlexGrid Tasks menu allows you to select from a list of available data sources or to add a data
source to your project. To add a data source to your project, click Add Project Data Source to open the Data Source
Configuration Wizard.

FlexGrid for WinForms 107

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/samples/columnorder

The Data Source Configuration Wizard walks you through adding a data source step by step. The Choose a Data
Source Type page allows you to choose which type of application you would like to gather information from. The
default selection is Database.

On the Choose Your Data Connection page, you can specify the location of the database. If you have not already
connected to the database, you can specify a new connection by clicking the New Connection button. Clicking the
New Connection button opens the Add Connection dialog box where you can browse to the location of your
database and test the connection.

Mobile device users click here for additional information.

If you are using the Mobile edition of FlexGrid for WinForms, in the Add Connection dialog box, change the Data
source to one that is supported by the Compact Framework, such as the .NET Framework Data Provider for SQL
Server Mobile Edition.

Then you can use a supported database, for example, a SQL Server Mobile Edition Database. Microsoft provides a
Northwind.sdf, by default, in the C:\Program Files\Microsoft Visual Studio 8\SmartDevices\SDK\SQL

FlexGrid for WinForms 108

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Server\Mobile\v3.0 folder for Microsoft Visual Studio 2005.

The wizard saves and names your connection on the Save the Connection String to the Application Configuration
File page. On this page you can specify a name or use the default provided by the wizard.

On the Choose Your Database Objects page you can specify which tables and fields you want to include in your
DataSet. You can also provide a name for your DataSet or use the default provided by the wizard.

The wizard creates the DataSet, BindingSource, and TableAdapter, and adds them to your project. Click the drop-
down arrow again next to the DataSource property or the Choose Data Source box in the C1FlexGrid Tasks menu
and then select the data source. If you double-click the form, you will also notice that the code to fill the database is
automatically generated in the Form_Load event.

Storing and Retrieving Data
The C1FlexGrid control can be used in bound or unbound mode. In bound mode, the grid is connected to a data
source, and all the data displayed on the grid comes from the data source. In this mode, changing data on the grid
changes it in the underlying data source. In unbound mode, the grid manages its own data source.

In either bound or unbound modes, the easiest way to access data in the C1FlexGrid is using the Row and Column
indexers. The indexers allow you to specify a cell in a row or column from which to get or set the data stored there.
For example, the following code selects the data in the second cell of a row:

To write code in Visual Basic

Visual Basic

Row[2].Selected = True

To write code in C#

FlexGrid for WinForms 109

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

Row[2].Selected = true;

The Item property is another easy way to access data in the C1FlexGrid. The Item property is an indexer that takes row
and column indices and gets or sets the data stored in the cell. (You can also use column names as indices.) For
example, the following code stores row numbers in the first grid column:

To write code in Visual Basic

Visual Basic

Dim r As Integer
For r = _flex.Rows.Fixed To _flex.Rows.Count - 1
 _flex(r, 0) = r
Next

To write code in C#

C#

for (int r = _flex.Rows.Fixed; r <= _flex.Rows.Count - 1; r++)
{
 _flex[r, 0] = r;
}

When you assign a value to a cell, the grid tries to convert that value into the column's specified DataType. If the
conversion fails, the grid fires the GridError event and does not change the cell. You can override this behavior using
the SetData method and setting the coerce parameter to False.

When you retrieve data using the indexers, the grid returns the actual data stored in the cell. To retrieve a string
containing the formatted version of the data (what the grid displays to the user), use the GetDataDisplay method.

You can also set and retrieve the contents of the selection using the Clip property. This property is especially useful in
handling the clipboard and drag-drop operations. By default, the Clip property returns a string with tab characters
(Chr(9)) between cells and return characters (Chr(13)) between rows. To use different delimiters, change the
ClipSeparators property.

Finally, you can set and retrieve the contents of arbitrary cell ranges using CellRange objects.

FlexGrid for WinForms 110

Copyright © 2019 GrapeCity, Inc. All rights reserved.

FlexGrid for WinForms Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or demos
which may make use of other development tools included with the ComponentOne Studio.

Please refer to the pre-installed product samples through the following path:

Documents\ComponentOne Samples\WinForms
Click one of the following links to view a list of C1FlexGrid samples:

Visual Basic Samples

Sample Description

AutoSizeEdit This sample demonstrates resizing the editor while the user types. This sample uses
the C1FlexGrid control.

BarChart This sample uses OwnerDrawn cells to build a chart based on the grid data. This
sample uses the C1FlexGrid control.

Blinker This sample shows how you can use CellStyles to make cells blink. The sample creates
a custom style and uses a timer to change the foregound color on that style. This
causes all cells that have that style to blink.This sample uses the C1FlexGrid control.

BoundDelete This sample deletes rows from a bound FlexGrid. This sample uses the C1FlexGrid
control.

BoundFinishEdit This sample demonstrates how to commit changes to a DataRow after editing. This
sample uses the C1FlexGrid control.

BoundImage This sample shows how to bind the grid to image fields stored as OLE objects. This
sample uses the C1FlexGrid control.

C1FlexGridPrintable This sample provides a printable (via C1Preview) C1FlexGrid control. This sample uses
the C1FlexGrid control and calls the C1.C1Preview namespace.

CellBorders This sample uses OwnerDraw to provide custom cell borders. This sample uses the
C1FlexGrid control.

CellDataType This sample assigns cell types (and editors) on a per-cell basis. This sample uses the
C1FlexGrid control.

CellMerging This sample shows various types of cell-merging in a C1FlexGrid control. This sample
uses the C1FlexGrid control.

CellNotes This sample attaches notes to cells on a C1FlexGrid and implements Excel-style cell
notes using two classes: CellNote and CellNoteManager.

ColumnEditor This sample exposes the C1FlexGrid design-time column editor in your controls. This
sample uses the C1FlexGrid control.

CustomDataMap This sample demonstrates how to customize the options in drop-down lists when
using DataMaps. This sample uses the C1FlexGrid control.

CustomEditor This sample shows how to implement your own cell editor. This sample uses the
C1FlexGrid control.

CustomMerge This sample shows how to implement your own merging logic to create a TV-guide
display. This sample calls the C1.Win.C1FlexGrid namespace.

FlexGrid for WinForms 111

Copyright © 2019 GrapeCity, Inc. All rights reserved.

CustomMerge2 This sample shows how to implement your own merging logic to mix merging modes.
This sample calls the C1.Win.C1FlexGrid namespace.

CustomMerge3 This sample shows how to customize grouping by overriding the GetData method.
This sample calls the C1.Win.C1FlexGrid namespace.

CustomMerge4 This sample shows how to customize grouping by overriding the GetData method.
This sample calls the C1.Win.C1FlexGrid namespace.

CustomPrint This sample uses the CreateImage method to print grids with arbitrary row and
column breaks. This sample uses the C1FlexGrid control.

CustomTree This sample uses the C1FlexGrid control to build a tree. This sample uses the
C1FlexGrid control.

DataIndex This sample uses the Row.DataIndex property to get the underlying data row. This
sample uses the C1FlexGrid control.

DataMap This sample uses data-mapped columns when bound to a data source. This sample
uses the C1FlexGrid control.

DataReader This sample populates a grid from a DataReader. This sample uses the C1FlexGrid
control.

DataTable This sample shows how you can create, populate, and bind a DataTable object to the
grid (including add/remove rows). This sample uses the C1FlexGrid control.

DataTree This sample binds the grid to a hierarchical data source and show details in child
grids.

DBDynamicStyles This sample assigns styles to grid cells based on their contents. This sample uses the
C1FlexGrid control.

DBImageField This sample shows images stored in a DataTable. This sample uses the C1FlexGrid
control.

DBSchemaChange This sample shows how to test grid response to changes in the data source object.
This sample uses the C1FlexGrid control.

DBTree This sample shows how to display bound data in a hierarchical tree view. This sample
uses the C1FlexGrid control.

DragDrop This sample shows how to customize automatic Drag & Drop. This sample uses the
C1FlexGrid control.

DragDropManual This sample shows how to implement manual OleDragDrop between controls and
within the grid.

DragRow This sample shows how to drag rows between grids. This sample uses the C1FlexGrid
control.

DynamicStyles This sample shows how to assign styles to a cell based on the contents of another
cell. This sample uses the C1FlexGrid control.

Editing This sample demonstrates how to edit cells using textboxes, lists, masks, and
checkboxes. This sample uses the C1FlexGrid control.

FilterRow_With_Totals This sample shows a how to add totals to a bound grid with a FilterRow.

FlexByRow This sample sets up a grid in 'transposed' format. In this sample data types, edit

Sample Description

FlexGrid for WinForms 112

Copyright © 2019 GrapeCity, Inc. All rights reserved.

masks, formats, and other properties usually assigned to grid columns are assigned to
grid rows. This sample uses the C1FlexGrid control.

FlexGroup This sample shows how you can implement Outlook-style grouping and filtering
using the C1FlexGrid. This sample uses the C1FlexGrid control.

FreezeBottom This sample demonstrates how to show frozen rows at the bottom of a grid. This
sample uses the C1FlexGrid control.

GridChart This samples show how you can attach a FlexGrid to a C1Chart control. This sample
uses the C1FlexGrid and C1Chart controls.

HierData This sample shows how you can bind to hierarchical data sources (master-detail style).
This sample uses the C1FlexGrid control.

Hyperlink This sample shows how you can add hyperlinks to cells in the C1FlexGrid. This sample
uses the C1FlexGrid control.

LoadSpeed This sample shows three techinques for loading data into a C1FlexGrid.

MapAndGroup This sample shows grouping and sorting behavior when using data-mapped columns.
This sample uses the C1FlexGrid control.

MergeStyles This sample merges CellStyles assigned to rows, columns, and cells. This sample uses
the C1FlexGrid control.

MultiColumnDictionary This sample uses the MultiColumnDictionary class to implement multi-column drop-
downs.

Outline This sample shows how to hide repeated data in an outline. This sample uses the
C1FlexGrid control.

PdfExportVB This sample uses C1Pdf method to export C1FlexGrids to PDF files.

ProductTree This sample demonstrates how to build a custom tree with product information. This
sample uses the C1FlexGrid control.

RTFGrid This sample shows how to display RTF text in grid cells. This sample uses the
C1FlexGrid control.

ScrollPosition This sample shows how the ScrollPosition property works. This sample uses the
C1FlexGrid control.

SelectionMode This sample shows the effect of the SelectionMode property. This sample uses the
C1FlexGrid control.

Sorting This sample shows several sorting techniques. This sample uses the C1FlexGrid
control.

Splits This sample demonstrates how to split a C1FlexGrid into multiple views. This sample
uses the C1FlexGrid control.

StartEditing This sample implements a grid that stays in cell-editing mode. This sample uses the
C1FlexGrid control.

Styles This sample shows how you can use Styles to customize the appearance of the
C1FlexGrid. This sample uses the C1FlexGrid control.

Subtotals This sample creates subtotals for multiple columns. This sample uses the C1FlexGrid
control.

Sample Description

FlexGrid for WinForms 113

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Transpose This sample shows how to transpose data in a grid. This sample uses the C1FlexGrid
control.

TreeCheck This sample shows how to add checkboxes to a grid tree. This sample uses the
C1FlexGrid control.

TreeNode This sample shows how to manage an outline tree using the C1FlexGrid Node objects.
This sample uses the C1FlexGrid control.

Validate This sample shows how to use the ErrorProvider control with the C1FlexGrid. This
sample uses the C1FlexGrid control.

ZoomCell This sample shows how to zoom in on the selected cell.

C# Samples

Sample Description

AcceleratorCaption This sample shows how to add accelerator keys to grid captions.

Analyze This sample shows how to provide dynamic data sorting and grouping. This sample
uses the C1FlexGrid control.

AnimagedGif This sample shows how to display animated gifs in grid cells.

AutoComplete This sample shows how to complete entries while the user types.

AutoSizeEdit This sample shows how to resize the editor while the user types. This sample uses the
C1FlexGrid control.

BarChart This sample shows how to draw bar charts using the grid cells. This sample uses the
C1FlexGrid control.

Blinker This sample shows how to use CellStyles to make cells blink.

BoundDelete This sample shows how to delete rows from a bound FlexGrid. This sample uses the
C1FlexGrid control.

BoundFinishEdit This sample shows how to commit changes to a DataRow after editing. This sample
uses the C1FlexGrid control.

BoundImageMap This sample shows how to use the ImageMap property with a data-bound grid. This
sample uses the C1FlexGrid control.

C1FlexGridPrintable This sample provides a printable (via C1Preview) C1FlexGrid control. This sample uses
the C1FlexGrid control and calls the C1.C1Preview namespace.

CellBorders This sample shows how to use OwnerDraw to provide custom cell borders. This
sample uses the C1FlexGrid control.

CellDataType This sample shows how to assign cell types (and editors) on a per-cell basis. This
sample uses the C1FlexGrid control.

CellLabelDelay This sample shows how to show cell labels after a specified interval.

CellNotes This sample attaches notes to cells on a C1FlexGrid and implements Excel-style cell
notes using two classes: CellNote and CellNoteManager.

Classic (C1FlexGridClassic) This sample shows a grid that derives from C1FlexGrid and provides an object model
compatible with the VSFlexGrid control.

Sample Description

FlexGrid for WinForms 114

Copyright © 2019 GrapeCity, Inc. All rights reserved.

ColumnEditor This sample shows how to expose the FlexGrid design-time column editor in your
controls. This sample uses the C1FlexGrid control.

ColumnFilters This sample shows how to use the filtering feature in C1FlexGrid 2010. The sample
shows how you can control and customize the grid's built-in filters using the
AllowFiltering property and the AfterFilter event.

ColumnOrder This sample shows how to position columns dynamically. This sample uses the
C1FlexGrid control.

ColumnWidthTip This sample shows how to show a ToolTip while the user resizes columns.

CrossTabs This sample shows how to summarize and cross-reference data using PivotTables.

CustomData This sample shows how to implement a custom data source object. This sample uses
the C1FlexGrid control.

CustomDataMap This sample shows how to customize the options in drop-down lists when using
DataMaps. This sample uses the C1FlexGrid control.

CustomEditor This sample shows how to implement your own cell editor. This sample uses the
C1FlexGrid control.

CustomEditors This sample shows how to use built-in, .NET, and custom edit controls with the
C1FlexGrid.

CustomFilters This sample shows how to implement custom filters for the C1FlexGrid.

CustomMerge This sample shows how to implement your own merging logic to create a TV-guide
display. This sample calls the C1.Win.C1FlexGrid namespace.

CustomMerge2 This sample shows how to implement your own merging logic to mix merging modes.
This sample calls the C1.Win.C1FlexGrid namespace.

CustomMerge3 This sample shows how to customize grouping by overriding the GetData method.
This sample calls the C1.Win.C1FlexGrid namespace.

CustomMerge4 This sample shows how to customize grouping by overriding the GetData method.
This sample calls the C1.Win.C1FlexGrid namespace.

CustomPrint This sample shows how to use the CreateImage method to print grids with arbitrary
row and column breaks. This sample uses the C1FlexGrid control.

CustomPrintMultiGrid This sample shows how to use the CreateImage method to print multiple grids in a
single document.

CustomSelection This sample uses OwnerDraw to implement custom (non-rectangular) selection. This
sample calls the C1.Win.C1FlexGrid namespace.

CustomSort This sample shows how to implement your own sorting logic with a custom
IComparer object. This sample uses the C1FlexGrid control.

DataIndex This sample shows how to use the Row.DataIndex property to get the underlying data
row. This sample uses the C1FlexGrid control.

DataTable This sample shows how to bind to a DataTable, add and remove rows. This sample
uses the C1FlexGrid control.

DataTree This sample shows how to bind the grid to a hierarchical data source and show details
in child grids. This sample calls the C1.Win.C1FlexGrid namespace.

Sample Description

FlexGrid for WinForms 115

Copyright © 2019 GrapeCity, Inc. All rights reserved.

DBDynamicStyles This sample shows how to assign styles to grid cells based on their contents. This
sample uses the C1FlexGrid control.

DBImageField This sample demonstrates how to show images stored in a DataTable. This sample
uses the C1FlexGrid control.

DBImages This sample shows how to bind the grid to a data base with image fields stored as
OLE objects. This sample uses the C1FlexGrid control.

DBSchemaChange This sample shows how to test grid response to changes in the data source object.
This sample uses the C1FlexGrid control.

DBTree This sample shows how to display bound data in a hierarchical tree view. This sample
uses the C1FlexGrid control.

DBUpdate This sample shows how to save changes to the underlying database. This sample uses
the C1FlexGrid control.

DragDrop This sample shows how to customize automatic Drag & Drop This sample uses the
C1FlexGrid control.

DragImages This sample shows how to customize Ole Drag and Drop to use cell images.

DragMerged This sample shows how to drag groups of merged columns. This sample uses the
C1FlexGrid control.

DragRow This sample shows how to drag rows between grids. This sample uses the C1FlexGrid
control.

DynamicStyles This sample shows how to assign styles to a cell based on the contents of another
cell. This sample uses the C1FlexGrid control.

ErrorInfo This sample demonstrates how to show error information on the grid.

Excel This sample shows how to load and save Microsoft Excel files (.xls).

ExcelStyleFilter This sample adds a context-menu that allows sorting and filtering data.

FilterRow This sample shows how to implement a FilterRow on a FlexGrid control. This sample
uses the C1FlexGrid control.

FindRow This sample shows how to how to find a row in the underlying datasource. This
sample uses the C1FlexGrid control.

FlexByRow This sample shows how to set up a grid in 'transposed' format. This sample uses the
C1FlexGrid control.

FlexGroup This sample shows how to implement Outlook-style grouping using the C1FlexGrid.
This sample uses the C1FlexGrid control.

FlexHierarchical This sample shows how to implement hierarchical data binding using the C1FlexGrid.
This sample calls the C1.Win.C1FlexGrid namespace.

FreezeBottom This sample demonstrates how to show frozen rows at the bottom of a grid. This
sample uses the C1FlexGrid control.

GridChart This sample shows how to attach a FlexGrid to a C1Chart control. This sample uses
the C1FlexGrid and C1Chart controls.

HierData This sample shows how to bind to hierarchical data sources (master-detail style). This

Sample Description

FlexGrid for WinForms 116

Copyright © 2019 GrapeCity, Inc. All rights reserved.

sample uses the C1FlexGrid control.

HierData2 This sample shows how to bind to hierarchical data sources (master-detail style).

HostControls This sample shows how to host controls in grid cells. This sample uses the C1FlexGrid
control.

Hyperlink This sample shows how to add hyperlinks to cells in the FlexGrid. This sample uses the
C1FlexGrid control.

LegacyDates This sample shows how to use an unbound column to convert dates stored as strings
into real dates.

LockedColumns This sample shows how to prevent the user from selecting certain columns.

MasterDetail This sample shows how to create and bind master-detail DataSets in code. This
sample calls the C1.Win.C1FlexGrid namespace.

MergeStyles This sample shows how to merge CellStyles assigned to rows, columns, and cells. This
sample uses the C1FlexGrid control.

MultiColumnDictionary This sample shows how to use the MultiColumnDictionary class to implement multi-
column drop-downs.

MultiParent This sample shows how to create a complex master-detail display.

MultiSelection This sample shows how to implement multi-range selection.

NewFeatures20091 This sample shows the new features that were added for the V1/2009 release.

NewRowTemplate This sample shows how to place a new row template above the grid.

Outline This sample shows how to hide repeated data in an outline. This sample uses the
C1FlexGrid control.

OwnerDraw This sample shows how to autosize Owner-Drawn cells.

OwnerDrawAlpha This sample shows how to use OwnerDraw with transparency to get MediaPlayer-like
effects.

PasswordChar This sample shows how to use the C1FlexGrid to enter and edit passwords. This
sample uses the C1FlexGrid control.

PdfExport This sample shows how to use the C1Pdf method to export C1FlexGrids to PDF files.

RowStateDisplay This sample shows how to use different styles to display DataRows in different states.
This sample uses the C1FlexGrid control.

RTFGrid This sample shows how to display RTF text in grid cells. This sample uses the
C1FlexGrid control.

ScrollPosition This sample shows how to shows how the ScrollPosition property works. This sample
uses the C1FlexGrid control.

SelectionMode This sample shows how to shows the effect of the SelectionMode property. This
sample uses the C1FlexGrid control.

SetupEditor This sample shows how to use the SetupEditor event to customize the grid editors.
This sample uses the C1FlexGrid control.

SimpleCalc This sample uses the DataTable.Compute method to evaluate expressions in grid cells

Sample Description

FlexGrid for WinForms 117

Copyright © 2019 GrapeCity, Inc. All rights reserved.

and displays the results using OwnerDraw.

Sorting This sample shows how to shows several sorting techniques. This sample uses the
C1FlexGrid control.

SortNulls This sample shows how to use a custom sort to place null values at the bottom of the
grid.

Splits This sample shows how to split a C1FlexGrid into multiple views. This sample uses the
C1FlexGrid control.

SqlBuilder This sample shows how to a grid-based graphical interface for creating SQL
statements.

StartEditing This sample shows how to implement a grid that stays in cell-editing mode. This
sample uses the C1FlexGrid control.

Subtotals This sample shows how to create subtotals for multiple columns. This sample uses the
C1FlexGrid control.

Themes This sample shows how to change the appearance of the grid to achieve one of
several pre-defined looks.

ThreadedUpdate This sample shows how to update the grid from a different thread.

TreeCheck This sample shows how to add checkboxes to a grid tree. This sample uses the
C1FlexGrid control.

TreeNode This sample shows how to manage an outline tree using the FlexGrid Node objects.
This sample uses the C1FlexGrid control.

TriStateBound This sample shows how to provide three-state (grayable) values in Boolean columns.
This sample calls the C1.Win.C1FlexGrid namespace.

UnboundColumns This sample shows how to additional support for unbound columns.

ZoomCell This sample shows how to zoom in on the selected cell.

C1FlexGrid for Mobile Devices Visual Basic Samples

Sample Description

Analyze This sample shows how to provide dynamic data sorting and grouping. This sample
uses the C1FlexGrid control.

BarChart This sample shows how to draw bar charts using the grid cells. This sample uses the
C1FlexGrid control.

EditData This sample demonstrates how to show different types of built-in editors and
dynamic formatting. This sample uses the C1FlexGrid control.

ThreadedUpdate This sample shows how to update the grid from a different thread.

C1FlexGrid for Mobile Devices C# Samples

Sample Description

Analyze This sample shows how to provide dynamic data sorting and grouping. This sample
uses the C1FlexGrid control.

Sample Description

FlexGrid for WinForms 118

Copyright © 2019 GrapeCity, Inc. All rights reserved.

BarChart This sample shows how to draw bar charts using the grid cells. This sample uses the
C1FlexGrid control.

ContextMenu This sample demonstrates how to show a ContextMenu after selecting an item on the
grid.

DataTree This sample demonstrates how to show hierarchical data in a drill-down grid.

EditData This sample demonstrates how to show different types of built-in editors and
dynamic formatting.

MasterDetail This sample demonstrates how to show hierarchial data using two grids.

TransparentImages This sample shows how to render images with transparency.

Sample Description

FlexGrid for WinForms 119

Copyright © 2019 GrapeCity, Inc. All rights reserved.

FlexGrid for WinForms Tutorials
The following sections contain tutorials that illustrate some of the main features in the C1FlexGrid control. The
tutorials walk you through the creation of several simple projects, describing each step in detail. The distribution CD
contains more sophisticated samples that can be used as a reference.

The tutorials are:

Tutorial Description

Edit Tutorial Starting with a basic data-entry grid, this tutorial shows how to
implement data formatting, check boxes, drop-down lists, input
masks, data validation, and clipboard support.

Outline Tutorial Shows how you can use the C1FlexGrid as an outliner to display
structured (or hierarchical) data.

Data Analysis
Tutorial

Starting with a grid containing sales data for different products,
regions, and salespeople, this tutorial show how to implement
dynamic layout (column order), automatic sorting, cell merging,
automatic subtotals, and outlining.

Edit Tutorial
This tutorial starts with a basic data-entry grid, then adds the following features:

1. Formatting
2. Check boxes
3. Drop-down lists
4. Complex data validation
5. Clipboard support
6. Custom editors

Here is what the final application will look like:

FlexGrid for WinForms 120

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note: A video is available for this tutorial on the GrapeCity Videos Web page.

Step 1 of 6: Create the C1FlexGrid Control for the Edit
Tutorial
Start a new project and add a C1FlexGrid control to the form by clicking the C1FlexGrid icon on the Toolbox, then
clicking on the form and dragging until the object has the proper size.

If you can't find the C1FlexGrid control in the toolbox, right-click on the toolbox and select Choose Items. Then, look
for the C1FlexGrid control on the list of .NET components and make sure it is checked. If you can't find the grid in the
component list, you may need to re-install the product.

1. Set the following properties in the Properties window for the C1FlexGrid control:
Property Setting

Dock Fill

Cols.Count 5

Cols.Fixed 0

2. Double-click the form caption area to open the code window. At the top of the file, add the following
statement:

To write code in Visual Basic

Visual Basic

Imports C1.Win.C1FlexGrid

To write code in C#

C#

using C1.Win.C1FlexGrid;

FlexGrid for WinForms 121

Copyright © 2019 GrapeCity, Inc. All rights reserved.

https://www.grapecity.com/en/videos

This makes the objects defined in the C1FlexGrid assembly visible to the project and saves a lot of typing.

3. Set up the columns by either in the designer through the Column Tasks menu or the C1FlexGrid Column
Editor, or in code.

In the Designer

Select the first column in the grid. This will open the Column Tasks menu for the column.
Enter Product in the Column Caption and Data Field boxes.
Set the Column Caption and Data Field boxes for the remainder of the columns as follows:
Column 1

Column
Caption

Region

Data Field Region

Column 2

Column
Caption

Salesperson

Data Field Salesperson

Column 3

Column
Caption

Sales

Data Field Sales

Column 4

Column
Caption

Bonus

Data Field Bonus

Alternatively, the columns can also be set up through the C1FlexGrid Column Editor:

Open the C1FlexGrid Column Editor by clicking Designer in the C1FlexGrid Tasks menu. For details
on how to access the C1FlexGrid Column Editor, see Accessing the C1FlexGrid Column Editor.
Select the Column 0 in the right pane.
In the left pane, set the Name and Caption properties to Product.
Set the Name and Caption properties for the remainder of the columns as follows:
Column 1

Name Region

Caption Region

Column 2

Name Salesperson

Caption Salesperson

Column 3

Name Sales

Caption Sales

FlexGrid for WinForms 122

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Column 4

Name Bonus

Caption Bonus

Click OK when finished to close the editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Set up the columns.
Dim cols As String = "Product|Region|Salesperson|Sales|Bonus"
Dim colNames As String() = cols.Split("|")
Dim i%For i = 0 To C1FlexGrid1.Cols.Count - 1
 C1FlexGrid1(0, i) = colNames(i)
 C1FlexGrid1.Cols(i).Name = colNames(i)Next

To write code in C#

C#

// Set up the columns.
string cols = "Product|Region|Salesperson|Sales|Bonus";
string[] colNames = cols.Split(new char[] { '|' });
for (int i = 0; i <= this.c1FlexGrid1.Cols.Count - 1; i++)
{
 c1FlexGrid1[0, i] = colNames[i];
 c1FlexGrid1.Cols[i].Name = colNames[i];
}

Run the program and observe the following:
That's it. Press F5 to run the project, and you can start typing data into the control. Press F2 or the spacebar to edit
existing entries, or just type new entries over existing ones.

Column 1

FlexGrid for WinForms 123

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Step 2 of 6: Set Column Types and Formats
When displaying numeric or date values, you will typically want to adopt a consistent format for the values. The
C1FlexGrid control allows you to specify the DataType and Format for each column. These properties can be set either
in the designer or in code.

In the Designer
1. Select the Sales column in the grid. This will open the Column Tasks menu for the Sales column.
2. Set the Data Type box to Decimal.
3. Click the ellipsis button in the Format String box to open the Format String dialog box.
4. Under Format type select Currency.
5. Click OK to close the Format String dialog box.
6. Select the Bonus column in the grid. This will open the Column Tasks menu for the Bonus column.
7. Set the Data Type box to Boolean.

Alternatively, the DataType and Format properties can also be set up through the C1FlexGrid Column Editor:

1. Open the C1FlexGrid Column Editor by selecting Designer in the C1FlexGrid Tasks menu. For details on how
to access the C1FlexGrid Column Editor, see Accessing the C1FlexGrid Column Editor.

2. Select the Sales column in the right pane.
3. Set the DataType property to Decimal.
4. Click the ellipsis button next to the Format property. This will open the Format String dialog box.
5. Under Format type select Currency.
6. Click OK to close the Format String dialog box.
7. Select the Bonus column in the right pane.
8. Set the DataType property to Boolean.
9. Click OK to close the editor.

In Code
To specify the DataType and Format for the columns, add the following code after the code added in Step 1 of 6:
Create the C1FlexGrid Control for the Edit Tutorial:

FlexGrid for WinForms 124

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

' Set the column DataType and Format.
Dim c As Column = C1FlexGrid1.Cols("Sales")
c.DataType = GetType(Decimal)

' Currency.
c.Format = "c2"c = C1FlexGrid1.Cols("Bonus")
c.DataType = GetType(Boolean)
c.ImageAlign = ImageAlignEnum.CenterCenter

To write code in C#

C#

// Set the column DataType and Format.
Column c = c1FlexGrid1.Cols["Sales"];
c.DataType = typeof(Decimal);

// Currency.
c.Format = "c2";
c = c1FlexGrid1.Cols["Bonus"];
c.DataType = typeof(bool);
c.ImageAlign = ImageAlignEnum.CenterCenter;

Run the program and observe the following:
The new code formats the Sales column to store and display currency values, and the Bonus column to deal with
Boolean values.

If you enter some numeric and non-numeric values in the Sales column, you will notice that the grid won't accept
non-numeric entries. The Bonus column displays values as checkboxes, which can be toggled with the mouse or with
the keyboard. This is the default behavior for Boolean columns.

FlexGrid for WinForms 125

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note that the Format property does not affect the data in any way, only how it is displayed.

Step 3 of 6: Incorporate Drop-Down Lists
Entering data is a tedious and error-prone process. Drop-down lists are great because they minimize the amount of
typing you must do, reduce the chance of errors, and increase the consistency of the data.

Let's assume that our tutorial project only involves sales of three products (Applets, Wahoos, and Gadgets), in four
regions (North, South, East, and West), and that there are three full-time sales people (Mary, Sarah, and Paula).

To use these lists as drop-downs in the C1FlexGrid control, all you have to do is build strings containing the items in
each list (separated by pipe characters) and assign them to the ComboList property of each column. This property can
be set either in the designer or in code.

In the Designer
1. Select the Product column. This will open the Column Tasks menu for the Product column.
2. Click the ellipsis button in the Combo List box to open the Combo List dialog box.
3. Enter Applets, Wahoos, and Gadgets as shown below:

FlexGrid for WinForms 126

Copyright © 2019 GrapeCity, Inc. All rights reserved.

4. Click OK to close the Combo List dialog box.
5. Select the Region column.
6. Click the ellipsis button in the Combo List box.
7. Enter North, South, East, and West as shown below:

8. Click OK.
9. Select the Salesperson column.

10. Click the ellipsis button in the Combo List box.
11. Enter Mary, Paula, and Sarah as shown below:

FlexGrid for WinForms 127

Copyright © 2019 GrapeCity, Inc. All rights reserved.

12. Select the Dropdown Combo option.
13. Click OK.

Alternatively, the ComboList property can be set using the C1FlexGrid Column Editor:

1. Open the C1FlexGrid Column Editor by selecting Designer in the C1FlexGrid Tasks menu. For details on how
to access the C1FlexGrid Column Editor, see Accessing the C1FlexGrid Column Editor.

2. Select the Productcolumn in the right pane.
3. In the left pane, set the ComboList property to Applets|Wahoos|Gadgets.
4. Select the Region column in the right pane.
5. In the left pane, set the ComboList property to North|South|East|West.
6. Select the Salesperson column in the right pane.
7. In the left pane set the ComboList property to |Mary|Paula|Sarah.
8. Click OK to close the editor.

In Code
To add the combolists, add the following code after the code added in Step 2 of 6: Set Column Types and Formats:

To write code in Visual Basic

Visual Basic

' Set up the drop-down lists.C1FlexGrid1.
Cols("Product").ComboList = "Applets|Wahoos|Gadgets"
C1FlexGrid1.Cols("Region").ComboList = "North|South|East|West"
C1FlexGrid1.Cols("Salesperson").ComboList = "|Mary|Paula|Sarah"

To write code in C#

C#

// Set up the drop-down lists.
c1FlexGrid1.Cols["Product"].ComboList = "Applets|Wahoos|Gadgets";
c1FlexGrid1.Cols["Region"].ComboList = "North|South|East|West";
c1FlexGrid1.Cols["Salesperson"].ComboList = "|Mary|Paula|Sarah";

FlexGrid for WinForms 128

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Run the program and observe the following:
Notice how the last ComboList string starts with a pipe (text input cursor). This allows users to type additional names
that are not on the list. In other words, these values will be edited using a drop-down combo, as opposed to a simple
drop-down list.

Press F5 to run the project again, and then move the cursor around. When you move the cursor to one of the columns
that have combo lists, a drop-down button becomes visible. You may click on it to show the list, or simply type the
first letter of an entry to highlight it on the list.

Step 4 of 6: Add Data Validation
If you assign a data type to a grid column, the grid will ensure that only data of the proper type is stored in that
column. This helps prevent errors, but you will often need stricter validation to ensure that the data entered is correct.
For that, you should use the ValidateEdit event.

For example, imagine that anti-trust regulations prevent us from selling our Applets in the North region. To prevent
data-entry mistakes and costly lawsuits, we want to prevent users from entering this combination into the control.

The following event checks the data after each edit and prevents invalid entries. Add the following code to the form:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_ValidateEdit(ByVal sender As Object, ByVal e As
ValidateEditEventArgs) Handles C1FlexGrid1.ValidateEdit
 Dim rgn As String = String.Empty
 Dim prd As String = String.Empty

 ' Collect the data we need.
 Select Case e.Col
 Case 0
 prd = C1FlexGrid1.Editor.Text
 rgn = C1FlexGrid1(e.Row, "Region")

FlexGrid for WinForms 129

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Case 1
 prd = C1FlexGrid1(e.Row, "Product")
 rgn = C1FlexGrid1.Editor.Text
 End Select

 ' We can't sell Applets in the North Region.>
 If prd = "Applets" And rgn = "North" Then
 MsgBox("Warning: Regulation #12333AS/SDA-23 forbids " & _
 "the sale of " & prd & " in region " & rgn & ". " & _
 "Please verify input.")
 e.Cancel = True
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_ValidateEdit(object sender, ValidateEditEventArgs e)
{
 string rgn = string.Empty;
 string prd = string.Empty;

 // Collect the data we need.
 switch (e.Col)
 {
 case 0:
 prd = c1FlexGrid1.Editor.Text;
 rgn = (string)c1FlexGrid1[e.Row, "Region"];
 break;
 case 1:
 prd = (string)c1FlexGrid1[e.Row, "Product"];
 rgn = c1FlexGrid1.Editor.Text;
 break;
 }

 // We can't sell Applets in the North Region.
 if (prd == "Applets" && rgn == "North")
 {
 MessageBox.Show("Warning: Regulation #12333AS/SDA-23 forbids " +
 "the sale of " + prd + " in region " + rgn + ". " +
 "Please verify input.");
 e.Cancel = true;
 }
}

Run the program and observe the following:
The function starts by gathering the input that needs to be validated. Note that the values being checked are retrieved
using the Editor.Text property. This is necessary because the edits have not yet been applied to the control. If the test
fails, the function displays a warning and then sets the Cancel parameter to True, which cancels the edits and puts the

FlexGrid for WinForms 130

Copyright © 2019 GrapeCity, Inc. All rights reserved.

cell back in edit mode so the user can try again.

Press F5 to run the project again, then try inputting some bad values. You will see that the control will reject them.

Step 5 of 6: Add Clipboard Support
The Windows clipboard is a very useful device for transferring information between applications.

Adding clipboard support to FlexGrid for WinForms projects is fairly easy. Simply set the AutoClipboard property to
True either in the designer or in code, and the grid will automatically handle all standard keyboard commands related
to the clipboard: CTRL+X or SHIFT+DELETE to cut, CTRL+C or CTRL+INSERT to copy, and CTRL+V or SHIFT+INSERT to
paste.

In the Designer
Locate the AutoClipboard property in the Properties window and set it to True.

In Code
Add the following code after the code added in Step 3 of 6: Incorporate Drop-Down Lists:

To write code in Visual Basic

Visual Basic

C1FlexGrid1.AutoClipboard = True

To write code in C#

C#

c1FlexGrid1.AutoClipboard = true;

Another great Windows feature that is closely related to clipboard operations is OLE Drag and Drop. C1FlexGrid has
two properties, DragMode and DropMode, which help implement this feature. Just set both properties to their
automatic settings either in the designer or in code, and you will be able to drag selections by their edges and drop
them into other applications such as Microsoft Excel, or drag ranges from an Excel spreadsheet and drop them into
the C1FlexGrid control.

In the Designer
Locate the DragMode and DropMode properties and set them both to Automatic.

In Code

FlexGrid for WinForms 131

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Add the following code after the code to set the AutoClipboard property:

To write code in Visual Basic

Visual Basic

C1FlexGrid1.DragMode = DragModeEnum.Automatic
C1FlexGrid1.DropMode = DropModeEnum.Automatic

To write code in C#

C#

c1FlexGrid1.DragMode = DragModeEnum.Automatic;
c1FlexGrid1.DropMode = DropModeEnum.Automatic;

Run the program and observe the following:
Press F5 to run the project again, then try copying and pasting some data. Note that you can paste invalid data,
because our paste code does not perform any data validation. This is left as an exercise for the reader.

Step 6 of 6: Include Custom Editors
The C1FlexGrid has powerful built-in editors for entering text, masked text, selecting from lists, checkboxes, and more.
But in some cases you may want to use a custom editor instead, perhaps one of the input controls in the C1Input
library or a control that you wrote. Starting in version 2.5, the FlexGrid allows you to easily plug-in custom editors.

To attach a custom editor to the Sales column on our tutorial, start by adding a NumericUpDown control to the form.

1. Set the following properties the Properties window to for the NumericUpDown control:
Property Setting

BorderStyle None

DecimalPlaces 2

Maximum 5000000

ThousandsSeparator True

Visible False

2. Select Designer from the C1FlexGrid Tasks menu to bring up the grid's column editor.
3. Select the Sales column (or Column 3 where the Sales figures will be), and set the Editor property to

NumericUpDown1.

Run the program and observe the following:
Now run the project and try editing some values in the Sales column. Notice that the grid uses the NumericUpDown
control instead of the built-in editors. The control is properly positioned, initialized, and managed. When you move
the focus to a different cell, the value is stored in the grid.

FlexGrid for WinForms 132

Copyright © 2019 GrapeCity, Inc. All rights reserved.

But the custom editor doesn't behave exactly like the built-in ones. For example:

1. When you start editing by typing a number, the old value isn't cleared.
2. The size of the editor isn't exactly right (it looks a bit too small).
3. There's a beep when you press ENTER to finish editing.

You can overcome these problems in a couple of ways. One way would be to use the editor's events, but that would
make it difficult to reuse the control in other projects. Another way would be to create a derived class and implement
some methods in the IC1EmbeddedEditor interface, as in the following code.

To write code in Visual Basic

Visual Basic

Public Class MyUpDown
 Inherits NumericUpDown

 ' Set the initial value.
 Public Sub C1EditorInitialize(ByVal value As Object, ByVal editorAttributes As
IDictionary)

 ' Apply the initial value.
 value = Convert.ChangeType(value, GetType(Decimal))

 ' Select the whole entry.
 MyBase.Select(0, Int32.MaxValue)
 End Sub

 ' Set the FontHeight so the control honors the rectangle height.
 Public Sub C1EditorUpdateBounds(ByVal rc As Rectangle)
 MyBase.FontHeight = rc.Height
 Bounds = rc
 End Sub

 ' Suppress the beeps when a user presses ENTER.

FlexGrid for WinForms 133

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Protected Overrides Function ProcessDialogKey(ByVal keyData As Keys) As Boolean
 If (keyData = Keys.Enter) Then
 Parent.Focus()
 If (Parent.Focused) Then SendKeys.Send("{Down}")
 Return True
 End If
 Return MyBase.ProcessDialogKey(keyData)
 End Function
End Class

To write code in C#

C#

internal class MyUpDown : NumericUpDown
{
 // Set the initial value.
 public void C1EditorInitialize(object value, System.Collections.IDictionary
editorAttributes)
 {
 // Apply the initial value.
 Value = (decimal)Convert.ChangeType(value, typeof(decimal));

 // Select the whole entry.
 Select(0, int.MaxValue);
 }

 // Set the FontHeight so the control honors the rectangle height.
 public void C1EditorUpdateBounds(Rectangle rc)
 {
 base.FontHeight = rc.Height;
 Bounds = rc;
 }

 // Suppress the beeps when a user presses ENTER.
 override protected bool ProcessDialogKey(Keys keyData)
 {
 if (keyData == Keys.Enter)
 {
 Parent.Focus();
 if (Parent.Focused) SendKeys.Send("{Down}");
 return true;
 }
 return base.ProcessDialogKey(keyData);
 }
}

The previous code implements three methods:

C1EditorInitialize is called to initialize the editor. It sets the initial value and then selects the whole entry. This
will take care of the first problem. Because the whole entry is selected, typing the first character will now
replace the current contents as we want.
C1EditorUpdateBounds is called to position the editor over the cell being edited. The height of the

FlexGrid for WinForms 134

Copyright © 2019 GrapeCity, Inc. All rights reserved.

NumericUpDown control is set automatically based on the font size, though (that is why it looks too short for
the cell). The code sets the editor's FontHeight property so it will be positioned exactly over the cell.
ProcessDialogKey method is overridden to suppress the beeps when the user presses the Enter key.

Outline Tutorial
This tutorial shows how you can use the C1FlexGrid as an outliner to display structured (or hierarchical) data. When
used as an outliner, the C1FlexGrid control behaves like a Tree control, displaying nodes that can be collapsed or
expanded to show branches containing subordinate data.

The tutorial allows you to load an XML document into the grid, where it is displayed as a tree. Here is what the final
application will look like:

Step 1 of 5: Create the Controls
Start a new project and add two controls:

A command Button near the top of the form.
A C1FlexGrid control in the area below the button.

If you can't find the C1FlexGrid control in the Toolbox, right-click on the toolbox and select Choose Items. Then, look
for the C1FlexGrid control on the list of .NET components and make sure it is checked. If you can't find the grid in the
component list, you may need to re-install the product.

1. Set the following properties in the Properties window:
Command Button
Property Setting

Dock Top

Text "Open XML
File…"

C1FlexGrid

FlexGrid for WinForms 135

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Property Setting

Dock Fill

2. Double-click the form caption area to open the code window. At the top of the file, add the following
statement:

To write code in Visual Basic

Visual Basic

Imports C1.Win.C1FlexGrid

To write code in C#

C#

using C1.Win.C1FlexGrid;

This makes the objects defined in the C1FlexGrid assembly visible to the project and saves a lot of typing.

3. Set up the grid either in the designer using the Properties window and editors, or in code by typing (or
copying) the following code.

In the Designer

Set the following properties for the C1FlexGrid control in the Properties window:

Property Setting

Cols.Count 2

Cols.Fixed 0

ExtendLastCol True

Rows.Count 1

Tree.Column 0

Tree.Style SimpleLeaf

Set up the styles for the grid:

Open the C1FlexGrid Style Editor by selecting Styles from the C1FlexGrid Tasks menu. For more
information on accessing the C1FlexGrid Style Editor, see Accessing the C1FlexGrid Style Editor.
Select Normal in the list of Built-In Styles.
Set the Border.Style property to None, the TextAlign property to LeftCenter, and the WordWrap
property to False.
Click the Add button.
Rename CustomStyle1 to Data.
Set the BackColor property to Control.
Click OK to close the editor.

Set up the columns for the grid:

Select Column 0 in the grid. This will open the Column Tasks menu for Column 0.
Set the Column Caption to Element.
Uncheck the Allow Editing check box.
Select Column 1.

FlexGrid for WinForms 136

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Set the Column Caption to Text.

Alternatively, the columns can also be set up through the C1FlexGrid Column Editor:

· Open the C1FlexGrid Column Editor by selecting Designer in the C1FlexGrid Tasks menu. For details
on how to access the C1FlexGrid Column Editor, see Accessing the C1FlexGrid Column Editor.
Select Column 0 in the right pane.
In the left pane, set the AllowEditing property to False and the Caption property to Element.
Select Column 1 in the right pane.
In the left pane, set the Caption property to Text.
Click OK to close the editor.

In Code

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 ' Initialize the grid.
 C1FlexGrid1.Rows.Count = 1
 C1FlexGrid1.Cols.Count = 2
 C1FlexGrid1.Cols.Fixed = 0
 C1FlexGrid1.ExtendLastCol = True
 C1FlexGrid1(0, 0) = "Element"
 C1FlexGrid1(0, 1) = "Text"

 ' Initialize the outline tree.
 C1FlexGrid1.Tree.Column = 0
 C1FlexGrid1.Tree.Style = TreeStyleFlags.SimpleLeaf
 C1FlexGrid1.Cols(0).AllowEditing = False

 ' Initialize styles.
 C1FlexGrid1.Styles.Normal.Border.Style = BorderStyleEnum.None
 C1FlexGrid1.Styles.Normal.TextAlign = TextAlignEnum.LeftCenter
 C1FlexGrid1.Styles.Normal.WordWrap = False
 Dim cs As CellStyle = C1FlexGrid1.Styles.Add("Data")
 cs.BackColor = SystemColors.Control
End Sub

To write code in C#

C#

private void Form1_Load(System.object sender, System.EventArgs e)
{
 // Initialize the grid.
 c1FlexGrid1.Rows.Count = 1;
 c1FlexGrid1.Cols.Count = 2;
 c1FlexGrid1.Cols.Fixed = 0;
 c1FlexGrid1.ExtendLastCol = true;
 c1FlexGrid1[0, 0] = "Element";
 c1FlexGrid1[0, 1] = "Text";

FlexGrid for WinForms 137

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // Initialize the outline tree.
 c1FlexGrid1.Tree.Column = 0;
 c1FlexGrid1.Tree.Style = TreeStyleFlags.SimpleLeaf;
 c1FlexGrid1.Cols[0].AllowEditing = false;

 // Initialize styles.
 c1FlexGrid1.Styles.Normal.Border.Style = BorderStyleEnum.None;
 c1FlexGrid1.Styles.Normal.TextAlign = TextAlignEnum.LeftCenter;
 c1FlexGrid1.Styles.Normal.WordWrap = false;
 CellStyle cs = c1FlexGrid1.Styles.Add("Data");
 cs.BackColor = SystemColors.Control;}

Run the program and observe the following:
The code starts by setting up the grid layout and column heading text.

Next, it initializes the outline tree using the Tree property and prevents editing of the XML nodes by setting the
AllowEditing property of the first column to False. Note that the user can still edit data in the second column, which
contains the data in each XML node.

Now the control is ready. We can start adding some code to it.

Step 2 of 5: Read the Data and Build the Outline
To read the data and build the outline, add code to the Button1_Click event and add the GetXMLData routine.

1. Double-click the command button and add the following code to the Button1_Click event:

To write code in Visual Basic

Visual Basic

FlexGrid for WinForms 138

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

 ' Get the file name.
 Dim fo As OpenFileDialog = New OpenFileDialog()
 fo.DefaultExt = "xml"
 fo.Filter = "XML Files (*.xml)|*.xml"
 If fo.ShowDialog() <> Windows.Forms.DialogResult.OK Then Exit Sub

 ' Load the XML file.
 Dim xdoc As System.Xml.XmlDocument = New System.Xml.XmlDocument()
 xdoc.Load(fo.FileName)

 ' Stop redrawing to improve speed.
 C1FlexGrid1.Redraw = False

 ' Populate the grid.
 C1FlexGrid1.Rows.Count = 1
 GetXMLData(xdoc.ChildNodes(1), 0)

 ' Autosize the tree column.
 C1FlexGrid1.AutoSizeCol(0)

 ' Show levels 0, 1, and 2.
 C1FlexGrid1.Tree.Show(2)

 ' Start redrawing.
 C1FlexGrid1.Redraw = True
End Sub

To write code in C#

C#

private void button1_Click(System.object sender, System.EventArgs e)
{
 // Get the file name.
 OpenFileDialog fo = new OpenFileDialog();
 fo.DefaultExt = "xml";
 fo.Filter = "XML Files (*.xml)|*.xml";
 if (fo.ShowDialog() != DialogResult.OK) return;

 // Load the XML file.
 System.Xml.XmlDocument xdoc = new System.Xml.XmlDocument();
 xdoc.Load(fo.FileName);

 // Stop redrawing to improve speed.
 c1FlexGrid1.Redraw = false;

 // Populate the grid.
 c1FlexGrid1.Rows.Count = 1;
 GetXMLData(xdoc.ChildNodes[1], 0);

FlexGrid for WinForms 139

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // Autosize the tree column.
 c1FlexGrid1.AutoSizeCol(0);

 // Show levels 0, 1, and 2.
 c1FlexGrid1.Tree.Show(2);

 // Start redrawing.
 c1FlexGrid1.Redraw = true;
}

Observe the following:
The routine starts by showing an OpenFileDialog that allows the user to select an XML file to load into the
grid. When the file is selected, the routine loads it into an XmlDocument object, which parses the contents of
the file into memory.

The routine then sets the grid's Redraw property to False to suspend repainting while the control is populated.
This technique improves performance significantly, and you should always use it when adding substantial
amounts of data to the C1FlexGrid.

Next, the routine clears any data by setting Count to 1, and calls the GetXMLData routine to populate the
control with the contents of the XmlDocument. The GetXMLData routine is the main one in this tutorial, and is
listed below.

After the grid has been populated, the routine uses the AutoSizeCol method to adjust the width of the first
column based on its contents, and the Show method to expand the outline and show levels 0, 1, and 2. The
routine then sets the Redraw property back to True so the grid starts repainting normally.

2. The GetXMLData routine is the most interesting one in this tutorial. It traverses the XMLDocument object and
builds the outline tree. Add the following code to the form:

To write code in Visual Basic

Visual Basic

Private Sub GetXMLData(ByVal node As System.Xml.XmlNode, ByVal level As Integer)
 ' Skip the comment nodes.
 If node.NodeType = System.Xml.XmlNodeType.Comment Then
 Exit Sub
 End If

 ' Add a new row for this node.
 Dim row As Integer = C1FlexGrid1.Rows.Count
 C1FlexGrid1.Rows.Add()

 ' Add data to the new row.
 C1FlexGrid1(row, 0) = node.Name
 If node.ChildNodes.Count = 1 Then
 C1FlexGrid1(row, 1) = node.InnerText
 C1FlexGrid1.SetCellStyle(row, 1, C1FlexGrid1.Styles("Data"))
 End If

 ' If the node has a "Name" subnode, save it to use as a ToolTip.
 If node.ChildNodes.Count > 0 Then

FlexGrid for WinForms 140

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Dim ndName As System.Xml.XmlNode = node.SelectSingleNode("Name")
 If Not (ndName Is Nothing) Then
 C1FlexGrid1.Rows(row).UserData = ndName.InnerText
 End If
 End If

 ' If this node has children, get them as well.
 If node.ChildNodes.Count > 1 Then

 ' Make this row a node.
 C1FlexGrid1.Rows(row).IsNode = True
 C1FlexGrid1.Rows(row).Node.Level = level

 ' Recurse to get children.
 Dim child As System.Xml.XmlNode
 For Each child In node.ChildNodes
 GetXMLData(child, level + 1)
 Next
 End If
End Sub

To write code in C#

C#

private void GetXMLData(System.Xml.XmlNode node, int level)
{
 // Skip the comment nodes.
 if (node.NodeType == System.Xml.XmlNodeType.Comment)
 {
 return;
 }

 // Add a new row for this node.
 int row = c1FlexGrid1.Rows.Count;
 c1FlexGrid1.Rows.Add();

 // Add data to the new row.
 c1FlexGrid1[row, 0] = node.Name;
 if (node.ChildNodes.Count == 1)
 {
 c1FlexGrid1[row, 1] = node.InnerText;
 c1FlexGrid1.SetCellStyle(row, 1, c1FlexGrid1.Styles["Data"]);
 }

 // If the node has a "Name" subnode, save it to use as a ToolTip.
 if (node.ChildNodes.Count > 0)
 {
 System.Xml.XmlNode ndName = node.SelectSingleNode("Name");
 if (ndName != null)
 {
 c1FlexGrid1.Rows[row].UserData = ndName.InnerText;

FlexGrid for WinForms 141

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 }
 }

 // If this node has children, get them as well.
 if (node.ChildNodes.Count > 1)
 {
 // Make this row a node.
 c1FlexGrid1.Rows[row].IsNode = true;
 c1FlexGrid1.Rows[row].Node.Level = level;

 // Recurse to get children.
 foreach (System.Xml.XmlNode child in node.ChildNodes)
 GetXMLData(child, level + 1);
 }
}

Observe the following:
The routine starts by skipping XML comment nodes. Then it uses the Rows.Add method to add a new row to the grid.

Next, the routine sets the node name and checks whether the node has exactly one child. In this case, the node is
interpreted as a data node, and the node's InnerText property is copied to the second column on the new row. The
code also sets the style of cells containing data to the custom style "Data" created when the form was loaded.

The next block of code checks to see whether this node has a subnode called "Name". If it does, then the contents of
the "Name" node are assigned to the new row's UserData property. This value will be used later to implement
ToolTips, so users can see the node name even when it is collapsed.

Finally, if the node has children, the GetXMLData routine calls itself to add the child nodes to the grid as well.

Run the program and observe the following:
The project can load XML files and display them, and the user can collapse and expand nodes by clicking on them.

FlexGrid for WinForms 142

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The next steps add a few improvements to make the application easier to use.

Step 3 of 5: Add Custom Mouse and Keyboard Handling
The C1FlexGrid provides the expanding and collapsing for you, but you may extend and customize its behavior. Every
time a branch is expanded or collapsed, the control fires the BeforeCollapse and AfterCollapse events so you may take
actions in response to that. Furthermore, you may use the Collapsed property to get and set the collapsed state of
each branch in code.

In this tutorial, we will trap the DoubleClick and KeyPress events to expand and collapse nodes when the user double
clicks or presses the ENTER key. Add the following DoubleClick and KeyPress events to the form:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_DoubleClick(ByVal sender As Object, ByVal e As EventArgs)
Handles C1FlexGrid1.DoubleClick
 If C1FlexGrid1.MouseCol = 0 Then
 ToggleNodeState()
 End If
End Sub

Private Sub C1FlexGrid1_KeyPress(ByVal sender As Object, ByVal e As
KeyPressEventArgs) Handles C1FlexGrid1.KeyPress
 If e.KeyChar = vbCr Then
 ToggleNodeState()
 End If
End Sub

Private Sub ToggleNodeState()

 ' If the current row is not a node, no work is done.
 Dim r As Row = C1FlexGrid1.Rows(C1FlexGrid1.Row)
 If Not r.IsNode Then Exit Sub

 ' Toggle the collapsed state.
 r.Node.Collapsed = Not r.Node.Collapsed
End Sub

To write code in C#

C#

private void c1FlexGrid1_DoubleClick(object sender, EventArgs e)
{
 if (c1FlexGrid1.MouseCol == 0)
 {
 ToggleNodeState();
 }
}

private void c1FlexGrid1_KeyPress(object sender, KeyPressEventArgs e)

FlexGrid for WinForms 143

Copyright © 2019 GrapeCity, Inc. All rights reserved.

{
 if (e.KeyChar == 13)
 {
 ToggleNodeState();
 }
}

private void ToggleNodeState()
{

 // If the current row is not a node, no work is done.
 Row r = c1FlexGrid1.Rows[c1FlexGrid1.Row];
 if (! r.IsNode) return;

 // Toggle the collapsed state.
 r.Node.Collapsed = !r.Node.Collapsed;
}

Run the program and observe the following:
The event handlers check whether the user double-clicked the first column or hit the ENTER key, then call the
ToggleNodeState routine. ToggleNodeState checks whether the current row is a node row, and toggles the value of
the Collapsed property if it is.

Step 4 of 5: Allow/Prevent Editing
Recall that we set the AllowEditing property of the first column to False. This prevents users from editing any cells in
the first column. We would also like to prevent users from entering data in the second column of node rows. To do
this, add the following code to handle the BeforeEdit event:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_BeforeEdit(ByVal sender As Object, ByVal e As
RowColEventArgs) Handles C1FlexGrid1.BeforeEdit

 ' If the current row is a node, don't edit it.
 Dim r As Row = C1FlexGrid1.Rows(C1FlexGrid1.Row)
 If r.IsNode Then e.Cancel = True
End Sub

To write code in C#

C#

private void c1FlexGrid1_BeforeEdit(object sender, RowColEventArgs e)
{
 // If the current row is a node, don't edit it.
 Row r = c1FlexGrid1.Rows[c1FlexGrid1.Row];
 if (r.IsNode) e.Cancel = true;
}

FlexGrid for WinForms 144

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Step 5 of 5: Implement ToolTips
To conclude this tutorial, we will add ToolTips to the outline. The ToolTips will display the text that was stored in each
row's UserDataproperty by the GetXMLDataroutine described above. The ToolTips will show the contents of the
"Name" node when the user moves the mouse over its parent node. This is useful when the parent node is collapsed
and the "Name" node is not visible.

1. Add a ToolTipcontrol to the form.
2. Add the following code to handle the grid's MouseMoveevent:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_MouseMove(ByVal sender As Object, ByVal e As
MouseEventArgs) Handles C1FlexGrid1.MouseMove

 ' Check the ToolTip for this cell.
 Dim tip As String
 If C1FlexGrid1.MouseCol = 0 And C1FlexGrid1.MouseRow > 0 Then
 tip = C1FlexGrid1.Rows(C1FlexGrid1.MouseRow).UserData

 ' Set it if it is different from the current ToolTip.
 If tip <> ToolTip1.GetToolTip(C1FlexGrid1) Then
 ToolTip1.SetToolTip(C1FlexGrid1, tip)
 End If
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_MouseMove(object sender, MouseEventArgs e)
{
 // Check the ToolTip for this cell.
 string tip;
 if (c1FlexGrid1.MouseCol == 0 && c1FlexGrid1.MouseRow > 0)
 {
 tip = (string)c1FlexGrid1.Rows[c1FlexGrid1.MouseRow].UserData;

 // Set it if it is different from the current ToolTip.
 if (tip != toolTip1.GetToolTip(c1FlexGrid1))
 {
 toolTip1.SetToolTip(c1FlexGrid1, tip);
 }
 }
}

Run the program and observe the following:
The code starts by checking the cell under the mouse using the MouseRow and MouseCol properties. If the mouse is

FlexGrid for WinForms 145

Copyright © 2019 GrapeCity, Inc. All rights reserved.

over the first column on a row that contains text for the ToolTip, it retrieves the text. Otherwise, the ToolTip text is set
to Nothing.

Then the routine compares the new and current ToolTip text, and updates the text if necessary, by calling the
SetToolTip method on the ToolTip control.

This concludes this tutorial. You can extend this project in many ways, including saving edits back into the XML
document, adding, deleting, and moving nodes, using different styles for different types of data, and so on.

Data Analysis Tutorial
This tutorial combines some of the most useful features in the C1FlexGrid control to provide a dynamic view of a data
table. The application starts with a simple data-bound grid containing sales data (from the NorthWind database), then
adds the following features:

Dynamic layout (column order)
Automatic sorting
Cell merging
Automatic subtotals
Outlining

The picture below shows what the final application looks like. The user can drag the first three columns to group the
data by salesperson, country, and product name. When a column is dragged, the totals are automatically recalculated
and the outline tree is rebuilt.

FlexGrid for WinForms 146

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Step 1 of 4: Create the C1FlexGrid Control for the Data
Analysis Tutorial
Start a new project and add a C1FlexGrid control to the form by clicking the C1FlexGrid icon on the toolbox, then
clicking on the form and dragging until the object has the proper size.

If you can't find the C1FlexGrid control in the Toolbox, right-click on the Toolbox and select Choose Items. Then, look
for the C1FlexGrid control on the list of .NET components and make sure it is checked. If you can't find the grid in the
component list, you may need to re-install the product.

1. In the C1FlexGrid Tasks menu, click Dock in parent container. This sets the grid's Dock property to Fill so the
grid will fill the form.

2. Double-click the form caption area to open the code window. At the top of the file, add the following
statements:

To write code in Visual Basic

Visual Basic

Imports System.Data.OleDb
Imports System.ComponentModel
Imports C1.Win.C1FlexGrid

To write code in C#

C#

using System.Data.OleDb;
using System.ComponentModel;
using C1.Win.C1FlexGrid;

This makes the objects defined in the C1FlexGrid and OleDb assemblies visible to the project and saves a lot of
typing.

FlexGrid for WinForms 147

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Step 2 of 4: Initialize and Populate the Grid
To set up the grid and populate the grid with the sales data we want to analyze, set the layout properties and styles
either in the designer or in code, and use the GetDataSource method to populate the grid.

1. Set up the grid layout and styles either in the designer or in code.

In the Designer

In the Properties window, set the following properties:
Property Setting

AllowEditing False

AllowSorting None

AllowMerging Nodes

ExtendLastCol True

SelectionMode Cell

Tree.Style Simple

Tree.Column 1

Open the C1FlexGrid Style Editor by selecting Styles from the C1FlexGrid Tasks menu. For more
information on accessing the C1FlexGrid Style Editor, see Accessing the C1FlexGrid Style Editor.
Select Normal from the list of Built-In Styles.
Set the Border.Style property to None and the Trimming property to EllipsisCharacter.
Select Subtotal0 from the list of Built-In Styles.
Set the BackColor property to Gold, and the ForeColor property to Black.
Set the properties for Subtotal1 and Subtotal2 to the following:
Subtotal1

BackColor Khaki

ForeColor Black

Subtotal2

BackColor LightGoldenrodYellow

ForeColor Black

Click OK to close the editor.

In Code

Add the following code to the Form_Load event to set up the grid layout and styles:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As EventArgs)
Handles MyBase.Load

 ' Set up the grid layout/behavior.
 C1FlexGrid1.AllowEditing = False
 C1FlexGrid1.AllowSorting = AllowSortingEnum.None
 C1FlexGrid1.AllowMerging = AllowMergingEnum.Nodes

FlexGrid for WinForms 148

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 C1FlexGrid1.SelectionMode = SelectionModeEnum.Cell
 C1FlexGrid1.ExtendLastCol = True
 C1FlexGrid1.Cols(0).Width = C1FlexGrid1.Cols.DefaultSize / 4
 C1FlexGrid1.Tree.Style = TreeStyleFlags.Simple
 C1FlexGrid1.Tree.Column = 1

 ' Set up grid styles.
 C1FlexGrid1.Styles.Normal.Border.Style = BorderStyleEnum.None
 C1FlexGrid1.Styles.Normal.Trimming = StringTrimming.EllipsisCharacter

 Dim s As CellStyle = C1FlexGrid1.Styles(CellStyleEnum.GrandTotal)
 s.BackColor = Color.Black
 s.ForeColor = Color.White
 s = C1FlexGrid1.Styles(CellStyleEnum.Subtotal0)
 s.BackColor = Color.Gold
 s.ForeColor = Color.Black
 s = C1FlexGrid1.Styles(CellStyleEnum.Subtotal1)
 s.BackColor = Color.Khaki
 s.ForeColor = Color.Black
 s = C1FlexGrid1.Styles(CellStyleEnum.Subtotal2)
 s.BackColor = Color.LightGoldenrodYellow
 s.ForeColor = Color.Black
End Sub

To write code in C#

C#

private void Form1_Load(System.object sender, EventArgs e)
{
 // Set up the grid layout/behavior.
 c1FlexGrid1.AllowEditing = false;
 c1FlexGrid1.AllowSorting = AllowSortingEnum.None;
 c1FlexGrid1.AllowMerging = AllowMergingEnum.Nodes;
 c1FlexGrid1.SelectionMode = SelectionModeEnum.Cell;
 c1FlexGrid1.ExtendLastCol = true;
 c1FlexGrid1.Cols[0].Width = c1FlexGrid1.Cols.DefaultSize / 4;
 c1FlexGrid1.Tree.Style = TreeStyleFlags.Simple;
 c1FlexGrid1.Tree.Column = 1;

 // Set up grid styles.
 c1FlexGrid1.Styles.Normal.Border.Style = BorderStyleEnum.None;
 c1FlexGrid1.Styles.Normal.Trimming = StringTrimming.EllipsisCharacter;

 CellStyle s = c1FlexGrid1.Styles[CellStyleEnum.GrandTotal];
 s.BackColor = Color.Black;
 s.ForeColor = Color.White;
 s = c1FlexGrid1.Styles[CellStyleEnum.Subtotal0];
 s.BackColor = Color.Gold;
 s.ForeColor = Color.Black;
 s = c1FlexGrid1.Styles[CellStyleEnum.Subtotal1];
 s.BackColor = Color.Khaki;

FlexGrid for WinForms 149

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 s.ForeColor = Color.Black;
 s = c1FlexGrid1.Styles[CellStyleEnum.Subtotal2];
 s.BackColor = Color.LightGoldenrodYellow;
 s.ForeColor = Color.Black;
}

The routine starts by setting up the grid layout and some styles.

2. Bind C1FlexGrid to a data source by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Bind C1FlexGrid to the data source.
C1FlexGrid1.DataSource = GetDataSource()

To write code in C#

C#

// Bind C1FlexGrid to the data source.
c1FlexGrid1.DataSource = GetDataSource();

The routine binds it to a data source created by the GetDataSource method, listed below.

3. Lock the last three columns in place by setting their AllowDragging property to False. This is done to prevent
the user from grouping the data in these columns (the values in these columns are distinct for each row). This
property can be set either in the designer or at in code.

In the Designer

Select Column 4 in the grid. This will open the Column Tasks menu for Column 4.
Uncheck the Allow Dragging check box.
Repeat for Column 5 and Column 6.

Alternatively, the AllowDragging property can also be set using the C1FlexGrid Column Editor:

Open the C1FlexGrid Column Editor by selecting Designer in the C1FlexGrid Tasks menu. For details
on how to access the C1FlexGrid Column Editor, see Accessing the C1FlexGrid Column Editor.
Select Column 4 in the right pane.
In the left pane, set the AllowDragging property to False.
Set the AllowDragging property to False for Column 5 and Column 6.
Do not close the editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Prevent the user from dragging last three columns.
C1FlexGrid1.Cols(4).AllowDragging = False
C1FlexGrid1.Cols(5).AllowDragging = False
C1FlexGrid1.Cols(6).AllowDragging = False

FlexGrid for WinForms 150

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

// Prevent the user from dragging last three columns.
c1FlexGrid1.Cols[4].AllowDragging = false;
c1FlexGrid1.Cols[5].AllowDragging = false;
c1FlexGrid1.Cols[6].AllowDragging = false;

4. Set the Format property of the Sales Amount column so that the amounts are displayed as currency values. This
can be done either in the designer or in code.

In the Designer

Select Column 6 in the grid.
Click the ellipsis button in the Format String box to open the Format String dialog box.
Under Format type select Currency.
Click OK to close the Format String dialog box.

Alternatively, the Format property can also be set using the C1FlexGrid Column Editor:

In the C1FlexGrid Column Editor, select Column 6 in the right pane.
In the left pane, click the ellipsis button next to the Format property to open the Format String dialog
box.
Under Format type select Currency.
Click OK to close the Format String dialog box.
Click OK to close the editor.

In Code

To write code in Visual Basic

Visual Basic

' Display currency values in the Sales Amount column.
C1FlexGrid1.Cols(6).Format = "c"

To write code in C#

C#

// Display currency values in the Sales Amount column.
c1FlexGrid1.Cols[6].Format = "c";

5. The GetDataSource method creates the data table that is displayed by the grid. The routine is very basic,
except for the SQL statement that retrieves the data. Most people don't write these SQL statements manually,
but use visual designers such as the one in Visual Studio or Microsoft Access to do that.

Add the following code to the form. Note that you may have to change the connection string slightly, because
it has a reference to the NorthWind database and that file might be in a different folder in your system:

To write code in Visual Basic

Visual Basic

Private Function GetDataSource() As DataTable

 ' Set up the connection string.
 Dim conn As String = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

FlexGrid for WinForms 151

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 "Data Source=C:\Users\<User Name>\Documents\ComponentOne
Samples\Common\C1NWind.mdb"

 ' Set up the SQL statement.
 Dim rs As String = _
 "SELECT Employees.LastName,Orders.ShipCountry," & _
 "Categories.CategoryName,Products.ProductName,Orders.OrderDate," & _
 "[Quantity]*[Products].[UnitPrice] AS [Sale Amount] " & _
 "FROM (Categories INNER JOIN Products " & _
 "ON Categories.CategoryID = Products.CategoryID) " & _
 "INNER JOIN ((Employees INNER JOIN Orders " & _
 "ON Employees.EmployeeID = Orders.EmployeeID) " & _
 "INNER JOIN [Order Details] " & _
 "ON Orders.OrderID = [Order Details].OrderID) " & _
 "ON Products.ProductID = [Order Details].ProductID " & _
 "ORDER BY Employees.LastName,Orders.ShipCountry," & _
 "Categories.CategoryName;"

 ' Retrieve the data into the DataSet.
 Dim da As OleDbDataAdapter = New OleDbDataAdapter(rs, conn)
 Dim ds As DataSet = New DataSet()
 da.Fill(ds)

 ' Return the data table.
 GetDataSource = ds.Tables(0)
End Function

To write code in C#

C#

private DataTable GetDataSource()
{
 // Set up the connection string.
 string conn = "Provider=Microsoft.Jet.OLEDB.4.0;" +
 "Data Source=C:\\Users\\Windows 8.1\\Documents\\ComponentOne
Samples\\Common\\C1NWind.mdb";

 // Set up the SQL statement.
 string rs =
 "SELECT Employees.LastName,Orders.ShipCountry," +
 "Categories.CategoryName,Products.ProductName,Orders.OrderDate," +
 "[Quantity]*[Products].[UnitPrice] AS [Sale Amount] " +
 "FROM (Categories INNER JOIN Products " +
 "ON Categories.CategoryID = Products.CategoryID) " +
 "INNER JOIN ((Employees INNER JOIN Orders " +
 "ON Employees.EmployeeID = Orders.EmployeeID) " +
 "INNER JOIN [Order Details] " +
 "ON Orders.OrderID = [Order Details].OrderID) " +
 "ON Products.ProductID = [Order Details].ProductID " +
 "ORDER BY Employees.LastName,Orders.ShipCountry," +
 "Categories.CategoryName;";

FlexGrid for WinForms 152

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // Retrieve the data into the DataSet.
 OleDbDataAdapter da = new OleDbDataAdapter(rs, conn);
 DataSet ds = new DataSet();
 da.Fill(ds);

 // Return the data table.
 return ds.Tables[0];
}

Run the program and observe the following:
You will see a plain-looking grid that allows you to move columns around and browse through the data. However, the
data is not structured in a clear way, and this table contains a couple of thousand records, so it is pretty difficult to get
an overview of what the data means.

Step 3 of 4: Allow Automatic Sorting
The first step in organizing the data is sorting it. Furthermore, we would like the data to be sorted automatically
whenever the user reorders the columns.

After the user reorders the columns, the C1FlexGrid control fires the AfterDragColumn event. We will add an event
handler to sort the data in the underlying data table. (If the grid were being used in unbound mode, we would
accomplish this using the Sort method.)

Add the following code to the form to sort the record set and rebuild the subtotals when the user drags columns:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_AfterDragColumn(ByVal sender As Object, ByVal e As
DragRowColEventArgs) Handles C1FlexGrid1.AfterDragColumn

FlexGrid for WinForms 153

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 ' Sort the recordset when the user drags columns.
 ' This will cause a data refresh, removing all subtotals and
 ' firing the AfterDataRefresh event, which rebuilds the subtotals.
 Dim sort As String = C1FlexGrid1.Cols(1).Name & ", " & _
 C1FlexGrid1.Cols(2).Name & ", " & _
 C1FlexGrid1.Cols(3).Name
 Dim dt As DataTable = C1FlexGrid1.DataSource
 dt.DefaultView.Sort = sort
End Sub

To write code in C#

C#

private void c1FlexGrid1_AfterDragColumn(object sender, DragRowColEventArgs e)
{
 // Sort the recordset when the user drags columns.
 // This will cause a data refresh, removing all subtotals and
 // firing the AfterDataRefresh event, which rebuilds the subtotals.
 string sort = c1FlexGrid1.Cols[1].Name + ", " +
 c1FlexGrid1.Cols[2].Name + ", " +
 c1FlexGrid1.Cols[3].Name;
 DataTable dt = (DataTable)c1FlexGrid1.DataSource;
 dt.DefaultView.Sort = sort;
}

Run the program and observe the following:
Run the project and try reordering the first three columns by dragging their headings around. Whenever you move a
column, the data is automatically sorted, which makes it easier to interpret.

In the next step, we will add subtotals and an outline tree.

Step 4 of 4: Include Subtotals and Outline Tree
When the grid is used in bound mode, any changes to the data source cause the grid to fire the AfterDataRefresh
event. This event is the ideal place to put the code that inserts the subtotals and builds the outline tree for the grid.

Add the following AfterDataRefresh event handler to the form:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_AfterDataRefresh(ByVal sender As Object, ByVal e As
ListChangedEventArgs) Handles C1FlexGrid1.AfterDataRefresh

 ' Total the Sale Amount.
 Dim totalOn As Integer = C1FlexGrid1.Cols("Sale Amount").SafeIndex
 Dim caption As String = "Total for {0}"

 ' Calculate three levels of totals.
 C1FlexGrid1.Subtotal(AggregateEnum.Sum, 0, 1, totalOn, caption)
 C1FlexGrid1.Subtotal(AggregateEnum.Sum, 1, 2, totalOn, caption)
 C1FlexGrid1.Subtotal(AggregateEnum.Sum, 2, 3, totalOn, caption)

 ' Collapse the outline to level 2.
 C1FlexGrid1.Tree.Show(2)

 ' Autosize the grid to accommodate the tree.
 C1FlexGrid1.AutoSizeCols(1, 1, 1000, 3, 30, AutoSizeFlags.IgnoreHidden)
End Sub

To write code in C#

C#

private void c1FlexGrid1_AfterDataRefresh(object sender, ListChangedEventArgs e)
{
 // Total the Sale Amount.
 int totalOn = c1FlexGrid1.Cols["Sale Amount"].SafeIndex;
 string caption = "Total for {0}";

 // Calculate three levels of totals.
 c1FlexGrid1.Subtotal(AggregateEnum.Sum, 0, 1, totalOn, caption);
 c1FlexGrid1.Subtotal(AggregateEnum.Sum, 1, 2, totalOn, caption);
 c1FlexGrid1.Subtotal(AggregateEnum.Sum, 2, 3, totalOn, caption);

 // Collapse the outline to level 2.
 c1FlexGrid1.Tree.Show(2);

 // Autosize the grid to accommodate the tree.
 c1FlexGrid1.AutoSizeCols(1, 1, 1000, 3, 30, AutoSizeFlags.IgnoreHidden);
}

FlexGrid for WinForms 154

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Run the program and observe the following:
The code starts by getting the index of the Sale Amount column. In this tutorial, the index will always be the same
(Column 6). Looking up the index is usually better than hardwiring it, though, because if someone added a couple of
fields to the SQL statement the index would change.

The code then calls the C1FlexGrid.Subtotal method to group the data and insert new rows with the subtotals. The
new rows are automatically configured as outline nodes (their IsNode property is set to True), so the subtotals are
collapsible.

Try dragging columns around. You can easily see the totals by country, product category, or salesperson. You can also
expand tree nodes to drill down into the data if you want to see more detail.

FlexGrid for WinForms 155

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note also that the grid is editable, changing some values in the Sale Amount column will cause the AfterDataRefresh
event to fire again, and the totals will be automatically updated.

This concludes this tutorial.

FlexGrid for WinForms 156

Copyright © 2019 GrapeCity, Inc. All rights reserved.

FlexGrid for WinForms Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET, and know how to use
bound and unbound controls in general. If you are a novice to the FlexGrid for WinForms product, please see the
FlexGrid for WinForms Tutorials first.

Each topic provides a solution for specific tasks using the FlexGrid for WinForms product. By following the steps
outlined in the help, you will be able to create projects demonstrating a variety of C1FlexGrid features.

Each task-based help topic also assumes that you have created a new .NET project.

Accessing the C1FlexGrid Editors
The C1FlexGrid editors can be accessed through the C1FlexGrid Tasks menu, the context menu, or the Properties
window. There are two C1FlexGrid editors, the C1FlexGrid Column Editor and the C1FlexGrid Style Editor, which
allow you to control the layout and appearance of C1FlexGrid at design time. To reorder columns, adjust column
widths, set column properties, and insert or remove columns, use the C1FlexGrid Column Editor. To modify existing
styles and add custom styles, which may later be assigned to cells, rows, and columns, use the C1FlexGrid Style
Editor.

Accessing the C1FlexGrid Column Editor
To access the C1FlexGrid Column Editor, use the C1FlexGrid Tasks menu, the context menu, or the Properties
window. For more information on editing columns with the C1FlexGrid Column Editor, see C1FlexGrid Column
Editor.

C1FlexGrid Tasks Menu
Click the smart tag () in the upper right corner of C1FlexGrid to open the C1FlexGrid Tasks menu, and select
Designer.

Context Menu
Right-click on the form and select Designer from the context menu.

Properties Window
In the Properties window, click the ellipsis button next to the Cols property.

Accessing the C1FlexGrid Style Editor
To access the C1FlexGrid Style Editor, use the C1FlexGrid Tasks menu, the context menu, or the Properties window.
For more information on customizing cell appearance with the C1FlexGrid Style Editor, see C1FlexGrid Style Editor.

C1FlexGrid Tasks Menu
Click the smart tag () in the upper right corner of C1FlexGrid to open the C1FlexGrid Tasks menu, and select Styles.

FlexGrid for WinForms 157

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Context Menu
Right-click on the form and select Styles from the context menu.

Properties Window
In the Properties window, click the ellipsis button next to the Styles property.

Adding Pictures and Text to a Cell
To add pictures and text to a cell, use the SetData and SetCellImage methods. Add the following code to the
Form_Load event:

1. Resize the cells to fit the image using the Height and Width properties.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Rows(1).Height = 90
Me.C1FlexGrid1.Cols(1).Width = 150

To write code in C#

C#

this.c1FlexGrid1.Rows[1].Height = 90;
this.c1FlexGrid1.Cols[1].Width = 150;

2. Add the SetCellImage method to add the image.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.SetCellImage(1, 1, Image.FromFile("c:\c1logo.bmp"))

To write code in C#

C#

this.c1FlexGrid1.SetCellImage(1, 1, Image.FromFile(@"c:\c1logo.bmp"));

3. Add the SetData method to add the text:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.SetData(1, 1, "ComponentOne")

To write code in C#

C#

this.c1FlexGrid1.SetData(1, 1, "ComponentOne");

FlexGrid for WinForms 158

Copyright © 2019 GrapeCity, Inc. All rights reserved.

4. Set the alignment of the image to CenterTop and the text to CenterBottom:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Styles.Normal.ImageAlign =
C1.Win.C1FlexGrid.ImageAlignEnum.CenterTop
Me.C1FlexGrid1.Styles.Normal.TextAlign =
C1.Win.C1FlexGrid.TextAlignEnum.CenterBottom

To write code in C#

C#

this.c1FlexGrid1.Styles.Normal.ImageAlign =
C1.Win.C1FlexGrid.ImageAlignEnum.CenterTop;
this.c1FlexGrid1.Styles.Normal.TextAlign =
C1.Win.C1FlexGrid.TextAlignEnum.CenterBottom;

This topic illustrates the following:
Your grid will look like the following with an image and text in the same cell.

Note: To set the text on top of the picture, change the alignment of the text to CenterTop, and the alignment
of the image to CenterBottom.

Adding Row Numbers in a Fixed Column
To add row numbers in a fixed column, like in Microsoft Excel, use the OwnerDrawCell event to draw the numbers,
aligned left, in a fixed column.

1. Add the following code to the Form_Load event to fire the OwnerDrawCell event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.DrawMode = C1.Win.C1FlexGrid.DrawModeEnum.OwnerDraw

FlexGrid for WinForms 159

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.c1FlexGrid1.DrawMode = C1.Win.C1FlexGrid.DrawModeEnum.OwnerDraw;

2. Add the OwnerDrawCell event:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_OwnerDrawCell(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs) Handles C1FlexGrid1.OwnerDrawCell
 If e.Row >= Me.C1FlexGrid1.Rows.Fixed And e.Col = Me.C1FlexGrid1.Cols.Fixed
- 1 Then
 Dim rowNumber As Integer = e.Row - Me.C1FlexGrid1.Rows.Fixed + 1
 e.Text = rowNumber.ToString()
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_OwnerDrawCell(object sender,
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs e)
{
 if ((e.Row >= this.c1FlexGrid1.Rows.Fixed) & (e.Col ==
(this.c1FlexGrid1.Cols.Fixed - 1)))
 {
 e.Text = ((e.Row - this.c1FlexGrid1.Rows.Fixed) + 1).ToString();
 }
}

This topic illustrates the following:
Row numbers appear in the first column, which is fixed, and are left-aligned like in Microsoft Excel.

FlexGrid for WinForms 160

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Adding Three-Dimensional Text to a Header Row
To add three-dimensional text to the table's header row, set the TextEffect property to Raised for text with a shadow
offset by one pixel to the right and below the text or Inset for text with a shadow offset by one pixel to the left and
above the text. Setting the TextEffect property to Flat gives text no effect.

1. Create a new style called 3DText.

In the Designer

Open the C1FlexGrid Style Editor. For details on how to access the C1FlexGrid Style Editor, see
Accessing the C1FlexGrid Style Editor.
Click Add to create a new style.
Double-click CustomStyle1, rename it 3DText, and press ENTER when finished.
Do not exit the C1FlexGrid Style Editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Dim tdt As C1.Win.C1FlexGrid.CellStyle

To write code in C#

C#

C1.Win.C1FlexGrid.CellStyle tdt = this.c1FlexGrid1.Styles.Add("3Dtext");

2. Set the TextEffect property to Raised.

In the Designer

Locate the TextEffect property in the right pane and set it to Raised.

In Code

FlexGrid for WinForms 161

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

tdt.TextEffect = C1.Win.C1FlexGrid.TextEffectEnum.Raised

To write code in C#

C#

tdt.TextEffect = C1.Win.C1FlexGrid.TextEffectEnum.Raised;

3. Apply the style to the header row by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Rows(0).Style = Me.C1FlexGrid1.Styles("3DText")

To write code in C#

C#

this.c1FlexGrid1.Rows[0].Style = this.c1FlexGrid1.Styles["3DText"];

This topic illustrates the following:
The table should have a header with raised text similar to the following image.

FlexGrid for WinForms 162

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Adding Three-Dimensional Text to a Header Row Using
Built-In Styles
The TextEffect property can be used to add a three-dimensional text effect to C1FlexGrid's built-in styles. To add a
header with three-dimensional text using styles, set the TextEffect property within a style to Raised for text with a
shadow offset by one pixel to the right and below the text or Inset for text with a shadow offset by one pixel to the
left and above the text. Setting the TextEffect property to Flat gives text no effect. This property can be set either in
the designer or in code.

In the Designer
1. Open the C1FlexGrid Style Editor. For details on how to access the C1FlexGrid Style Editor, see Accessing

the C1FlexGrid Style Editor.
2. Select Fixed under Built-In Styles.
3. In the right column, locate the TextEffect property and set it to Raised.
4. Click OK to close the editor.

In Code
Add the following code to the Form_Load event to set the TextEffect property in the Fixed style:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Styles("Fixed").TextEffect = C1.Win.C1FlexGrid.TextEffectEnum.Raised

To write code in C#

C#

this.c1FlexGrid1.Styles["Fixed"].TextEffect =
C1.Win.C1FlexGrid.TextEffectEnum.Raised;

This topic illustrates the following:
By setting the TextEffect property in the Fixed style, only fixed cells in the table will have a raised three-dimensional
effect. The TextEffect property can also be set in the all of the built-in styles. See CellStyleEnum Enumeration for a list
and descriptions of the built-in styles.

FlexGrid for WinForms 163

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Changing the Column Order in the Grid
To change the column order in the grid, drag the column to the new position in the grid or use the C1FlexGrid
Column Editor, or set the MoveRange method in code.

In the Designer
1. In the grid, select the column you would like to move. In this example, the Element column will be moved.
2. Click and drag the column to the left. A vertical dotted line appears where the column can be dropped.

3. Drop the Element column before the AtomicNumber column.

Alternatively, columns can be reordered in the grid using the C1FlexGrid Column Editor:

1. Open the C1FlexGrid Column Editor. For details on how to access the C1FlexGrid Column Editor, see
Accessing the C1FlexGrid Column Editor.

FlexGrid for WinForms 164

Copyright © 2019 GrapeCity, Inc. All rights reserved.

2. In the designer, select the column you would like to move. In this example, the Element column will be moved.
3. Click and drag the column to the left. A vertical dotted line appears where the column can be dropped.
4. Drop the Element column before the AtomicNumber column.
5. Click OK to close the editor.

In Code
Add the following code to the Form_Load event to move Column 2 (the Element column in this example) to the
Column 1 position:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Cols.MoveRange(2, 1, 1)

To write code in C#

C#

this.c1FlexGrid1.Cols.MoveRange(2, 1, 1);

This topic illustrates the following:
The Element column now appears before the AtomicNumber column in the grid.

Filtering by Value
To use the ValueFilter, follow these steps:

1. Select the grid and click the smart tag to open the C1FlexGrid Tasks menu.
2. Select the Enable Column Filtering check box.
3. Click the Designer link. The C1FlexGrid Column Editor appears.

FlexGrid for WinForms 165

Copyright © 2019 GrapeCity, Inc. All rights reserved.

4. Click the drop-down arrow next to the AllowFiltering property and select ByValue.

In Code
Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.AllowFiltering = True
Me.C1FlexGrid1.Cols(1).AllowFiltering = AllowFiltering.ByValue

To write code in C#

C#

this.c1FlexGrid1.AllowFiltering = true;
this.c1FlexGrid1.Cols[1].AllowFiltering = AllowFiltering.ByValue

This topic illustrates the following:
In this example, the second column is sorted by value:

Filtering by Condition
To use the ConditionFilter, follow these steps:

1. Select the grid and click the smart tag to open the C1FlexGrid Tasks menu.
2. Select the Enable Column Filtering check box.
3. Click the Designer link. The C1FlexGrid Column Editor appears.
4. Click the drop-down arrow next to the AllowFiltering property and select ByCondition.

FlexGrid for WinForms 166

Copyright © 2019 GrapeCity, Inc. All rights reserved.

In Code
Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.AllowFiltering = True
Me.C1FlexGrid1.Cols(1).AllowFiltering = AllowFiltering.ByCondition

To write code in C#

C#

this.c1FlexGrid1.AllowFiltering = true;
this.c1FlexGrid1.Cols[1].AllowFiltering = AllowFiltering.ByCondition

This topic illustrates the following:
In this example, the second column is sorted by condition:

Changing the Filter Language
To change the language used in the column filter editor, you can use the Language property.

1. Right-click your grid and select Properties to view the Visual Studio Properties window.
2. Set the AllowFiltering property to True.
3. Click the drop-down arrow next to the Language property and select a language.
4. Run the project and click the drop-down arrow on one of the column headers to open the column filter editor.

The language of the column filter editor matches the language specified in the Language property.

In Code

FlexGrid for WinForms 167

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.AllowFiltering = True
Me.C1FlexGrid1.Language = C1.Util.Localization.Language.Danish

To write code in C#

C#

this.c1FlexGrid1.AllowFiltering = true;
this.c1FlexGrid1.Language = C1.Util.Localization.Language.Danish;

This topic illustrates the following:
Notice the language of the column filter editor matches the language specified in the Language property.

Clearing a Tree View
To clear a tree view in C1FlexGrid, set the editable row count to zero. For additional information on creating trees, see
FlexGrid for WinForms Tutorials and Outlining and Summarizing Data.

FlexGrid for WinForms 168

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Add the following code for the Button1_Click event. This code will set the editable row count equal to zero, and the
tree will be cleared when the Clear button is clicked.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Rows.Count = Me.C1FlexGrid1.Rows.Fixed

To write code in C#

C#

this.c1FlexGrid1.Rows.Count = this.c1FlexGrid1.Rows.Fixed;

This topic illustrates the following:
Once the button is clicked, the tree view disappears.

FlexGrid for WinForms 169

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Clearing C1FlexGrid
To clear C1FlexGrid, use the Clear method. The Clear method clears either the content, styles, UserData, or all three.

The following image shows the grid before any content, styles or UserData has been cleared.

Clearing Content
To clear the contents of C1FlexGrid, add the following Clear method. In this example, the code was added to the Click
event of the Clear Contents button.

To write code in Visual Basic

FlexGrid for WinForms 170

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Me.C1FlexGrid1.Clear(C1.Win.C1FlexGrid.ClearFlags.Content)

To write code in C#

C#

this.c1FlexGrid1.Clear(C1.Win.C1FlexGrid.ClearFlags.Content);

This topic illustrates the following:
Clicking Clear Content clears only the contents, not the styles or UserData of the grid.

Clearing Styles
To clear the style formatting of C1FlexGrid, add the following Clear method. In this example, the code was added to
the Click event of the Clear Styles button.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Clear(C1.Win.C1FlexGrid.ClearFlags.Style)

To write code in C#

C#

this.c1FlexGrid1.Clear(C1.Win.C1FlexGrid.ClearFlags.Style);

This topic illustrates the following:

FlexGrid for WinForms 171

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Clicking Clear Styles clears only the style formatting, not the contents or UserData of the grid.

Clearing UserData
To clear the UserData of C1FlexGrid, add the following Clear method. In this example, the code was added to the Click
event of the Clear UserData button.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Clear(C1.Win.C1FlexGrid.ClearFlags.UserData)

To write code in C#

C#

this.c1FlexGrid1.Clear(C1.Win.C1FlexGrid.ClearFlags.UserData);

Note that there will be no visible change to the grid when clearing UserData, since UserData only stores data that is
useful to the application.

Clearing Content, Styles, and UserData
To clear the contents, style formatting, and UserData of C1FlexGrid, add the following Clear method. In this example,
the code was added to the Click event of the Clear All button.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Clear(C1.Win.C1FlexGrid.ClearFlags.All)

To write code in C#

FlexGrid for WinForms 172

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

this.c1FlexGrid1.Clear(C1.Win.C1FlexGrid.ClearFlags.All);

This topic illustrates the following:
Clicking Clear All clears the contents, style formatting, and UserData of the grid, leaving a blank grid.

Converting Column Letters to Uppercase
To convert column letters from lowercase to uppercase, add the following SetupEditor event to your form:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_SetupEditor(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.RowColEventArgs) Handles C1FlexGrid1.SetupEditor
 If Me.C1FlexGrid1.Cols(e.Col).Name = "UCASECOL" Then
 Dim tb As TextBox = Me.C1FlexGrid1.Editor
 tb.CharacterCasing = CharacterCasing.Upper
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_SetupEditor(object sender, C1.Win.C1FlexGrid.RowColEventArgs
e)
{
 if (this.c1FlexGrid1.Cols[e.Col].Name == "UCASECOL")
 {

FlexGrid for WinForms 173

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 TextBox tb = this.c1FlexGrid1.Editor as TextBox;
 tb.CharacterCasing = CharacterCasing.Upper;
 }
}

Customizing Appearance Using Visual Styles
To customize the appearance of C1FlexGrid using Visual Styles, set the VisualStyle property to Custom,
Office2007Black, Office2007Blue, Office2007Silver, Office2010Blue, Office2010Black, Office2010Silver, or
System. This property can be set either in the designer or in code. The following table describes each of the Visual
Styles:

Visual Style Description

Custom Do not use any visual styles. Render the control
using the styles and properties only.

Office2007Black Render the control with an appearance based
on the Office 2007 Black color scheme.

Office2007Blue Render the control with an appearance based
on the Office 2007 Blue color scheme.

Office2007Silver Render the control with an appearance based
on the Office 2007 Silver color scheme.

System Render the control with an appearance based
on the current system settings.

Office2010Black Render the control with an appearance based
on the Office 2010 Black color scheme.

Office2010Silver Render the control with an appearance based
on the Office 2010 Silver color scheme.

Office2010Blue Render the control with an appearance based
on the Office 2010 Blue color scheme.

In the Designer
Locate the VisualStyle property in the Properties window and set it to Custom, Office2007Black, Office2007Blue,
Office2007Silver, Office2010Blue, Office2010Black, Office2010Silver, or System. In this example, the VisualStyle
property is set to Office2007Blue.

In Code
Add code to the Form_Load event to set the VisualStyle property to Custom, Office2007Black, Office2007Blue,
Office2007Silver, Office2010Blue, Office2010Black, Office2010Silver, or System. The following code sets the
VisualStyle property to Office2007Blue:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.VisualStyle = C1.Win.C1FlexGrid.VisualStyle.Office2007Blue

FlexGrid for WinForms 174

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.c1FlexGrid1.VisualStyle = C1.Win.C1FlexGrid.VisualStyle.Office2007Blue;

Custom Visual Style
No visual style is applied:

Office2007Black Visual Style
The Office 2007 Black color scheme:

Office2007Blue Visual Style
The Office 2007 Blue color scheme:

Office2007Silver Visual Style
The Office 2007 Silver color scheme.

FlexGrid for WinForms 175

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Office2010Blue Visual Style
The Office 2010 Blue color scheme:

Office2010Silver Visual Style
The Office 2010 Silver color scheme:

Office2010Black Visual Style
The Office 2010 Black color scheme:

System Visual Style
The current system settings:

FlexGrid for WinForms 176

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Entering Only Numbers in a Cell
To allow entering only numbers in a cell, use the KeyPressEdit event and set the e.Handled parameter to True for the
invalid keys. Use the following code to set the fourth column to accept only numbers, BACKSPACE, DELETE, and the
PERIOD keys:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_KeyPressEdit(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.KeyPressEditEventArgs) Handles C1FlexGrid1.KeyPressEdit
 If e.Col = 3 Then

 ' If not the characters 0-9, PERIOD, DELETE, or BACKSPACE.
 If Not (e.KeyChar = Chr(48) Or e.KeyChar = Chr(49) Or _
 e.KeyChar = Chr(50) Or e.KeyChar = Chr(51) Or _
 e.KeyChar = Chr(52) Or e.KeyChar = Chr(53) Or _
 e.KeyChar = Chr(54) Or e.KeyChar = Chr(55) Or _
 e.KeyChar = Chr(56) Or e.KeyChar = Chr(57) Or _
 e.KeyChar = Chr(46) Or e.KeyChar = Chr(127) Or _
 e.KeyChar = Chr(8)) Then

 ' Stop the character from being entered into the
 ' control since it is an invalid key.
 e.Handled = True
 End If
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_KeyPressEdit(object sender,
C1.Win.C1FlexGrid.KeyPressEditEventArgs e)
{
 if(e.Col == 3)
 {
 // If not the characters 0-9, PERIOD, DELETE, or BACKSPACE.
 if(!((e.KeyChar == 48) || (e.KeyChar == 49) ||
 (e.KeyChar == 50) || (e.KeyChar == 51) || (e.KeyChar == 52) ||
 (e.KeyChar == 53) || (e.KeyChar == 54) || (e.KeyChar == 55) ||
 (e.KeyChar == 56) || (e.KeyChar == 57) || (e.KeyChar == 46) ||
 (e.KeyChar == 127) || (e.KeyChar == 8)))

FlexGrid for WinForms 177

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // Stop the character from being entered into the
 // control since it is an invalid key.
 e.Handled = true;
 }
}

Formatting Cells
Formatting cells allows you to control the accessibility and appearance of data in a single cell or multiple cells. The
following topics show you how to set cells to be read-only, format a cell to display currency values, and format cells
based on their contents.

Formatting a Cell as Read-Only
To make a single cell or multiple cells read-only, use the BeforeEdit event.

Single Cell Read-Only
You can make any cell in the grid read-only so that the data within it cannot be changed. For example, enter the
following code to make the cell in column 1, row 1 read-only:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_BeforeEdit(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.RowColEventArgs) Handles C1FlexGrid1.BeforeEdit
 If e.Row = 1 And e.Col = 1 Then
 e.Cancel = True
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_BeforeEdit(object sender, C1.Win.C1FlexGrid.RowColEventArgs
e)
{
 if (e.Row == 1 & e.Col == 1)
 {
 e.Cancel = true;
 }
}

Multiple Cell Read-Only
You may also want to set multiple cells in the grid to read-only at one time. Suppose you have an editable grid used
to enter customers' information, such as customer IDs, addresses, and orders. While the orders and addresses may
change, the customer IDs will not. The code below assumes you have nine rows in your grid, and you would like to

FlexGrid for WinForms 178

Copyright © 2019 GrapeCity, Inc. All rights reserved.

make all of the rows in the first column, the Customer ID column, read-only. Enter the following code:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_BeforeEdit(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.RowColEventArgs) Handles C1FlexGrid1.BeforeEdit
 Dim i As Integer
 For i = 1 To 9
 If e.Col = 1 And e.Row = i Then
 e.Cancel = True
 End If
 Next
End Sub

To write code in C#

C#

 private void c1FlexGrid1_BeforeEdit(object sender, C1.Win.C1FlexGrid.RowColEventArgs
e)
{
 for (int i = 1; i <= 9; i++)
 {
 if (e.Col == 1 & e.Row == i)
 {
 e.Cancel = true;
 }
 }
}

This topic illustrates the following:
Notice that none of the cells in the Customer ID column are editable.

Formatting a Cell with Decimal Content

FlexGrid for WinForms 179

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To format a cell that contains decimal numbers, set the Format property either in the designer or in code. In this
example, numbers already entered in the first column will be formatted to a decimal amount.

In the Designer
1. Select Column 1 in the grid. This will open the Column Tasks menu for Column 1.
2. Click the ellipsis button in the Format String box to open the Format String dialog box.
3. Under Format type select Custom and set the Custom format to $#,##0.00.
4. Click OK to close the Format String dialog box.

Alternatively, the Format property can also be set using the C1FlexGrid Column Editor:

1. Open the C1FlexGrid Column Editor. For details on how to access the C1FlexGrid Column Editor, see
Accessing the C1FlexGrid Column Editor.

2. Select Column 1 from the right pane and set the Format property to $#,##0.00 in the left pane.
3. Click OK to close the editor.

In Code
Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Cols(1).Format = "$#,##0.00"

To write code in C#

C#

this.c1FlexGrid1.Cols[1].Format = "$#,##0.00";

Note: The format specifier follows the standard .NET conventions. Use ',' for thousand separators and '.' for the
decimal, regardless of locale.

This topic illustrates the following:
In this example, the numbers in the first column are converted to a dollar amount.

FlexGrid for WinForms 180

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Formatting Cells Based on the Contents
To conditionally format cells based on the contents, create a new style and use the CellChanged event.

1. Create a new CellStyle called LargeValue and set the BackColor property to Gold.

In the Designer

Open the C1FlexGrid Style Editor. For details on how to access the C1FlexGrid Style Editor, see
Accessing the C1FlexGrid Style Editor.
Click Add to create a new style.
Double-click CustomStyle1, rename it LargeValue, and press ENTER when finished.
Locate the BackColor property in the right pane and set it to Gold.
Locate the Font property and click the ellipsis button next to it to open the Font dialog box.
Set the Font style box to Italic.
Click OK to close the Font dialog box.
Click OK to close the C1FlexGrid Style Editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

' Create a custom style for large values.
Dim cs As C1.Win.C1FlexGrid.CellStyle
cs = Me.C1FlexGrid1.Styles.Add("LargeValue")
cs.Font = New Font(Font, FontStyle.Italic)
cs.BackColor = Color.Gold

To write code in C#

C#

// Create a custom style for large values.
C1.Win.C1FlexGrid.CellStyle cs;

FlexGrid for WinForms 181

Copyright © 2019 GrapeCity, Inc. All rights reserved.

cs = this.c1FlexGrid1.Styles.Add("LargeValue");
cs.Font = new Font(Font, FontStyle.Italic);
cs.BackColor = Color.Gold;

2. Use the CellChanged event to format the cells based on the contents:

To write code in Visual Basic

Visual Basic

' Format cells based on their content.
Private Sub C1FlexGrid1_CellChanged(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.RowColEventArgs) Handles C1FlexGrid1.CellChanged

 ' Mark currency values > 50,000 as LargeValues.
 ' Reset others by setting their Style to Nothing.
 Dim cs As C1.Win.C1FlexGridCellStyle
 If Val(Me.C1FlexGrid1(e.Row, e.Col)) >= 50000 Then
 cs = Me.C1FlexGrid1.Styles("LargeValue")
 End If
 Me.C1FlexGrid1.SetCellStyle(e.Row, e.Col, cs)
End Sub

To write code in C#

C#

// Format cells based on their content.
private void c1FlexGrid1_CellChanged(object sender,
C1.Win.C1FlexGrid.RowColEventArgs e)
{
 // Mark currency values > 50,000 as LargeValues.
 // Reset others by setting their Style to Nothing.
 C1.Win.C1FlexGrid.CellStyle cs;
 if (Val(this.c1FlexGrid1[e.Row, e.Col].ToString()) >= 50000)
 {
 cs = this.c1FlexGrid1.Styles["LargeValue"];
 }
 this.c1FlexGrid1.SetCellStyle(e.Row, e.Col, cs);

This topic illustrates the following:
In this example, cells containing values greater than or equal to 50,000 are highlighted in gold.

FlexGrid for WinForms 182

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Formatting the Border Style
Formatting the border style allows you to customize the appearance of the grid. The border style can be set for both
the control and the grid.

Formatting the Border Style of the Control
To format the border style of the control, set the ScrollableControl.BorderStyle property to Fixed3D, FixedSingle,
Light3D, None, or XpThemes. This property can be set either in the designer or in code. The following table
describes each of the border styles.

Border Description

Fixed3D A three-dimensional border. This is the
default setting.

FixedSingle A single line border.

Light3D A light sunken border.

None No border.

XpThemes A border drawn using XP themes.

In the Designer
Locate the BorderStyle property in the Properties window and set it to Fixed3D, FixedSingle, Light3D, None, or
XpThemes. In this example, the BorderStyle property is set to Fixed3D.

In Code
Add code to the Form_Load event to set the BorderStyle property to Fixed3D, FixedSingle, Light3D, None, or
XpThemes. The following code sets the BorderStyle property to Fixed3D:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.BorderStyle =
C1.Win.C1FlexGrid.Util.BaseControls.BorderStyleEnum.Fixed3D

FlexGrid for WinForms 183

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.c1FlexGrid1.BorderStyle =
C1.Win.C1FlexGrid.Util.BaseControls.BorderStyleEnum.Fixed3D;

Three-Dimensional Border
The border will be three-dimensional.

Single Line Border
The border will be a single line.

FlexGrid for WinForms 184

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Light Sunken Border
The border will be light and three-dimensional.

No Border
There is no border.

FlexGrid for WinForms 185

Copyright © 2019 GrapeCity, Inc. All rights reserved.

XP Theme Border
The border will be XP themed.

Formatting the Border Style of the Grid
To format the border style of the grid, set the Style property to Dotted, Double, Fillet, Flat, Groove, Inset, None, or
Raised. This property can be set using C1FlexGrids built-in styles either in the designer or in code. The following table
describes each of the border styles.

Border Description

Dotted Dotted border.

FlexGrid for WinForms 186

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Double Double border.

Fillet Fillet border.

Flat Solid flat border.

Groove Groove border.

Inset Inset border.

None No border. This is the default
setting.

Raised Raised border.

In the Designer
1. Open the C1FlexGrid Style Editor. For details on how to access the C1FlexGrid Style Editor, see Accessing

the C1FlexGrid Style Editor.
2. Select Normal under Built-In Styles. In the right column, locate the Border property and expand it. Set the

Style property to Dotted, Double, Fillet, Flat, Groove, Inset, None, or Raised. In this example, the Style
property is set to Dotted.

3. Click OK to close the editor.

In Code
To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Styles("Normal").Border.Style =
C1.Win.C1FlexGrid.BorderStyleEnum.Dotted

To write code in C#

C#

this.c1FlexGrid1.Styles["Normal"].Border.Style =
C1.Win.C1FlexGrid.BorderStyleEnum.Dotted;

Dotted Border
The cell border will be a dotted line.

Border Description

FlexGrid for WinForms 187

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Double Border
The cell border will be double lines.

Fillet Border
The cell border will be fillet.

FlexGrid for WinForms 188

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Flat Border
The cell border will be a solid flat line.

Groove Border
The cell border will be grooved.

FlexGrid for WinForms 189

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Inset Border
The cell border will be inset.

No Border
There is no cell border.

FlexGrid for WinForms 190

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Raised Border
The cell border will be raised.

Freezing Rows and Columns
To allow the user to freeze rows and columns with the mouse, set the AllowFreezing property to Columns to freeze
only columns, Rows to freeze only rows, or Both to freeze both columns and rows. Conversely, to disable freezing, set
the AllowFreezing property to None, which is the default setting. This property can be set either in the designer or in
code.

In the Designer

FlexGrid for WinForms 191

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Locate the AllowFreezing property in the Properties window and set it to Both.

In Code
Add the following code to the Form_Load event to set the AllowFreezing property to Both:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.AllowFreezing = C1.Win.C1FlexGrid.AllowFreezingEnum.Both

To write code in C#

C#

this.c1FlexGrid1.AllowFreezing = C1.Win.C1FlexGrid.AllowFreezingEnum.Both;

This topic illustrates the following:

When the mouse pointer becomes the lock rows or the lock columns icon, click and drag the mouse over the
rows or columns to freeze. In this example, the Element column is frozen and will remain on the grid when it is scrolled
to the right.

In this example, the row containing Hydrogen is frozen and will remain on the grid when it is scrolled to the bottom.

FlexGrid for WinForms 192

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Note: Setting the AllowFreezing property to Both allows both rows and columns to be frozen at the same
time, as seen in the following image.

Getting the Width of a Partially Visible Column
If you need to obtain the width of the visible part of a column that is not fully visible due to horizontal scrolling, you
can easily do so with just a few lines of code.

Suppose you have a C1FlexGrid with multiple columns and a Label control on the form. Add the following code to
the Form_Load event:

To write code in Visual Basic

Visual Basic

Dim lastCol As Integer = C1FlexGrid1.RightCol
 Dim colPoint As Point = C1FlexGrid1.GetCellRect(1, lastCol).Location
 Dim flexPoint As Point = New Point(C1FlexGrid1.ClientRectangle.Right,
C1FlexGrid1.ClientRectangle.Top)

 Label1.Text = flexPoint.X - colPoint.X

To write code in C#

C#

int lastCol = c1FlexGrid1.RightCol;
Point colPoint = c1FlexGrid1.GetCellRect(1, lastCol).Location;
Point flexPoint = new Point(c1FlexGrid1.ClientRectangle.Right,
c1FlexGrid1.ClientRectangle.Top);

label1.Text = flexPoint.X - colPoint.X;}

When you run the project, the label will show the width of the visible part of the last visible column. In this case, the
TitleOfCourtesy column is only partially visible. The width of the part of that column that is showing is 38.

FlexGrid for WinForms 193

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Loading and Saving Open XML Files
You can load and save Microsoft Excel 2007 Open XML files within a C1FlexGrid control. Open XML is an open,
standards-based format introduced by Microsoft in Office 2007. Open XML files contain a number of XML files
compressed using Zip compression. Because they are compressed, Open XML files are usually much smaller than
traditional document files (such as XLS files).

By default, the Load and Save methods in C1FlexGrid select the appropriate file format automatically based on the
file extension. Any files with a "XLSX" or "ZIP" extensions are treated as Open XML files.

The LoadGrid and SaveGrid methods also have overloads that take the file type as a parameter. This allows you to take
control over the file format and not rely on the file extension. For example, your application may use the Open XML
format for its data files, but with an extension other than "XLSX". You can specify the file type as "Excel" and use the
OpenXml option of the FileFlags enumeration.

To save and load a grid as an OpenXml file, complete the following
steps:

1. Add three buttons to the form containing the C1FlexGrid control and enter Save, Clear, and Load in the Text
property for each, respectively, in the Visual Basic Properties window.

FlexGrid for WinForms 194

Copyright © 2019 GrapeCity, Inc. All rights reserved.

2. From the Designer, double-click the Save button, Button_1, and enter code in the Button1_Click event, so it
looks like the following:

To write code in Visual Basic

Visual Basic

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Me.C1FlexGrid1.SaveGrid("C:\test\myfile.xlsx", FileFormatEnum.Excel,
FileFlags.OpenXml)
End Sub

To write code in C#

C#

private void button1_Click(object sender, EventArgs e)
 {
 this.c1FlexGrid1.SaveGrid(@"C:\test\myfile.xlsx",
FileFormatEnum.Excel, FileFlags.OpenXml);

 }

Note: You must have the Imports or using statement at the top of your form in order for this code to
work correctly. If coding in Visual Basic, use Imports C1.Win.C1FlexGrid. If coding in C#, use using
C1.Win.C1FlexGrid;. For more information, see the Namespaces topic.

3. Enter the following code for the Button2_Click event to be used for the Clear button:

To write code in Visual Basic

Visual Basic

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
 Me.C1FlexGrid1.Clear(ClearFlags.All)
End Sub

To write code in C#

C#

private void button2_Click(object sender, EventArgs e)
 {
 this.c1FlexGrid1.Clear(ClearFlags.All);
 }

4. Enter the following code for the Button3_Click event to be used for the Load button:

To write code in Visual Basic

Visual Basic

Private Sub button3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button3.Click
 Me.C1FlexGrid1.LoadGrid("C:\test\myfile.xlsx", FileFormatEnum.Excel,

FlexGrid for WinForms 195

Copyright © 2019 GrapeCity, Inc. All rights reserved.

FileFlags.OpenXml)
End Sub

To write code in C#

C#

private void button3_Click(object sender, EventArgs e)
 {
 this.c1FlexGrid1.LoadGrid(@"C:\test\myfile.xlsx",
FileFormatEnum.Excel, FileFlags.OpenXml);

 }

Run the project:
1. Enter content in the grid, as desired.
2. Click the Save button. The grid is saved as an Open XML file with an .xlsx extension to the "C:\test" folder. You

must create this folder if it does not already exist.

3. Click the Clear button to clear the grid.
4. Click the Load button, and the grid you previously saved is loaded.

Populating an Unbound Grid with Data
To populate an unbound grid with data, use the grid's indexer to populate a column, row, or a single cell. To populate
a cell range, use the Data property.

Populating a Column with Data
To populate a column with data when the form loads, set a loop with the grid's indexer to the data to fill the column.
Add the following code to the Form_Load event to set column one to zero:

To write code in Visual Basic

Visual Basic

Dim r As Integer
For r = C1FlexGrid1.Rows.Fixed To C1FlexGrid1.Rows.Count - 1
 Me.C1FlexGrid1(r, 1) = 0

FlexGrid for WinForms 196

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Next

To write code in C#

C#

int r;
for (r = c1FlexGrid1.Rows.Fixed; r <= c1FlexGrid1.Rows.Count -1;r++)
{
 this.c1FlexGrid1[r, 1] = 0;
}

This topic illustrates the following:
Column one fills with zeros.

Populating a Range of Cells with Data
To populate a range of cells with data when the form loads, set the Data property of the CellRange. Add the following
code to the Form_Load event to set the Data property to zero:

To write code in Visual Basic

Visual Basic

Dim rng As C1.Win.C1FlexGrid.CellRange = Me.C1FlexGrid1.GetCellRange(1, 1, 3, 3)
rng.Data = 0

To write code in C#

C#

C1.Win.C1FlexGrid.CellRange rng = this.c1FlexGrid1.GetCellRange(1,1,3,3);
rng.Data = 0;

This topic illustrates the following:
The cell range fills with zeros.

Populating a Row with Data
To populate a row with data when the form loads, set a loop with the grid's indexer to the data to fill the row. Add the
following code to the Form_Load event to set column one to zero:

To write code in Visual Basic

Visual Basic

Dim r As Integer
For r = C1FlexGrid1.Cols.Fixed To C1FlexGrid1.Cols.Count - 1
 Me.C1FlexGrid1(1, r) = 0
Next

FlexGrid for WinForms 197

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

int r;
for (r = c1FlexGrid1.Cols.Fixed; r <= c1FlexGrid1.Cols.Count -1;r++)
{
 this.c1FlexGrid1[1, r] = 0;
}

This topic illustrates the following:
Row one fills with zeros.

Populating a Single Cell with Data
To populate a single cell with data when the form loads, set the grid's indexer to the data. Add the following code to
the Form_Load event to set the cell text:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1(3, 2) = "Cell Text"

To write code in C#

C#

this.c1FlexGrid1[3, 2] = "Cell Text";

This topic illustrates the following:
The text Cell Text is in the fourth row, third column.

Transposing Data in Grid
Transposing data refers to swapping column data and row data. In FlexGrid, this can be achieved using Transpose()
method.

For example, you want to transpose column and row data in the grid originally displaying data as follows:

FlexGrid for WinForms 198

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Add the following line of code after the code to populate the grid with data:

To write code in Visual Basic

Visual Basic

C1FlexGrid1.Transpose()

To write code in C#

C#

c1FlexGrid1.Transpose();

Run the project. The grid now displays the data as follows:

Note that Transpose method only works in unbound mode. In addition, when you transpose the grid with a
sorted column, the transpose method removes sorting before transposing. This means that the sort icon is not
displayed after the transposing is done.

Restricting Grid Editing
To disable editing of the entire grid, specific column or specific row, set the AllowEditing property to False.
Conversely, to allow editing, set the AllowEditing property to True, which is the default value.

Disable Editing for the Entire Grid
To disable editing for the entire grid, setting the AllowEditing property to False either in the designer or in code.

In the Designer
In the C1FlexGrid Tasks menu, uncheck the Enable Editing check box.

Alternatively, locate the AllowEditing property in the Properties window and set it to False.

In Code
Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.AllowEditing = False

FlexGrid for WinForms 199

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.c1FlexGrid1.AllowEditing = false;

Disable Editing for a Specific Column
To disable editing for a specific column, set the AllowEditing property to False either in the designer or in code.

In the Designer
1. Select the column in the grid that you would like to edit. This will open the Column Tasks menu for that

column.
2. Uncheck the Allow Editing check box.

Alternatively, the AllowEditing property can be set using the C1FlexGrid Column Editor:

1. Open the C1FlexGrid Column Editor. For details on how to access the C1FlexGrid Column Editor, see
Accessing the C1FlexGrid Column Editor.

2. Select the column that you would like to edit from the right pane and set the AllowEditing property to False
in the left pane.

3. Click OK to close the editor.

In Code
Add the following code to the Form_Load event to restrict editing the AtomicMass column:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Cols("AtomicMass").AllowEditing = False
' Is the same as: Me.C1FlexGrid1.Cols(4).AllowEditing = False

To write code in C#

C#

this.c1FlexGrid1.Cols["AtomicMass"].AllowEditing = false;
// Is the same as: this.c1FlexGrid1.Cols[4].AllowEditing = false;

Disable Editing for a Specific Row
To disable editing for a specific row, add the following code to the Form_Load event to set the AllowEditing
property to False. In this example, the code will restrict editing in the 6th row:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Rows(5).AllowEditing = False

FlexGrid for WinForms 200

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.c1FlexGrid1.Rows[5].AllowEditing = false;

Restricting Sorting for a Specific Column
To restrict sorting for a specific column, set the AllowSorting property to False either in the designer or in code.

In the Designer
1. Select the column in the grid that you would like to edit. This will open the Column Tasks menu for that

column.
2. Uncheck the Allow Sorting check box.

Alternatively, the AllowSorting property can be set using the C1FlexGrid Column Editor:

1. Open the C1FlexGrid Column Editor. For details on how to access the C1FlexGrid Column Editor, see
Accessing the C1FlexGrid Column Editor.

2. Select the column that you would like to edit from the right pane and set the AllowSorting property to False in
the left pane.

3. Click OK to close the editor.

In Code
Add the following code to the Form_Load event to restrict sorting the AtomicNumber column:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Cols("AtomicNumber").AllowSorting = False
' Is the same as: Me.C1FlexGrid1.Cols(1).AllowEditing = False

To write code in C#

C#

this.c1FlexGrid1.Cols["AtomicNumber"].AllowSorting = false;
// Is the same as: this.c1FlexGrid1.Cols[1].AllowEditing = false;

Searching for Entries in a Column
To search for entries in a column as a user types, set the AutoSearch property to FromCursor to begin the search
from the current row or FromTop to begin the search from the first scrollable row. Conversely, to disable the search,
set the AutoSearch property to None, which is the default setting. This property can be set either in the designer or in
code.

In the Designer

FlexGrid for WinForms 201

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Locate the AutoSearch property in the Properties window and set it to FromTop.

In Code
Add the following code to the Form_Load event to set the AutoSearch property to FromTop:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.AutoSearch = C1.Win.C1FlexGrid.AutoSearchEnum.FromTop

To write code in C#

C#

this.c1FlexGrid1.AutoSearch = C1.Win.C1FlexGrid.AutoSearchEnum.FromTop;

This topic illustrates the following:
As the user types, the search will highlight the cell containing that letter. In this example, tying C in the Element
column highlights Carbon.

Note: If more than one entry begins with the same letter, typing the next letter will highlight the entry with
those letters. For example, typing He in the Element column will highlight Helium.

Searching for Entries in a Grid
FlexGrid's Search Panel provides you with a quick way to find data by searching the entire grid in one go. The panel
searches and locates the relevant record in the millions of records present in the grid instantly.

Search Panel Elements

FlexGrid for WinForms 202

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The elements present in the search panel are as follows :

Search text box: Allows you to enter text or string to be searched in the grid. The default watermark of the
text box is Enter text to search. You can however change it by using the Watermark property of
C1FlexGridSearchPanel.
Search button: Allows you to obtain records that match the string entered in the search text box. You can
choose to either display or hide the Search button within the search panel by using the ShowSearchButton
property that accepts Boolean values. The default value of the property is True.
Clear button: Allows to clear the string entered in the search text box. To display or hide the Clear button
within the search panel, set the ShowClearButton property to True or False respectively. The default value of
the property is True.

Advanced Search Options

Search Panel offers advanced search options that enable you to modify the behavior of the panel while executing a
search.

Search modes: There are two modes of searching the grid, manually and automatically. To manually search the
grid, you can simply click the Search button or press the ENTER key. While to automatically search, you just let
the search panel search the grid on its own after a small delay. Set the SearchMode property to SearchClick or
Always from the SearchMode enumeration for manual or automatic search, respectively.
Search delay: You can set the delay (in milliseconds) after which automatic search is initiated by using the
SearchDelay property. Notice that you need to set the SearchMode property to Always to be able to set the
search delay.
Search highlighting: To easily view searched records, you can highlight the search string within those records
by setting the HighlightSearchResults property to True.

The following image displays search results obtained after executing a search through FlexGrid Search Panel.

To work with FlexGrid's Search Panel, create an instance of the C1FlexGridSearchPanel class and associate it with an
instance of the C1FlexGrid class. You can use the SetC1FlexGridSearchPanel method that accepts two parameters,
namely the C1FlexGrid and the C1FlexGridSearchPanel instance, to associate search panel with the grid. In addition,
the default appearance and behavior of FlexGrid Search Panel can be customized by using the properties mentioned
below.

The following code snippet customizes FlexGrid Search Panel and associates it with FlexGrid. This code uses the
sample created in Quick Start.

Visual Basic

' Set the search mode
C1FlexGridSearchPanel1.SearchMode = C1.Win.C1FlexGrid.SearchMode.Always

' set the search delay when the search mode is automatic
C1FlexGridSearchPanel1.SearchDelay = 2

FlexGrid for WinForms 203

Copyright © 2019 GrapeCity, Inc. All rights reserved.

' set the watermark for the search text box
C1FlexGridSearchPanel1.Watermark = "Enter Search String"

' associate Search Panel with FlexGrid
C1FlexGridSearchPanel1.SetC1FlexGridSearchPanel(C1FlexGrid1, C1FlexGridSearchPanel1)

C#

// Set the search mode
c1FlexGridSearchPanel1.SearchMode = C1.Win.C1FlexGrid.SearchMode.Always;

// set the search delay when the search mode is automatic
c1FlexGridSearchPanel1.SearchDelay = 2;

// set the watermark for the search text box
c1FlexGridSearchPanel1.Watermark = "Enter Search String";

// associate Search Panel with FlexGrid
c1FlexGridSearchPanel1.SetC1FlexGridSearchPanel(c1FlexGrid1, c1FlexGridSearchPanel1);

Setting a Cell's Value to Zero When Users Press the Delete
Key
To set a cell's value to zero when a user presses the DELETE key, use C1FlexGrid's KeyDown event to catch when the
DELETE key is pressed.

Add the following KeyDown event to your form:

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_KeyDown(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyEventArgs) Handles C1FlexGrid1.KeyDown
 If (e.KeyCode = Keys.Delete) Then
 C1FlexGrid1(C1FlexGrid1.Row, C1FlexGrid1.Col) = 0
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_KeyDown(object sender, System.Windows.Forms.KeyDownEventArgs
e)
{
 if (e.KeyCode == Keys.Delete)
 {
 c1FlexGrid1(c1FlexGrid1.Row, c1FlexGrid1.Col) = 0;
 }
}

Setting Rows As Headers

FlexGrid for WinForms 204

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To set rows as headers, set the Caption and DataType properties for each row.

1. Add the following code to the Form_Load event to set the number of rows and columns to appear in the grid.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Cols.Count = 5
Me.C1FlexGrid1.Rows.Count = 7

To write code in C#

C#

this.c1FlexGrid1.Cols.Count = 5;
this.c1FlexGrid1.Rows.Count = 7;

2. Add the rows to the RowCollection:

To write code in Visual Basic

Visual Basic

Dim row As C1.Win.C1FlexGrid.RowCollection = Me.C1FlexGrid1.Rows

To write code in C#

C#

C1.Win.C1FlexGrid.RowCollection row = this.c1FlexGrid1.Rows;

3. Set the Caption and DataType for each row.

To write code in Visual Basic

Visual Basic

row(1).Caption = "Date"
row(1).DataType = GetType(DateTime)

row(2).Caption = "Contact"
row(2).DataType = GetType(String)

row(3).Caption = "Phone"
row(3).DataType = GetType(String)
row(3).EditMask = "(999) 999-9999;*"

row(4).Caption = "Platform"
row(4).DataType = GetType(String)
row(4).ComboList = "|Windows XP|Windows 2000|Windows ME|Windows NT|Windows
98|Windows 95"

row(5).Caption = "Error Code"
row(5).DataType = GetType(Integer)

row(6).Caption = "Resolved"

FlexGrid for WinForms 205

Copyright © 2019 GrapeCity, Inc. All rights reserved.

row(6).DataType = GetType(Boolean)

To write code in C#

C#

row[1].Caption = "Date";
row[1].DataType = typeof(DateTime);

row[2].Caption = "Contact";
row[2].DataType = typeof(string);

row[3].Caption = "Phone";
row[3].DataType = typeof(string);
row[3].EditMask = "(999) 999-9999;*";

row[4].Caption = "Platform";
row[4].DataType = typeof(string);
row[4].ComboList = "|Windows XP|Windows 2000|Windows ME|Windows NT|Windows
98|Windows 95";

row[5].Caption = "Error Code";
row[5].DataType = typeof(int);

row[6].Caption = "Resolved";
row[6].DataType = typeof(bool);

4. Format the headers to Tahoma, 9pt, Bold font.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Styles("Fixed").Font = New Font("Tahoma", 9, FontStyle.Bold)

To write code in C#

C#

this.c1FlexGrid1.Styles["Fixed"].Font = new Font("Tahoma", 9, FontStyle.Bold);

5. Merge the fixed row and add a header to it:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.AllowMerging = C1.Win.C1FlexGrid.AllowMergingEnum.FixedOnly
row(0).AllowMerging = True
Dim rng As C1.Win.C1FlexGrid.CellRange = C1FlexGrid1.GetCellRange(0, 1, 0, 4)
rng.Data = "Call Log"

To write code in C#

C#

FlexGrid for WinForms 206

Copyright © 2019 GrapeCity, Inc. All rights reserved.

this.c1FlexGrid1.AllowMerging = C1.Win.C1FlexGrid.AllowMergingEnum.FixedOnly;
row[0].AllowMerging = true;
C1.Win.C1FlexGrid.CellRange rng = c1FlexGrid1.GetCellRange(0,1,0,4);
rng.Data = "Call Log";

This topic illustrates the following:
The row headers appears in the first column and the each row will be formatted according to its DataType property.

Setting the Font of a Single Cell
To set the font of a single cell, create a new style and assign it to a cell.

1. Create a new style.

In the Designer

Open the C1FlexGrid Style Editor. For details on how to access the C1FlexGrid Style Editor, see Accessing
the C1FlexGrid Style Editor.
Click Add to create a new style.
Double-click CustomStyle1, rename it myStyle, and press ENTER when finished.
Do not exit the C1FlexGrid Style Editor.

In Code

To write code in Visual Basic

Visual Basic

Dim cs As C1.Win.C1FlexGrid.CellStyle
cs = Me.C1FlexGrid1.Styles.Add("myStyle")

To write code in C#

FlexGrid for WinForms 207

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

C1.Win.C1FlexGrid.CellStyle cs = this.c1FlexGrid1.Styles.Add("myStyle");

2. Set the font to Tahoma, 10 pt, Bold.

In the Designer

In the C1FlexGrid Style Editor, locate the Font property in the right pane and click the ellipsis button.
The Font dialog will appear.
Set the Font box to Tahoma.
Set the Font style box to Bold.
Set the Size box to 10.
Click OK to close the Font dialog box, but do not exit the C1FlexGrid Style Editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

cs.Font = New Font("Tahoma", 10, FontStyle.Bold)

To write code in C#

C#

cs.Font = new Font("Tahoma", 10, FontStyle.Bold);

3. Set the font color to Blue.

In the Designer

In the C1FlexGrid Style Editor, locate the ForeColor property in the right pane and set it to Blue.
Click OK to close the C1FlexGrid Style Editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

cs.ForeColor = Color.Blue

To write code in C#

C#

cs.ForeColor = Color.Blue;

4. Assign the style to a cell by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.SetCellStyle(6, 2, "myStyle")

FlexGrid for WinForms 208

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in C#

C#

this.c1FlexGrid1.SetCellStyle(6, 2, "myStyle");

This topic illustrates the following:
Carbon appears in Blue, Bold, 10 pt, Tahoma font.

Setting the Text Delimiting Character in C1FlexGrid
To set the text delimiting character in C1FlexGrid, set the Split method.

Add the following code to the Form_Load event to set the delimiting character to a semicolon:

To write code in Visual Basic

Visual Basic

Dim cols As String = "Product;Region;Salesperson;Sales;Bonus"
Dim colNames As String() = cols.Split(";")

Me.C1FlexGrid1.Cols.Count = 5
Me.C1FlexGrid1.Cols.Fixed = 0
Dim i%
For i = 0 To Me.C1FlexGrid1.Cols.Count - 1
 Me.C1FlexGrid1(0, i) = colNames(i)
 Me.C1FlexGrid1.Cols(i).Name = colNames(i)
Next

To write code in C#

FlexGrid for WinForms 209

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C#

string cols = "Product;Region;Salesperson;Sales;Bonus";
string[] colNames = cols.Split(new char[] { ';' });

this.c1FlexGrid1.Cols.Count = 5;
this.c1FlexGrid1.Cols.Fixed = 0;
for (int i = 0; i >= this.c1FlexGrid1.Cols.Count - 1; i++)
{
 this.c1FlexGrid1[0, i] = colNames[i];
 this.c1FlexGrid1.Cols[i].Name = colNames[i];
}

This topic illustrates the following:
The string in the Split method determines the delimiting character. Changing the semicolon to a comma in both the
Split method and the string will produce the same output as the semicolon.

Sorting Multiple Columns
To sort multiple columns, set each column's Sort property and use the Sort method to sort according to the column
settings.

1. Add the following code to the Form_Load event to set the second column to sort in ascending order and the
third column to sort in descending order.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Cols(1).Sort = C1.Win.C1FlexGrid.SortFlags.Ascending
Me.C1FlexGrid1.Cols(2).Sort = C1.Win.C1FlexGrid.SortFlags.Descending

To write code in C#

C#

this.c1FlexGrid1.Cols[1].Sort = C1.Win.C1FlexGrid.SortFlags.Ascending;
this.c1FlexGrid1.Cols[2].Sort = C1.Win.C1FlexGrid.SortFlags.Descending;

2. Add the following Sort method to sort according to the settings in columns two and three.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Sort(C1.Win.C1FlexGrid.SortFlags.UseColSort, 1, 2)

To write code in C#

C#

this.c1FlexGrid1.Sort(C1.Win.C1FlexGrid.SortFlags.UseColSort, 1, 2);

FlexGrid for WinForms 210

Copyright © 2019 GrapeCity, Inc. All rights reserved.

This topic illustrates the following:
Your grid will look like the following with the second column sorted in ascending order, then the third column in
descending order. In this example, Neon appears before Argon in the Element column since the grid is sorted first by
the StandardState column in ascending order, then by the Element column in descending order.

Styling and Appearance

Setting the Background Color of Columns and Rows
To set the background color of columns and rows, create a new style and assign it to a column and row.

Setting the Background Color of Columns
1. Create a new style for the column.

In the Designer

Open the C1FlexGrid Style Editor. For details on how to access the C1FlexGrid Style Editor, see
Accessing the C1FlexGrid Style Editor.
Click Add to create a new style.
Double-click CustomStyle1, rename it ColumnColor, and press ENTER when finished.
Do not exit the C1FlexGrid Style Editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Dim cc As C1.Win.C1FlexGrid.CellStyle

FlexGrid for WinForms 211

Copyright © 2019 GrapeCity, Inc. All rights reserved.

cc = Me.C1FlexGrid1.Styles.Add("ColumnColor")

To write code in C#

C#

C1.Win.C1FlexGrid.CellStyle cc = this.c1FlexGrid1.Styles.Add("ColumnColor");

2. Set the BackColor color to CornSilk.

In the Designer

In the C1FlexGrid Style Editor, locate the BackColor property in the right pane and set it to CornSilk.
Click OK to close the C1FlexGrid Style Editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

cc.BackColor = Color.Cornsilk

To write code in C#

C#

cc.BackColor = Color.Cornsilk;

3. Assign the style to a column by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Cols(2).Style = Me.C1FlexGrid1.Styles("ColumnColor")

To write code in C#

C#

this.c1FlexGrid1.Cols[2].Style = this.c1FlexGrid1.Styles["ColumnColor"];

This topic illustrates the following:
The background color of the Element column is set to CornSilk.

Setting the Background Color of Rows
1. Create a new style for the row.

In the Designer

Open the C1FlexGrid Style Editor. For details on how to access the C1FlexGrid Style Editor, see
Accessing the C1FlexGrid Style Editor.
Click Add to create a new style.

FlexGrid for WinForms 212

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Double-click CustomStyle1, rename it RowColor, and press ENTER when finished.
Do not exit the C1FlexGrid Style Editor.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Dim rs As C1.Win.C1FlexGrid.CellStyle
rs = Me.C1FlexGrid1.Styles.Add("RowColor")

To write code in C#

C#

C1.Win.C1FlexGrid.CellStyle rs = this.c1FlexGrid1.Styles.Add("RowColor");

2. Set the BackColor to PowderBlue.

In the Designer

In the C1FlexGrid Style Editor, locate the BackColor property and set it to PowderBlue.
Click OK to close the C1FlexGrid Style Editor.

In Code

To write code in Visual Basic

Visual Basic

rs.BackColor = Color.PowderBlue

To write code in C#

C#

rs.BackColor = Color.PowderBlue;

3. Assign the style to a row by adding the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Rows(8).Style = Me.C1FlexGrid1.Styles("RowColor")

To write code in C#

C#

this.c1FlexGrid1.Rows[8].Style = this.c1FlexGrid1.Styles["RowColor"];

This topic illustrates the following:
The background color of the row is set to PowderBlue. Notice how the column color takes precedence over the row
color.

FlexGrid for WinForms 213

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Undoing a Sort
To undo a sort in C1FlexGrid when the grid is bound to a DataTable, set the DefaultView property to null.

Add the following code to the Button1_Click event:

To write code in Visual Basic

Visual Basic

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click
 CustTable.DefaultView.Sort = ""
End Sub

To write code in C#

C#

private void Button1_Click(object sender, System.EventArgs e)
{
 CustTable.DefaultView.Sort = "";
}

Note: The DataTable.DefaultView returns the DataView of the DataTable, and setting the sort string to null
forces the DataView to undo the previous sort.

This topic illustrates the following:
Click the Last Name column to sort on it.

FlexGrid for WinForms 214

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Click the Undo button, and the sort will be undone.

Using Password Entries in C1FlexGrid
To show placeholder characters (*) in cells used for password entry, use the SetupEditor event.

1. Create a column for passwords in the grid and set the draw mode:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Me.C1FlexGrid1.Cols(0).Width = Me.C1FlexGrid1.Rows(0).HeightDisplay
 Me.C1FlexGrid1.ShowCursor = True
 Me.C1FlexGrid1.Cols(1).Caption =((Me.C1FlexGrid1.Cols(1).Name) = "Password")
 Me.C1FlexGrid1.DrawMode = C1.Win.C1FlexGrid.DrawModeEnum.OwnerDraw
End Sub

To write code in C#

C#

{

FlexGrid for WinForms 215

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 this.c1FlexGrid1.Cols[0].Width = this.c1FlexGrid1.Rows[0].HeightDisplay;
 this.c1FlexGrid1.ShowCursor = true;
 this.c1FlexGrid1.Cols[1].Caption = this.c1FlexGrid1.Cols[1].Name =
"Password";
 this.c1FlexGrid1.DrawMode = C1.Win.C1FlexGrid.DrawModeEnum.OwnerDraw;
}

2. Add the following code for the SetupEditor event. This code will hide characters that are entered by the user.

To write code in Visual Basic

Visual Basic

Visual Basic
Private Sub C1FlexGrid1_SetupEditor(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.RowColEventArgs) Handles C1FlexGrid1.SetupEditor
 Dim tb As TextBox = Me.C1FlexGrid1.Editor
 If Not (tb Is Nothing) Then
 If Me.C1FlexGrid1.Cols(e.Col).Name = "Password" Then
 tb.PasswordChar = "*"c
 Else
 tb.PasswordChar = CChar(0)
 End If
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_SetupEditor(object sender,
C1.Win.C1FlexGrid.RowColEventArgs e)
{
 TextBox tb = this.c1FlexGrid1.Editor as TextBox;
 if (tb != null)
 {
 if (this.c1FlexGrid1.Cols[e.Col].Name == "Password")
 tb.PasswordChar = '*';
 else
 tb.PasswordChar = (char)0;
 }
}

This topic illustrates the following:
When the user enters a password in the Password column and presses ENTER, the text is automatically converted to
asterisks.

FlexGrid for WinForms 216

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Hiding Characters Already Entered
To hide the characters that have already been entered and do not need edited, use the OwnerDrawCell event.

1. Add the following code for the OwnerDrawCell event. This code will hide the characters that have already
been entered and do not need edited.

To write code in Visual Basic

Visual Basic

Private Sub C1FlexGrid1_OwnerDrawCell(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs) Handles C1FlexGrid1.OwnerDrawCell
 If e.Row >= Me.C1FlexGrid1.Rows.Fixed And Me.C1FlexGrid1.Cols(e.Col).Name =
"Password" Then
 e.Text = New String("*"c, e.Text.Length)
 End If
End Sub

To write code in C#

C#

private void c1FlexGrid1_OwnerDrawCell(object sender,
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs e)
{
 if (e.Row >= this.c1FlexGrid1.Rows.Fixed &&
this.c1FlexGrid1.Cols[e.Col].Name == "Password")
 {
 e.Text = new string('*', e.Text.Length);
 }
}

2. Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1(1, 1) = "123456"

To write code in C#

C#

FlexGrid for WinForms 217

Copyright © 2019 GrapeCity, Inc. All rights reserved.

this.c1FlexGrid1[1,1] = "123456";

This topic illustrates the following:
Run the project again and notice the numbers are automatically loaded onto the form in the Password column as
asterisks.

Word Wrapping in a Header or Fixed Row
To set word wrapping in a header or fixed row, set the Height and WordWrap properties.

1. Set the Caption property for a column header in the grid.

In the Designer

Select a column in the grid. This will open the Column Tasks menu for that column.
In the Column Caption box, enter Word Wrapping in Header.

Alternatively, the Caption property can also be set using the C1FlexGrid Column Editor.

Open the C1FlexGrid Column Editor. For details on how to access the C1FlexGrid Column Editor, see
Accessing the C1FlexGrid Column Editor.
Select a column in the right pane and set the Caption property in the left pane to Word Wrapping in
Header.
Click OK to close the editor.

In Code

Add the following code to the Form_Load event.

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Cols(1).Caption = "Word Wrapping in Header"

To write code in C#

C#

this.c1FlexGrid1.Cols[1].Caption = "Word Wrapping in Header";

2. Set the row height of the header.

To write code in Visual Basic

FlexGrid for WinForms 218

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

Me.C1FlexGrid1.Rows(0).Height = 3 * Me.C1FlexGrid1.Rows.DefaultSize

To write code in C#

C#

this.c1FlexGrid1.Rows[0].Height = 3 * this.c1FlexGrid1.Rows.DefaultSize;

3. Enable word wrapping for the fixed cells.

In the Designer

Open the C1FlexGrid Style Editor. For details on how to access the C1FlexGrid Style Editor, see
Accessing the C1FlexGrid Style Editor.
Select Fixed in the Built-In Styles list.
Locate the WordWrap property in the right pane and set it to True.
Click OK to close the designer.

In Code

Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Me.C1FlexGrid1.Styles("Fixed").WordWrap = True

To write code in C#

C#

this.c1FlexGrid1.Styles["Fixed"].WordWrap = true;

This topic illustrates the following:
In this example, a three-line header is created, and the text is wrapped.

FlexGrid for WinForms 219

Copyright © 2019 GrapeCity, Inc. All rights reserved.

FlexGrid for WinForms Top Tips
The following tips were compiled from frequently asked user questions posted in the C1FlexGrid forum.

Tip 1: Use the BeginUpdate/EndUpdate Methods to Increase
Performance
Every time a cell value is changed, or rows and columns are added or removed from the grid, some calculations are
performed in order to recalculate the grid layout and update the display.

You can increase performance significantly by enclosing the changes in calls to the BeginUpdate and EndUpdate
methods. For example:

To write code in Visual Basic

Visual Basic

' call BeginUpdate before updating the grid.
_flex. BeginUpdate()

' Make the changes.
Try
 Dim r As Integer = 0
 Do While (r < _flex.Rows.Count)
 Dim c As Integer = 0
 Do While (c < _flex.Cols.Count)
 _flex(r, c) = (r + c)
 c += 1
 Loop
 r += 1
 Loop
Finally

 ' Always call EndUpdate when done.
 _flex.EndUpdate()
End Try

To write code in C#

C#

// call BeginUpdate before updating the grid.
_flex.BeginUpdate();

// Make the changes.
try
{
 for (int r = 0; r < _flex.Rows.Count; r++)
 {
 for (int c = 0; c < _flex.Cols.Count; c++)
 {
 _flex[r, c] = r + c;

FlexGrid for WinForms 220

Copyright © 2019 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/Forums.aspx

 }
 }
}
finally
{

 // Always call EndUpdate when done.
 _flex.EndUpdate();
}

Note the use of a try/finally block to ensure that the C1FlexGridBase.EndUpdate method is called even if the update
code fails and throws an exception.

Note: The BeginUpdate and EndUpdate methods were added in the 2010/v1 release of the C1FlexGrid. In
previous versions, the Redraw property was used for the same purpose. This change was made to increase
source compatibility with other controls that use the BeginUpdate and EndUpdate pattern.

Tip 2: Use the AutoResize Property to Increase Performance
When a bound grid retrieves data from a data source, it measures every cell and sets the column widths so they fit all
the data. This ensures the grid layout is optimal to display the data in the data source, but it can be time-consuming if
the data source is large (say more than a few thousand rows).

In these cases, you should consider setting the AutoResize property to False and setting the column widths in code.

Note: Starting with the 2010/v1 release of the C1FlexGrid, the AutoResize property defaults to False. If your
data source contains a relatively small number of items and you want the grid to resize the columns
automatically, you can either set the AutoResize property to True manually or simply call the AutoSizeCols
methods after binding or populating the grid. This change was made to increase performance in cases where
the grid is bound to large data sources.

Tip 3: Use the DrawMode Property to Assign Styles Dynamically
Based on Cell Values
The grid allows you to create cell styles and assign them to rows, columns, and arbitrary cell ranges. You can use this
capability to format cells based on their values. For example, cells that contain negative values can display them in red.

You can do this by assigning styles to cells with the SetCellStyle method, but in this case you have to update the style
whenever the cell value changes. Also, if the grid is bound to a data source, styles will be lost whenever the data
source is reset (after sorting and filtering operations for example).

A better alternative in these cases is to use the grid's OwnerDraw feature and select styles dynamically, based on the
cell values. For example, the code below shows negative values in red and values above 1,000 in green:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 ' Fill a column with random values.
 _flex.Cols(1).DataType = GetType(Integer)

FlexGrid for WinForms 221

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 Dim rnd As New Random
 Dim r As Integer = 1
 Do While (r < _flex.Rows.Count)
 _flex(r, 1) = rnd.Next(-10000, 10000)
 r += 1
 Loop

 ' Create style used to show negative values.
 _flex.Styles.Add("Red").ForeColor = Color.Red

 ' Create style used to show values >= 1000.
 _flex.Styles.Add("Green").ForeColor = Color.Green

 ' Enable OwnerDraw by setting the DrawMode property.
 _flex.DrawMode = C1.Win.C1FlexGrid.DrawModeEnum.OwnerDraw
End Sub

Private Sub _flex_OwnerDrawCell(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs) Handles _flex.OwnerDrawCell

 ' Check that the row and column contain integer data.
 If ((e.Row > 0) AndAlso (_flex.Cols(e.Col).DataType Is GetType(Integer))) Then

 ' Get value in cell about to be painted.
 Dim value As Integer = CInt(_flex(e.Row, e.Col))
 If (value < 0) Then

 ' If the Cell value < 0, use the Red style.
 e.Style = _flex.Styles("Red")
 ElseIf (value >= 1000) Then

 ' If the Cell value >= 1000, use the Green style.
 e.Style = _flex.Styles("Green")
 End If
 End If
End Sub

To write code in C#

C#

private void Form1_Load(object sender, EventArgs e)
{

 // Fill a column with random values.
 _flex.Cols[1].DataType = typeof(int);
 Random rnd = new Random();
 for (int r = 1; r < _flex.Rows.Count; r++)
 {
 _flex[r, 1] = rnd.Next(-10000, 10000);
 }

FlexGrid for WinForms 222

Copyright © 2019 GrapeCity, Inc. All rights reserved.

 // Create style used to show negative values.
 _flex.Styles.Add("Red").ForeColor = Color.Red;

 // Create style used to show values >= 1000.
 _flex.Styles.Add("Green").ForeColor = Color.Green;

 // Enable OwnerDraw by setting the DrawMode property.
 _flex.DrawMode = C1.Win.C1FlexGrid.DrawModeEnum.OwnerDraw;
 _flex.OwnerDrawCell += new
C1.Win.C1FlexGrid.OwnerDrawCellEventHandler(_flex_OwnerDrawCell);
}

private void _flex_OwnerDrawCell(object sender,
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs e)
{

 // Check that the row and column contain integer data.
 if (e.Row > 0 && _flex.Cols[e.Col].DataType == typeof(int))
 {

 // Get value in cell about to be painted.
 int value = (int)_flex[e.Row, e.Col];
 if (value < 0)
 {

 // If the Cell value < 0, use the Red style.
 e.Style = _flex.Styles["Red"];
 }
 else if (value >= 1000)
 {

 // If the Cell value >= 1000, use the Green style.
 e.Style = _flex.Styles["Green"];
 }
 }
}

Tip 4: Do Not Modify Styles in the OwnerDrawCell Event
Note that the code in Tip 3 does not modify the CellStyle object passed as a parameter in the OwnerDrawCell event.
Instead, it assigns a new value to the e.Style parameter.

That is important because the CellStyle passed to the event handler is often used by other cells. For example, you
could, unintentionally change the grid's normal style, which would affect most cells in the grid.

The examples below illustrate the difference:

To write code in Visual Basic

Visual Basic

' ** CORRECT APPROACH:
Private Sub _flex_OwnerDrawCell(ByVal sender As Object, ByVal e As

FlexGrid for WinForms 223

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1.Win.C1FlexGrid.OwnerDrawCellEventArgs) Handles _flex.OwnerDrawCell

 ' Select style to use when painting this cell:
 e.Style = MyStyleSelector(e.Row, e.Col)
End Sub

To write code in C#

C#

// ** CORRECT APPROACH:
private void _flex_OwnerDrawCell(object sender,
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs e)
{

 // Select style to use when painting this cell:
 e.Style = MyStyleSelector(e.Row, e.Col);

Contrast this with the following:

To write code in Visual Basic

Visual Basic

' ** WRONG APPROACH:
Private Sub _flex_OwnerDrawCell(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs) Handles _flex.OwnerDrawCell

 ' Select style to use when painting this cell:
 ' This is bad because changing any CellStyle objects invalidates the
 ' grid, which would cause this event handler to be called over and
 ' over again.
 e.Style.Color = MyColorSelector(e.Row, e.Col)
End Sub

To write code in C#

C#

// ** WRONG APPROACH:
private void _flex_OwnerDrawCell(object sender,
C1.Win.C1FlexGrid.OwnerDrawCellEventArgs e)
{

 // Select style to use when painting this cell:
 // This is bad because changing any CellStyle objects invalidates the
 // grid, which would cause this event handler to be called over and
 // over again.
 e.Style.Color = MyColorSelector(e.Row, e.Col);
}

Tip 5: Use the Trimming Property to Show Ellipses in a Single
Column of the Grid

FlexGrid for WinForms 224

Copyright © 2019 GrapeCity, Inc. All rights reserved.

The Trimming property should be used to show ellipses in a single column of the grid. To determine how long strings
are trimmed to fit the cell, the Trimming property can be set to either None, Character, Word, EllipsisCharacter,
EllipsisWord, or EllipsisPath.

The following table describes each of the be trimming options:

Member Name Description

Character Specifies that the text is trimmed to the
nearest character.

EllipsisCharacter Specifies that the text is trimmed to the
nearest character, and an ellipsis is inserted
at the end of a trimmed line.

EllipsisPath The center is removed from the trimmed
lines and replaced by an ellipsis. The
algorithm keeps as much of the last slash-
delimited segment of the line as possible.

EllipsisWord Specifies that the text is trimmed to the
nearest word and an ellipsis is inserted at the
end of a trimmed line.

None Specifies no trimming.

Word Specifies that the text is trimmed to the
nearest word.

The following code sets the Trimming property to show ellipses at the end of the second column, with the text
trimmed to the nearest character:

To write code in Visual Basic

Visual Basic

_flex.Cols(1).StyleNew.Trimming StringTrimming.EllipsisCharacter

To write code in C#

C#

_flex.Cols[1].StyleNew.Trimming =StringTrimming.EllipsisCharacter;

Tip 6: Use the WordWrap Property to Show Multiple Line Text in a
Cell
When showing multiple lines of text in a cell, use the WordWrap and Height properties. The WordWrap property
determines whether the grid should automatically break long strings that contain spaces and display them in multiple
lines. Strings that contain hard line breaks (vbCrLf or "\n\r") are always displayed in multiple lines.

Multiple line text can be displayed in both fixed and scrollable cells. For an example setting multiple line text in a fixed
cell, see Word Wrapping in a Header or Fixed Row.

The following code sets display multiple line text in a scrollable cell:

To write code in Visual Basic

FlexGrid for WinForms 225

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Visual Basic

' Set the WordWrap property.
_flex.Styles("Normal").WordWrap = True

' Set the row height.
_flex.Rows(1).Height = 2 * fg.Rows.DefaultSize

' Add text to the cell.
_flex(1, 2) = "This is the first line." & ControlChars.CrLf & " This is the second
line."

To write code in C#

C#

// Set the WordWrap property.
_flex.Styles["Normal"].WordWrap = true;

// Set the row height.
_flex.Rows[1].Height = 2 * fg.Rows.DefaultSize;

// Add text to the cell.
_flex[1, 2] = "This is the first line. \r\n This is the second line.";

Tip 7: Use the Sort Property to Retrieve Data Sorting when Bound to
a DataTable
If the grid is bound to a DataTable, the user can maintain the way the grid is sorted when data is refreshed. This can
be achieved by using the default view's Sort property and a sort expression.

The Sort property uses a string containing the column name followed by ASC (to sort the column in ascending order)
or DESC (to sort the column in descending order). By default, columns are sorted in ascending order. Multiple
columns can be sorted by entering each column name separated by a comma.

A sort expression can include names of grid columns or a calculation. Setting the sort expression at run time
immediately reflects the changes in the data view.

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 Me.ProductsTableAdapter.Fill(Me.NwindDataSet.Products)
End Sub

Private Sub btn_Sort_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btn_Sort.Click

 ' Sort the data by the UnitsInStock column then by the ProductID column.
 Me.ProductsBindingSource.Sort = "UnitsInStock ASC, ProductID ASC"
End Sub

FlexGrid for WinForms 226

Copyright © 2019 GrapeCity, Inc. All rights reserved.

Private Sub btn_ClearSort_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btn_ClearSort.Click

 ' Clear the sort.
 Me.ProductsBindingSource.Sort = ""
End Sub

To write code in C#

C#

private void Form1_Load(object sender, System.EventArgs e)
{
 this.productsTableAdapter.Fill(this.nwindDataSet.Products);
}

private void btn_Sort_Click(object sender, EventArgs e)
{
 // Sort the data by the UnitsInStock column then by the ProductID column.
 this.productsBindingSource.Sort = "UnitsInStock ASC, ProductID ASC";
}

private void btn_ClearSort_Click(object sender, EventArgs e)
{
 // Clear the sort.
 this.productsBindingSource.Sort = "";
}

Tip 8: Control the Number of Characters to be Entered in a Column with the SetupEditor Event

To set the maximum number of characters a user can enter for any given column use the SetupEditor event. For this
example a C1TextBox has been set as the editor for C1FlexGrid. You must declare an external editor to be used with
C1FlexGrid in the StartEdit event:

To write code in Visual Basic

Visual Basic

Private Sub _flex_StartEdit(ByVal sender As System.Object, ByVal e As
C1.Win.C1FlexGrid.RowColEventArgs) Handles _flex.StartEdit
 _flex.Editor = C1TextBox
End Sub

To write code in C#

C#

private void _flex_StartEdit(object sender, C1.Win.C1FlexGrid.RowColEventArgs e)
{
 _flex.Editor = c1TextBox;
}

Now that you have the grid's editor set up you can use the following code to allow 20 characters to be entered in the
3rd column and only 10 characters to be entered in the rest of the grid's columns (remember the following code must
be entered in the SetupEditor event):

FlexGrid for WinForms 227

Copyright © 2019 GrapeCity, Inc. All rights reserved.

To write code in Visual Basic

Visual Basic

Private Sub _flex_SetupEditor(ByVal sender As Object, ByVal e As
C1.Win.C1FlexGrid.RowColEventArgs) Handles _flex.SetupEditor

 ' Set the 3rd column to allow 20 characters and the rest only 10.
 If e.Col = 2 Then
 CType(fg.Editor, C1TextBox).MaxLength = 20
 Else
 CType(fg.Editor, C1TextBox).MaxLength = 10
 End If
End Sub

To write code in C#

C#

private void _flex_SetupEditor(object sender, RowColEventArgs e)
{

 // Set the 3rd column to allow 20 characters and the rest only 10.
 if (e.Col == 2)
 c1TextBox.MaxLength = 20;
 else
 c1TextBox.MaxLength = 10;
}

FlexGrid for WinForms 228

Copyright © 2019 GrapeCity, Inc. All rights reserved.

C1FlexGridClassic Control
C1FlexGridClassic is a control that derives from C1FlexGrid and provides an object model that is virtually identical to
the VSFlexGrid ActiveX control. C1FlexGridClassic was developed to allow easy migration of existing VSFlexGrid
projects.

The source code for C1FlexGridClassic is provided as a sample. You can use it as a reference that shows how to use
the C1FlexGrid control as a base class in the development of custom grid controls.

FlexGrid for WinForms 229

Copyright © 2019 GrapeCity, Inc. All rights reserved.

	Table of Contents
	FlexGrid for WinForms Overview
	Help with WinForms Edition
	Differences Between the .NET and ActiveX Versions of C1FlexGrid
	Differences Between the .NET and Mobile Versions of FlexGrid for WinForms
	Differences Between FlexGrid for WinForms and True DBGrid for WinForms

	Key Features
	Feature Comparison Matrix
	FlexGrid for WinForms Quick Start
	Step 1 of 3: Creating the FlexGrid for WinForms Application
	Step 2 of 3: Binding C1FlexGrid to a Data Source
	Step 3 of 3: Customizing C1FlexGrid Settings

	Design-Time Support
	C1FlexGrid Editors
	C1FlexGrid Column Editor
	C1FlexGrid Style Editor
	Caption Style and Column Style

	C1FlexGrid Smart Tag
	C1FlexGrid Tasks Menu
	Column Tasks Menu

	Using the C1FlexGrid Control
	Rows and Columns
	Column Sizing
	Star Sizing
	Column Footers

	Cell Selection
	Cell Ranges
	Cell Images
	Formatting Cells
	Cell Content
	Cell Appearance
	Conditional Formatting
	Owner-Drawn Cells

	Editing Cells
	Lists and Combos
	Checkboxes
	Value-Mapped Lists
	Cell Buttons
	Masks
	Validation
	Custom Editors
	Creating Custom Editors

	Edit Mode

	Grouping
	Grouping through Code
	Grouping through GroupPanel

	Merging Cells
	Merged Table Headers
	Merged Data Views
	Spilling Text
	Custom Merging

	Outlining and Summarizing Data
	Creating Subtotals
	Creating Custom Subtotal

	Creating Custom Trees
	Creating Outlines and Trees with the C1FlexGrid Control
	Loading the Data
	Creating Node Rows

	Outline Tree
	Adding Subtotals
	Using the Subtotal Method
	Outline Maintenance
	Using the Node class

	Saving, Loading, and Printing
	Saving and Loading Grids to Text Files
	Saving and Loading Microsoft Excel Files
	Loading Grids from Databases
	Printing Grids

	C1FlexGrid Filtering
	AllowFiltering Property
	Managing Filters Programmatically
	Applying Filters Programmatically
	Customizing Filter behavior
	Customizing the Filtering UI

	C1FlexGrid Property Groups

	Data Binding
	Binding to a Data Source
	Storing and Retrieving Data

	FlexGrid for WinForms Samples
	FlexGrid for WinForms Tutorials
	Edit Tutorial
	Step 1 of 6: Create the C1FlexGrid Control for the Edit Tutorial
	Step 2 of 6: Set Column Types and Formats
	Step 3 of 6: Incorporate Drop-Down Lists
	Step 4 of 6: Add Data Validation
	Step 5 of 6: Add Clipboard Support
	Step 6 of 6: Include Custom Editors

	Outline Tutorial
	Step 1 of 5: Create the Controls
	Step 2 of 5: Read the Data and Build the Outline
	Step 3 of 5: Add Custom Mouse and Keyboard Handling
	Step 4 of 5: Allow/Prevent Editing
	Step 5 of 5: Implement ToolTips

	Data Analysis Tutorial
	Step 1 of 4: Create the C1FlexGrid Control for the Data Analysis Tutorial
	Step 2 of 4: Initialize and Populate the Grid
	Step 3 of 4: Allow Automatic Sorting
	Step 4 of 4: Include Subtotals and Outline Tree

	FlexGrid for WinForms Task-Based Help
	Accessing the C1FlexGrid Editors
	Accessing the C1FlexGrid Column Editor
	Accessing the C1FlexGrid Style Editor

	Adding Pictures and Text to a Cell
	Adding Row Numbers in a Fixed Column
	Adding Three-Dimensional Text to a Header Row
	Adding Three-Dimensional Text to a Header Row Using Built-In Styles

	Changing the Column Order in the Grid
	Filtering by Value
	Filtering by Condition
	Changing the Filter Language
	Clearing a Tree View
	Clearing C1FlexGrid
	Clearing Content
	Clearing Styles
	Clearing UserData
	Clearing Content, Styles, and UserData

	Converting Column Letters to Uppercase
	Customizing Appearance Using Visual Styles
	Entering Only Numbers in a Cell
	Formatting Cells
	Formatting a Cell as Read-Only
	Formatting a Cell with Decimal Content
	Formatting Cells Based on the Contents

	Formatting the Border Style
	Formatting the Border Style of the Control
	Formatting the Border Style of the Grid

	Freezing Rows and Columns
	Getting the Width of a Partially Visible Column
	Loading and Saving Open XML Files
	Populating an Unbound Grid with Data
	Populating a Column with Data
	Populating a Range of Cells with Data
	Populating a Row with Data
	Populating a Single Cell with Data

	Transposing Data in Grid
	Restricting Grid Editing
	Disable Editing for the Entire Grid
	Disable Editing for a Specific Column
	Disable Editing for a Specific Row

	Restricting Sorting for a Specific Column
	Searching for Entries in a Column
	Searching for Entries in a Grid
	Setting a Cell's Value to Zero When Users Press the Delete Key
	Setting Rows As Headers
	Setting the Font of a Single Cell
	Setting the Text Delimiting Character in C1FlexGrid
	Sorting Multiple Columns
	Styling and Appearance
	Setting the Background Color of Columns and Rows

	Undoing a Sort
	Using Password Entries in C1FlexGrid
	Hiding Characters Already Entered

	Word Wrapping in a Header or Fixed Row

	FlexGrid for WinForms Top Tips
	C1FlexGridClassic Control

